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Abstract

In this note, we consider the i-block intersection graphs (i-BIG) of a universal-friend friendship
3-hypergraph and show that they are pancyclic for i = 1, 2. We also show that the 1-BIG of a universal-
friend friendship 3-hypergraph is Hamiltonian-connected.

1 Introduction

A friendship 3-hypergraph on n points (or elements) is a set system (X,B) where |X| = n, B is a set of
3-subsets (or triples) of X and for every three distinct x, y, z ∈ X, there exists a unique w ∈ X such that
the triples {x, y, w}, {x, z, w}, {y, z, w} ∈ B.

A friendship 3-hypergraph (X,B) has a universal friend u if for every pair of distinct elements x, y ∈ X,
the triple {u, x, y} ∈ B. When a friendship 3-hypergraph has a universal friend, we call it a universal-friend
friendship 3-hypergraph.

Since we will be dealing exclusively with triples, we will use the term hypergraph instead of 3-hypergraph.
In [4], it was shown that the only way to construct a universal-friend friendship hypergraph is to take

a Steiner triple system of order v ≡ 1, 3 (mod 6) (V,S) and append all triples of the form {u, x, y} where
u is an element not in V and x, y ∈ V . The element u is the universal friend. Therefore, universal-friend
friendship hypergraphs exists if and only if the number of elements is ≡ 2, 4 (mod 6). Example 1 shows a
universal-friend friendship hypergraph on eight elements. In [2], it was shown that there exists friendship
hypergraphs that do not contain a universal friend. These hypergraphs are much harder to construct and
will not be considered in this note.

Example 1 : The following is a universal-friend friendship hypergraph on 8 elements and 28 triples with
element 0 being the universal friend and the unique STS(7) is written as the first row.

137 124 235 346 457 156 267
013 012 023 034 045 015 026
037 024 035 046 057 056 067
017 014 025 036 047 016 027

∗Research supported by NSERC Discovery Grant 250389-06

1



Given a universal-friend friendship hypergraph (X,B) and a non-negative integer i we define the i-block
intersection graph (i-BIG) of (X,B) to be the graph whose vertex set are the members of B and two vertices
B and B∗ are adjacent if and only if they have exactly i elements in common. Let GB,i denote the i-BIG of
the set system (X,B). We will always use 0 to denote the universal friend, and when the number of points
in a universal-friend friendship hypergraph is not explicitly stated, it is assume to have v + 1 points where
v is the order of the contained Steiner triple system. We will assume the the point set of a hypergraph is
{0, 1, 2, ..., v} and v ≥ 7. We will write xyz to denote the 3-subset {x, y, z} whenever it is convenient to do
so.

We begin with the observation thatGB,0 is not Hamiltonian for any universal-friend friendship hypergraph
(X,B). To see this, note that the

(

v

2

)

vertices of the form {0, x, y} is an independent set of GB,0 . Therefore,
if GB,0 contains a Hamilton cycle, then each vertex of the form {0, x, y} must be adjacent to exactly two
vertices from the Steiner triple system on such a cycle. This would imply that there must be at least
as many Steiner triple system triples as there are triples of the form {0, x, y}. Therefore we must have
v(v − 1)/6 ≥ v(v − 1)/2. But this is clearly not possible. Therefore, GB,0 is not Hamiltonian.

We are interested in the 1-BIG and 2-BIG of an universal-friend friendship hypergraph. Our main results
are that the 1-BIG and 2-BIG of an universal-friend friendship hypergraph are pancyclic. We also show
that the 1-BIG of an universal-friendship hypergraph is Hamiltonian connected. We deal with the 1-BIG in
Section 2 and the 2-BIG in Section 3.

2 The 1-BIG

In order to show that GB,1 is Hamiltonian, we will require the following result from result by Chvátal and
Erdös [1].

Theorem 2.1 [1] Let G be an s-connected graph containing no independent set of s vertices. Then G is
Hamiltonian-connected (that is, every pair of vertices is joined by a Hamiltonian path).

Theorem 2.2 Let GB,1 be the 1-BIG of a universal-friend friendship hypergraph on at least 8 points. Then
GB,1 is Hamiltonian.

Proof It is known that for v ≥ 7, the 1-BIG of a STS(v) is Hamiltonian [3]. Let C be a Hamilton cycle
in this graph. Consider the subgraph H of GB,1 induced by the vertices that contain the universal friend.
Note that C and V (H) partition the vertices of GB,1. The graph H is the Kneser graph KG(v, 2). It’s
independent number is v − 1 and connectivity is

(

v−2
2

)

, for |v| ≥ 6. As v ≥ 7 by assumption, H satisfies the
conditions of Theorem 2.1. Therefore H is Hamiltonian-connected.

Consider two adjacent vertices on C, say u and v. It is clear that there exists distinct vertices x, y ∈ H
such that u → x and v → y. Construct a Hamilton path P of H with endpoints x and y. Finally remove
the edge u → v from C and attach the P to C using the two edges u → x and v → y to obtain a Hamilton
cycle of GB,1.

The proof actually gives something stronger than the Hamiltonicity of GB,1. It implies that you can
always find a Hamilton cycle in GB,1 that has a subpath consisting of all the vertices corresponding to the
triples of the Steiner triple system of B.

We now show that GB,1 is pancyclic. To do this, we will give an explicit constructions for the cycle

lengths 3 to 4v(v−1)
6 − 1.

Theorem 2.3 GB,1 is pancyclic.

Proof There are 4v(v−1)
6 vertices in the graph, v(v−1)

6 of them corresponding to the triples of an STS(v) and
the remaining corresponding to triples containing the universal friend. Using a technique similar to the proof
of Theorem 2.2 and using only a suitable-length subpath of a Hamilton cycle of the Steiner triple system of

the friendship hypergraph, it is easy to see that GB,1 has cycles of length between 3v(v−1)
6 + 1 to 4v(v−1)

6 .

So we remains to show GB,1 has cycles of length between 3 to 3v(v−1)
6 . To do this, we consider the vertices

of the graph that correspond to triples containing the universal friend 0.
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We order these triples in the following manner:
{0, 1, 2} {0, 2, 3} {0, 3, 4} ... {0, v − 2, v − 1} {0, v − 1, v}
{0, 1, 3} {0, 2, 4} {0, 3, 5} ... {0, v − 2, v}
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...
{0, 1, v − 1} {0, 2, v}
{0, 1, v}

For example, when v = 9, we have
012 023 034 045 056 067 078 089
013 024 035 046 057 068 079
014 025 036 047 058 069
015 026 037 048 059
016 027 038 049
017 028 039
018 029
019

Notice that for every row except the first, any two triples in consecutive columns are adjacent in GB,1. So
we will just permute row 1 so it also has this property. We permute row 1 to be ({0, 1, 2},{0, 3, 4},...,{0, v −
2, v − 1}, {0, 2, 3},{0, 4, 5},...{0, v − 1, v}). For v = 9, we have

012 034 056 078 023 045 067 089
013 024 035 046 057 068 079
014 025 036 047 058 069
015 026 037 048 059
016 027 038 049
017 028 039
018 029
019

With this ordering of the triples containing the universal friend, construct a path P starting at {0, 1, 2}
and continuing to {0, v − 1, v} by taking triples from each row starting from row 1 and moving from left to
right. When we reach the end of a row, we just continue extending the path from the left side of the next
row. Notice that the last vertex of P will be {0, 2, v}. The only triple containing the universal friend which
is not on the path P is {0, 1, v}.

Notice that if a triple 0xy on P has only 0 in common with 012, then we can start at 012 and follow P
until we get to 0xy and join the two vertices 012 and 0xy to get a cycle. Therefore, the only cycle lengths l
that we cannot get using the path P and the approach in the previous sentence are those where the vertex
01x or 02y have distance l − 1 from 012 along this path.

For example, using the construction stated above, we can get a cycle of length three 012 → 034 → 056 →
012, but cannot get a cycle on length 5 because the subpath 012 → 034 → 056 → 023 ends with a triple that
has two elements in comment with 012 on P , and therefore 012 and 023 are not adjacent in GB,1.

However, we can get around this by changing the construction slightly whenever we run into this difficulty.
We begin by handling the special cases of cycle lengths of 3v(v − 1)/6 − 5, 3v(v − 1)/6 − 4, 3v(v − 1)/6 −
2, 3v(v − 1)/6− 1 and 3v(v − 1)/6.

To get a cycle of length 3v(v − 1)/6, we modify the path P slightly by placing {0, 1, v − 1} between
{0, 2, 4} and {0, 3, 5}, placing {0, 2, v} between {0, 3, 5} and {0, 4, 6} and finally placing {0, 1, v} between
{0, 2, 5} and {0, 3, 6}. We now have a Hamiltonian path in GB,1 with endpoints {0, 1, 2} and {0, 3, v} by
following the same construction method as for P . As these two vertices are adjacent, we have a desired cycle
of length 3v(v− 1)/6. You can throw away the vertex {0, 1, v} and get a cycle of length 3v(v− 1)/6− 1 and
you can get a cycle of length 3v(v − 1)/6− 2 by throwing away the vertices {0, 1, v − 1} and {0, 2, v}. This
shows how to construct cycles of length 3v(v − 1)/6− 2, 3v(v − 1)/6− 1 and 3v(v − 1)/6.

Now consider the subpath S of P starting at {0, 1, 2} and ending in {0, 1, v − 2}. On S, we can move
{0, 1, v−2} between {0, 3, v−1} and {0, 4, v} to get a new path in which the endpoints {0, 1, 2} and {0, 4, v}
are adjacent in GB,1. So this shows there is a cycle of length 3v(v−1)/6−5. Similarly, consider the subpath
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S of P starting at {0, 1, 2} and ending in {0, 2, v − 1}. On S we can move {0, 1, v − 2} and {0, 2, v − 1}
between {0, 3, v−1} and {0, 4, v} to get a new path in which the endpoints {0, 1, 2} and {0, 4, v} are adjacent
in GB,1. So this shows there is a cycle of length 3v(v − 1)/6− 4.

We now handle the reminder of the cycle lengths. We need to consider subpaths of P starting at {0, 1, 2}
and ending at {0, 1, x} or {0, 2, x}. These paths will have the correct number of vertices for the cycle lengths
we are interested in but the endpoints are not adjacent. We will manipulate these paths slightly to make
the endpoints adjacent while maintaining the same number of vertices as in the original path.

Consider the subpath S of P , starting at {0, 1, 2} ending in a vertex {0, 1, x}. We can assume 3 ≤ x ≤ v−3,
because of the special cases already handled. Then we can replace {0, 1, x} with the next occurring vertex
(on P ) of the form {0, 3, x + 2}. Note that the triple {0, y, v} immediately preceding {0, 1, x} on S never
contains 3 nor x+ 2, and therefore is adjacent to {0, 3, x+ 2} GB,1. To see this, note that x+ 2 6= v, v 6= 3
and y 6= 3. Also, it is easy to see that x+ 2+ y = v + 4, due the ordering of the triples and to the way P is
constructed. As v + 4 is odd, then x+ 2 and y have different parity. Therefore so x+ 2 6= y.

Note that {0, 3, x+2} is adjacent to {0, 1, 2} in GB,1. This gives a new path whose endpoints are adjacent
and has the same number of vertices as S and hence gives a cycle of the desired length.

In the last scenario, consider the subpath S of P starting at {0, 1, 2} and ending in a vertex {0, 2, x}. We
may assume x ≤ v− 2 as for x = v− 2, v− 1, as we have already handle these lengths in the special cases. If
x = 3, then we can replace {0, 2, 3} on S with {0, 3, 7} and we get a new path with same length and whose
endpoints are adjacent. On the other hand, if x 6= 3, then {0, 1, 2} and {0, 2, x} are on different rows. The
vertex on S preceding {0, 2, x} must be {0, 1, x − 1}. On the path S, replace {0, 2, x} with {0, 3, x + 1}. It
can be seen that {0, 3, x+ 1} is adjacent to {0, 1, x− 1} and {0, 1, 2} in GB,1. This gives another path with
same number of vertices as S and whose endpoints are adjacent. This takes care of all the cycle lengths and
therefore the graph GB,1 is pancyclic.

We now show that the connectivity of GB,1 is larger than its independence number. This result along
with Theorem 2.1 shows that GB,1 is Hamiltonian-connected.

We begin by showing the independence number of GB,1 is at most v− 1, where v is the number of points
in the Steiner triple system. We let X = {0, 1, ..., v} denote the point set of the friendship hypergraph where
0 is the universal friend.

Lemma 2.4 If N is an independent set of GB,1, then |N | ≤ v − 1.

Proof Consider the number of vertices in N corresponding to triples from the Steiner triple system used
to construct (X,B). If this number is zero, then all vertices in N must be triples that contain the universal
friend 0. Removing the universal friend from these triples, we get a 1-intersecting family (of 2-sets) and
hence by the Erdős-Ko-Rado Theorem, there are at most

(

v−1
1

)

= v − 1 triples in B, if they all contain the
universal friend.

Otherwise, if there are l > 0 triples L in N that come from the Steiner triple system, then these triples
must be disjoint and there l ≤ ⌊v/3⌋. We now look at how many triples containing the universal friend
can be in N . Now, either there is a triple {0, x, y} containing the universal friend such that the pair {x, y}
appears in some triple of L or for every triple {0, x, y} containing the universal friend, neither x nor y belongs
to any triples of L. We consider both scenarios.

1. Suppose the triple {0, x, y} ∈ N and a triple {x, y, z} ∈ L. Then it may be that the triples {0, x, z}
and {0, y, z} belong to N . If so, then these are the only ones triples containing the universal friend
that can belong to N . To see this, consider another triple {0, a, b} ∈ N . If x = a, then it must be that
y 6= b. Therefore, as this triple must have either empty intersection or intersect in two elements with
the triple {x, y, z}, we see that {0, a = x, b 6= y} can be in N only if b = z giving the triple {0, x, z}.
Similarly, if y = a, then it must be that x 6= b, and therefore {0, a = y, b 6= x} can be in N only if
b = z giving the triple {0, y, z}. So, in this case there are at most three triples containing the universal
friend. As l ≤ ⌊v/3⌋, |N | ≤ ⌊v/3⌋+ 3.

2. Suppose for every triple {0, x, y} ∈ N , neither x nor y appear in any of the triples of L. As there
are l triples in L, by the Erdős-Ko-Rado Theorem, the maximum number of triples containing the
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universal friend can be
(

v−3l−1
1

)

= v − 3l − 1. Therefore the maximum number of triples in N is
v − 3l − 1 + l = v − 2l − 1 where l ≥ 0.

So we have shown that the maximum independent set has size at most max{⌊v/3⌋+ 3, v − 1, v − 2l− 1}
which is v − 1, as v ≥ 7 and l ≥ 0.

We now show that the vertex connectivity of GB,1 is at least v.

Lemma 2.5 The vertex connectivity of GB,1 is at least v.

Proof It suffices to show that between any two non-adjacent triples of the 1-block intersection graph GB,1

there are at least v internally-disjoint paths between the two triples. We consider all pairs of triples that are
not adjacent in GB,1. Here are the pairs of non-adjacent triples of GB,1 that need to be considered (up to
isomorphism).

1. {0, 1, 2}, {0, 1, 3}: In this case there are
(

v−3
2

)

triples of the form {0, x, y} where x, y 6∈ {1, 2, 3} that
are adjacent to both {0, 1, 2} and {0, 1, 3}. Also, there is a triple from the Steiner system which is of
the form {1, x, y} where x, y 6∈ {2, 3}. The path 012 → 1xy → 013 along with the other paths give
(

v−3
2

)

+ 1 internally disjoint paths between the two triples (where each path has length 2), which is at
least v for v ≥ 7.

2. {0, 1, 2}, {1, 2, 3}: In this case, we can use each of {0, 3, x} where x ∈ {4, 5, ..., v} as interior vertex
of internally disjoint paths of length 2 giving v − 3 such paths. Now as v ≥ 7, each of the 3 paths
012 → 045 → 026 → 123, 012 → 046 → 027 → 123 and 012 → 056 → 017 → 123 are internally disjoint
with all the other given paths. This gives v internally disjoint paths between the two triples.

3. {0, 1, 2}, {3, 4, 5}: In this case, each of the triples {0, 3, x}, {0, 4, x} {0, 5, x}, x ∈ {6, 7, ..., v} can be used
to form a path of length two between {0, 1, 2} and {3, 4, 5}. Finally the path 012 → 067 → 024 → 345
is internally disjoint from the 3(v− 5) paths listed earlier. As v ≥ 7, there are at least 3(v− 5)+ 1 ≥ v
internally disjoint paths between {0, 1, 2} and {3, 4, 5}.

4. {1, 2, 3}, {4, 5, 6}: We note that in this case, v ≥ 9, as the unique Steiner triple system of order 7 does
not contain disjoint triples. We can construct nine internally disjoint paths of length two, each using a
triple of the form {0, x, y} as the sole internal triple of the path, where x ∈ {1, 2, 3} and y ∈ {4, 5, 6}.
Now for each ordered pair (x, y) ∈ {(1, 4), (2, 5), (3, 6)}, we can form ⌊(v − 6)/2⌋ internally disjoint
paths of length 3 using two internal triples of the form {0, x, z} and {0, y, w} where z, w are distinct
elements from {7, 8, ..., v}. This gives a total of 9 + 3⌊(v − 6)/2⌋ ≥ v internally disjoint paths between
{1, 2, 3}, {4, 5, 6}.

In each case, there exists at least v internally disjoint paths between two non-adjacent vertices.
Combining Lemmas 2.4, 2.5 and Theorem 2.1, we have the following result.

Theorem 2.6 The graph GB,1 is Hamiltonian-connected.

It should be pointed out that Lemma 2.4, 2.5 also imply that GB,1 is Hamiltonian (see [1]).

3 The 2-BIG

In this section we will show that the 2-BIG of a universal-friend friendship hypergraph is Hamiltonian and
pancyclic. We will do this by giving an explicit construction.

Theorem 3.1 GB,2 is Hamiltonian
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Proof We will give an explicit construction of a Hamilton cycle in GB,2. To contruct the cycle, let {0, 1, v}
be the first vertex of the cycle to be constructed. We will keep adding vertices to it until we get a Hamilton
cycle. Let {1, x, v} be a triple in the STS and make it the 2nd vertex of the partial cycle and {0, 1, x} the 3rd
vertex of the partial cycle. For each remaining STS triple 1ab add to the cycle 01a → 1ab → 01b. If there
are any universal-friend triples of the form 01x that has not been placed on the partial cycle after all the
STS triples of the form 1ab has been placed, we arbitrarily extend the partial cycle using these remaining
universal-friend triples. At this point all triples of the form {0, 1, x} as well as all STS triples beginning with
1 have been placed onto the partial cycle.

Now suppose all the STS triples whose smallest element that is less than i has been placed on the cycle
and suppose the last vertex placed on the partial cycle is {0, i− 1, x}. There are two scenarios to consider

1. If the triple {i, x, y} is a triple in the STS where i < x, y, then extend the cycle by adding the subpath
0ix → ixy → 0iy.

2. If the triple {i, x, y} is not a triple in the STS for any y > i and i 6= x, then extend the partial cycle
by adding the vertex 0ix to the end of the cycle.

For the remaining STS triples iab beginning with i, extend the partial cycle with 0ia → iab → 0ib.
Finally, if there are any triples of the form 0ix left over, just add them to the end of the cycle after all the
STS triples beginning with i have been processed.

Repeat this process until all triples have been placed. Note that the last triple to be placed on the cycle
will be {0, v−1, v}, which is adjacent to {0, 1, v}, the first vertex we placed on the cycle. Therefore, we have
constructed a Hamilton cycle of GB,2

Example 2 illustrates the construction process in the proof of Theorem 3.1.

Example 2 Consider the following STS(9) whose triples are partitioned based on the smallest element in
the triple. {123, 147, 159, 168}, {249, 258, 267}, {348, 357, 369}, {456}, {789}.

After processing triples of STS beginning with 1, we have the (partial cycle) 019 → 159 → 015 → 012 →
123 → 013 → 014 → 147 → 017 → 016 → 168 → 018.

After processing triples of STS beginning with 2, we have the (partial cycle) 019 → 159 → 015 → 012 →
123 → 013 → 014 → 147 → 017 → 016 → 168 → 018 → 028 → 258 → 025 → 024 → 249 → 029 → 026 →
267 → 027 → 023.

After processing triples of STS beginning with 3, we have the (partial cycle) 019 → 159 → 015 → 012 →
123 → 013 → 014 → 147 → 017 → 016 → 168 → 018 → 028 → 258 → 025 → 024 → 249 → 029 → 026 →
267 → 027 → 023 → 034 → 348 → 038 → 035 → 357 → 037 → 036 → 369 → 039.

After processing triples of STS beginning with 4, we have the (partial cycle) 019 → 159 → 015 → 012 →
123 → 013 → 014 → 147 → 017 → 016 → 168 → 018 → 028 → 258 → 025 → 024 → 249 → 029 → 026 →
267 → 027 → 023 → 034 → 348 → 038 → 035 → 357 → 037 → 036 → 369 → 039 → 049 → 045 → 456 →
046 → 047 → 048.

After processing triples of STS beginning with 5,6, we have the (partial cycle) 019 → 159 → 015 → 012 →
123 → 013 → 014 → 147 → 017 → 016 → 168 → 018 → 028 → 258 → 025 → 024 → 249 → 029 → 026 →
267 → 027 → 023 → 034 → 348 → 038 → 035 → 357 → 037 → 036 → 369 → 039 → 049 → 045 → 456 →
046 → 047 → 048 → 058 → 057 → 058 → 056 → 069 → 067 → 068.

After processing triples of STS beginning with 7 we have the (partial cycle) 019 → 159 → 015 → 012 →
123 → 013 → 014 → 147 → 017 → 016 → 168 → 018 → 028 → 258 → 025 → 024 → 249 → 029 → 026 →
267 → 027 → 023 → 034 → 348 → 038 → 035 → 357 → 037 → 036 → 369 → 039 → 049 → 045 → 456 →
046 → 047 → 048 → 058 → 057 → 058 → 056 → 069 → 067 → 068 → 078 → 789 → 079.

Finally, the triple 089 is the last triple to be added to the partial cycle giving After processing triples of
STS beginning with 7 we have the (partial cycle) 019 → 159 → 015 → 012 → 123 → 013 → 014 → 147 →
017 → 016 → 168 → 018 → 028 → 258 → 025 → 024 → 249 → 029 → 026 → 267 → 027 → 023 → 034 →
348 → 038 → 035 → 357 → 037 → 036 → 369 → 039 → 049 → 045 → 456 → 046 → 047 → 048 → 058 →
057 → 058 → 056 → 069 → 067 → 068 → 078 → 789 → 079 → 089.

Note that 019 and 089 have two elements in common and therefore are adjacent in the 2-BIG.

We now use a similar approach to show that GB,2 is pancyclic.
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Theorem 3.2 GB,2 is pancyclic.

Proof Using the Hamilton cycle constructed in the proof of Theorem 3.1, it is easy to see that removing

any number of the vertices corresponding to triples of the STS will provide cycles of length between 3v(v−1)
6

to 4v(v−1)
6 . So we only need to consider constructing cycles of length between 3 and 3v(v−1)

6 − 1 in GB,2. To
do this, we will consider cycles using only of triples containing of the universal friend.

For each 1 ≤ i ≤ v − 1, let f(i) denote the number of triples of the form {0, i, j} where i < j. Clearly
∑v−1

i=1 f(i) = 3v(v−1)
6 .

Suppose we want to construct a cycle of length k between 3 and f(1). Then any subset of k triples
containing 0 and 1 will give a cycle of length k in GB,2.

In general, suppose we would like to construct a cycle of length k between
∑i−1

j=1 f(j) + 1 and
∑i

j=1 f(j)
where 1 < i < v. To do this, form a path starting with {0, 1, v} and ending in {0, i−1, i} using all the triples
that contain the pairs {0, 1},{0, 2},...,{0, i − 1}. This can easily be done. One way is 01v → {0, 1, v − 1} →
· · · → 012 → 02v → · · · → 023 → · · · → {0, i − 2, i − 1} → {0, i − 1, v} → · · · → {0, i − 1, i}. Now this

path has length
∑i−1

j=1 f(j). So now, to get a cycle of length k, we just need to extend this path by adding

k−
∑i−1

j=1 f(j) vertices. You can extend the path by using any k−
∑i−1

j=1 f(j) triples of the form 0ij where the
last triple added to the path is 0iv. This will give a cycle of the desired length as 0iv and 01v are adjacent
vertices in GB,2.

In GB,2, each STS triple {x, y, z} is adjacent to exactly 3 universal friend triples, namely {0, x, y}, {0, x, z}
and {0, y, z}. A question that comes to mind is whether it is possible to construct a Hamilton cycle in GB,2

such that the STS triples lie exactly a distance of 4 from each other on the cycle. Example 3 shows that it
is possible for v = 7, 9. It would be interesting to see if this is always possible. However, I was not able to
generalize this to arbitrary, admissible values of v > 9.

Example 3 Here is a Hamilton cycle of GB,2 with v = 7 where the STS triples are a distance 4 apart.
(012,123,013,037,047,147,017,016,036,367,067,057,015,156,056,026,027,257,025,045,046,246,
024,023,035,345,034,014).

Here is a Hamilton cycle of GB,2 with v = 9 where the STS triples are a distance 4 apart.
(789,079,049,019,129,012,028,024,246,026,069,036,367,067,047,057,257,027,029,023,238,
038,048,068,168,016,046,056,569,059,035,034,349,039,037,017,147,014,018,013,135,015,
025,045,458,058,089,078).
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