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Abstract

In this paper we study some properties of cyclic unary languages. We find
a connection between the uniqueness of the minimal NFA for a cyclic unary
language and a certain Diophantine equation first studied by Sylvester.

We also obtain some results on the radius of unary languages. We show
that the nondeterministic radius of a cyclic unary regular language L is not
necessarily obtained by any of the minimal NFAs for L. We also give a class
of examples which demonstrates that the nondeterministic radius of a regular
language cannot necessarily even be approximated by the minimal radius of its
minimal NFAs.

1 Introduction

State complexity of regular languages, that is, the study of the size of minimal finite
automata, both deterministic and nondeterministic, has received much attention
recently. We refer the reader to the recent survey of Yu [17] for a survey of deter-
ministic state complexity. For recent work on nondeterministic state complexity, we
refer the interested reader to Holzer and Kutrib [10] or Ellul [9].

Unary languages are often of particular interest in the study of state complexity,
due to their relation to many number-theoretic results, as well as their difference
from the general, non-unary case. Cyclic unary languages were investigated by
Jiang et al. [14] in their study of the complexity of minimizing nondeterministic
finite automata (NFAs).

Motivated by the work of Jiang et al., in this paper, we study some properties
of cyclic unary regular languages and NFAs. We find a connection between the
Diophantine equation
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with 1 < ny < ng < --- < ng, and the uniqueness of minimal cyclic unary NFA. This
Diophantine equation has been studied since at least 1880, when it was investigated
by Sylvester [16].

We also investigate the relation between the size of a minimal NFA and the
nondeterministic radius of regular languages. We show that the nondeterministic
radius of a regular language L is not necessarily attained by a minimal NFA for
L. In the deterministic case, Ellul showed that the analogous result does hold, i.e.,
that the deterministic radius of a regular language L is the radius of the minimal
deterministic finite automaton (DFA) [9]. This eliminates a potential algorithm for
computing the nondeterministic radius of a regular language, which remains an open
problem.

2 Preliminaries

Let 2% denote the power set of X: 2X¥ = {Y : Y C X}. Let N denote the set of
natural numbers N = {0, 1,...} and N* denote the set of non-zero natural numbers:
Nt =N - {0}.

In this paper we work with languages over the unary alphabet ¥ = {a}. We as-
sume the reader is familiar with the concepts of and notation for deterministic finite
automata (DFAs) and nondeterministic finite automata as described, for example, in
Hopcroft and Ullman [12]. In particular, for us a nondeterministic finite automaton
(NFA) is a 5-tuple M = (Q, X, 0, qo, F) such that @ is a finite set of states, ¥ = {a}
is the unary input alphabet, § : Q x ¥ — 2% is the transition function, gy € Q is the
start state and F' C @Q is the set of final states. An NFA is a DFA if [6(q,a)| =1 for
all g € Q, a € 3.

A minimal NFA (DFA) for a given regular language is an NFA (DFA) that
recognizes the language with a minimal number of states. It is known that the
minimal DFA is unique up to the names of the states, but minimal NFAs are not
necessarily unique.

Let L be a regular language. Then nsc(L), the nondeterministic state complexity
of L, is the number of states in any minimal NFA accepting L. Similarly sc(L) is
the deterministic state complexity of L, that is, the number of states in the minimal
DFA accepting L.

A unary language L C X* is cyclic if there exists an integer n such that a’ €
L <= a"t™ ¢ L for all i > 0. In this case, we say that L is n-cyclic.

We say that a set {ni,ng,...,n;} C N, is division-free if for all 1 < i < j < k,
we have n; fn; and nj fn;. In the literature, division-free sets are sometimes called
primitive sets.

For any finite set S = {s1,s9,...,5,} C N*, we define lem(S) = lem(s1, ..., sy).
We let [n] denote the set {1,2,3,...,n} for any n € N*.

3 Results on Minimal Unary NFAs

In this section, we give some new and known results on minimal unary NFAs that
will be applied to give the non-uniqueness of minimal cyclic unary NFAs.



The minimal DFA of a cyclic language is a simple loop. However, the following
result, quoted essentially verbatim from Jiang et al. [14, Theorem 2.1}, gives the
structure of minimal NFAs for cyclic languages:

Theorem 3.1 Let L be an m-cyclic language. Then L has a minimal NFA in one
of the following two forms:

(a) M consists of a single directed cycle having k states where k|m.

(b) M consists of two or more pairwise disjoint cycles, each reached by a transition
from the start state. The start state does not belong to any cycle. There are
no other transitions in M, and each cycle length is a divisor of m.

We say that a unary NFA is in tail-less Chrobak Normal Form (t-CNF) if it is
in form (b) of Theorem 3.1 (see Chrobak [8] for a definition of Chrobak Normal
Form). We will require the following three technical lemmas on deterministic and
nondeterministic state complexity.

Lemma 3.2 Let my,ma,...,my € N*. Then for any NFA M in t-CNF with loops
of size mq,...,my, there exists a DFA with lem(my,ma, ..., my) states accepting
the same language.

Proof. Let L be the language accepted by the NFA M = (Q,{a},d,qo, F') with
loops of size my,mo,...,mg. Let m = lem(my,ma,...,my). Let L[i] be the set
of natural numbers < m; corresponding to lengths of strings accepted by the i-th
loop of M (of size m;). Then we let M’ = ([m],{a},d, m, F’) be the DFA given by
0(i,a) =i+ 1 (mod m) and

k
F' = U{] : 3¢ € L[i] such that j =0 (mod ¢)}.
i=1

It is easy to establish that L(M') = L. ®

Lemma 3.3 Let k > 2, {m1,ma,...,my} C NT be a division-free set and L =
Ule(ami)*. Then sc(L) = lem(my, ma, ..., mg).

Proof. Assume that there exists a DFA accepting L = U¥_,(a™)* with less than
lem(my, ..., my) states. Let £ be chosen with 1 < ¢ < lem(my,..., mg) so that there
exists M = ([¢],{a},d,¢, F) accepting L for some F and ¢ given by 6(j,a) = j + 1
(mod ¢) for all j € [¢].

Let i € [k] be chosen so that m; does not divide ¢. Let g = ged(m;,¢). Consider
the Diophantine equation xm; = g+y¥¢, with z,y variables. Let [z, o] be a solution
to this equation with xg,yg > 0; such solutions can easily be seen to exist regardless
of m; and ¢. Thus, we have that zom; = g (mod ¢). This implies that a9 € L.
Therefore, there exists j € [k] such that a9 € (a"7)*. Thus, m;|g. As g|m; by
our choice of g, we have that m;|m;. If i # j, then we have a contradiction to our
assumption that {mq,...,my} is division-free. Otherwise, m; = m; = g and m; | ¢,
which contradicts our choice of i. Thus, sc(L) > lem(my,...,my). ®



Lemma 3.4 Let ny,no,...,n € NT, and L = Ule(a"i)*. Let M be a unary NFA
in t-CNF accepting L. Assume that M has loops of size c1,c¢a,...,cp, with the state
we arrive at on input a® in the loop of size ¢; labeled [i,k] for all 1 < i < £ and
1 <k <c¢;. Then for each ¢; and each final state [i,7] of ¢; there exists an nj such
that n; | ged(e;,r). In particular, nj|c; and nj|r.

Proof. Fix an index ¢ with 1 <7 < /. Assume that ng > n; for all 1 < j < k.

Suppose that the loop with length ¢; has a final state [¢, r], that is, suppose the
loop accepts a”(a%)*.

Then let d = ged(r, ¢;), v’ = r/d, and ¢ = ¢;/d. By Dirichlet’s Theorem, there
are infinitely many primes in the arithmetic progression {r'+mc : m > 0}. Choose
an m > 0 such that p = 7' +mc is a prime with p > n. Since d-p = r +mc;, a® is
accepted by the loop of length ¢;, and there must be ¢ and n; such that d-p = ¢-n;.
Since p > nj, we must have p|q. Thus n; |d. This proves the lemma. =

Theorem 3.5 Let k > 2. Let my,ma,...,m; € N, and L = Ule(ami)*. Then
nsc(L) =1+ Z?Zl m; if and only if the following conditions hold:

(a) 1+ Zle m; < lem(my,mo,...,my), and

(b) for all proper subsets S C {my,mao...,my} with |S| > 2, we have Y om <
lem(S).

Remark: For & = 2, Theorem 3.5 was proven under slightly weaker conditions by
Holzer and Kutrib [11, Thm. 4].
We call the condition that )

local-lem property.

mes™ < lem(S) for all S C {my,...,my} the

Proof.
(=): Assume that nsc(L) = 1 + Y% m;. Let m = lem(my,my, ..., my). Then L
is accepted by an m-state DFA by Lemma 3.2. Thus, nsc(L) < m.

Suppose that condition (a) does not hold. Then since nsc(L) < m, it is not true
that nsc(L) =1+ S5 m;.

On the other hand, suppose that condition (b) does not hold. Let S be a subset
of {my,...,my} with >° _sm >lem(S). Let m/ = lem(S), and Lg = {J,,cq(a™)*.
By Lemma 3.2, there is a DFA with m/ states accepting Lg, so that nsc(Lg) < m/.
Now, L = Lg U (U, gs(a™)*). Since we can accept each (a™)* by a loop of size
m, the nondeterministic state complexity of L is at most 1 +m’ + ngs m (by the
standard union construction; see, e.g., Holzer and Kutrib [11, Thm. 3]) which is
strictly less than 1 + Zle m;, since m' <) _om.

(«<): Assume that (a) and (b) do hold, but nsc(L) # 14 3% m;. By the standard
union construction, we know that nsc(L) < 1+ Zle m;. Thus, it must be that
nsc(L) <1+ Zle m;. Thus nsc(L) < lem(my,ma,...,mg).

First, suppose that M is a DFA. We show that {m,...,my} is division-free.
Assume not. Therefore, there exist m;, m; such that m; |m;. Then lem(m;, m;) =
max(m;, m;) < m;+m;. This contradicts our assumptions on {m1,...,my}. Thus,



we can apply Lemma 3.3, and M has lem(mq, ma, ..., my) states. Thus, we may

assume that M is in t-CNF. Let M be any NFA in t-CNF, with loops C1,Co,...,Cy

of sizes ¢y, ¢, ..., cp respectively. For all 1 <¢ < ¢ and 1 <r < ¢;, let the state in
loop C; we arrive at on input a” be labeled by [i,7]. Assume that there exists a C;
such that ¢; & {mi,ma,...,my}. Let S C {mq1,mo,....my} be the set of m; such

that m; € S if and only if m; | ¢;. Thus, ¢; > lem(S).

Consider first the case where |S| = 1. Then let m; | ¢;. By Lemma 3.4, for each
final state [i,7] of C;, m; |7 (since no other m; with 1 <i < k divides ¢;). Thus,
we can replace the final state [i,7] in loop C; with a loop of size m;, with only one
final state (the state we arrive at on input a™), accepting (a)*. Since this accepts
all the strings accepted by Cj, and no strings that are not in L, the resulting NFA
accepts L, and has ¢; —m; > 0 fewer states.

Now, let |S| > 2. For each final state [i,7] of loop C;, we have that, for some
mj € S, mj|r +me; for all m > 0. Thus,

ar(aci)* g (amj)*' (1)

Thus, we take M and we replace the loop C; with a loop of size m; for each m; € S.
Further, we assign final states so that the loop of size m; accepts (a™i)*. By (1),
this does not cause M to accept any fewer strings. Further, as (a™#)* C L(M) = L,
the replacement of C; does not cause M to accept any more strings. Thus, we have
an NFA with ¢; =), cgm > lem(S) =3 ¢ m > 0 fewer states accepting the same
language.

In this way, we can always replace each loop of size ¢; & {my1, ..., my} with loops
of sizes taken from {my,...,my}, without increasing the size of M. Thus, for some
R C {m1,ma,...,my}, we have that nsc(L) =1+, _pm.

We now claim that this R = {mq,mo...,mg}. If R # {mq,...,my}, then
we have a t-CNF NFA M for L with loop sizes R for some proper subset R of
{mi1,...,my}. Using the standard union construction, we can construct a DFA for
L with lem(R) states. As the above process creates M that accepts L, we must have
that lem(R) > lem(mq, ma, ..., my), by Lemma 3.3. Thus,

k
lem(R) > l—i—Zmi > Z m.
i=1

meR

This contradicts condition (b). Thus, we must have R = {m1,ma,...,my}, and
nse(L) =1+ 3% m;. =

4 Non-Uniqueness of Minimal Unary NFAs

In their paper on minimal unary NFAs, Jiang et al. note that minimal NFAs are
not unique. However, the example they provide is not a unary NFA (it accepts the
language L = (0+ 1)*1 [14, Fig. 3]). This raises the following question: are minimal
unary NFAs unique? It is easy to see that Figure 1 shows two minimal NFAs for
the language L = a + a™ for any n > 2.
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Figure 1: Two minimal NFAs accepting L = a + a™.

However, the subclass of cyclic unary languages, to which Theorem 3.1 applies,
is not so simple. We first note that trivial examples of cyclic unary languages
possessing non-unique minimal NFAs exist. For instance, consider any language L
which has a minimal NFA M = (Q,{a},d,qo, F) in t-CNF in which one loop of size
n has two final states. Thus, there exist 0 < nj,ng < n such that (a”)*a™ U(a™)*a™
is the language accepted by the loop of size n. Consider replacing the loop of size n
with another of size n with only one final state, and two transitions from the initial
state ¢go to the loop of size n. These two transitions leaving gg can be assigned to
ensure that the loop of size n accepts exactly (a”)*a" U (a™)a"?. The resulting NFA
will also be minimal if n is odd or ny # ng (mod n/2). An example is given in
Figure 2 (additional loops in both automata are not depicted).

Figure 2: Two equivalent loops accepting (a + a*)(a*)*.

However, we view these as trivial examples of non-unique minimal NFAs, since
the set of loop sizes in both NFAs are equal. Thus, in what follows, we seek cyclic
unary languages with non-unique minimal NFAs such that either (a) one NFA is in
t-CNF and one is a DFA or (b) both NFAs are in t-CNF, but have different sets of
loop sizes. This leads us to study connections to a Diophantine equation that has
many applications and has been studied for over 120 years.



4.1 The Diophantine equation ) 1/n;+1/[[n; =1

The study of the equation
k

1 1

1= —+ 2

; ni Il .

for 1 < mnj < ng <--- < ny has along history. Sylvester studied it in 1880 [16], and it

has connections to complex surface singularities and perfect graphs [2, 3, 4, 5, 7, 13].

Consider any solution 1 < n; < ng < --- < ng to (2). Note that, clearing
denominators, (2) implies (cf., Brenton and Drucker [4, Eq. (2)])

an =—1 (mod nj). (3)

Thus, we have ged(ng,nj) =1forall 1 <i<j<k. Letn= Hle n;. Then we have

Letting m; = n% for all 1 <1i <k, we get

k
n:ZmH—l (4)
i=1

and
lem(my, ma,...,myg) = n. (5)

4.2 Non-Uniqueness of Unary Cyclic NFAs

We establish the solutions to (2) always yield a cyclic unary language whose minimal
NFA is not unique. First, we observe that any mi,mo,..., my derived from (2)
satisfy the local-lem property.

Lemma 4.1 Let {mi,ma,...,mi} C N satisfy (4) and (5), derived from a set
{ni,ne,...,ni} C N satisfying (2). Then for any proper subset S C {mq,...,my}
with |S| > 2, we have

Zm < lem(S).
Proof. Let n = lem(mi,ma,...,my). Let m;,m; € S for i # j. Then m; = n/n;
and m; = n/n;. By the fact that ged(n;,n;) = 1, we have that

lem(m;, mj) = n.

Thus, as lem(my, ma,...,mg) = n as well, we must have that lem(S) = n. Thus,
by (4),

k
ZmﬁZmi <n = lem(S).
1

meS i=



Theorem 4.2 Let {my,ma,...,mi} C N satisfy (4) and (5), derived from a so-
lution to (2). Then there exists a unary n-cyclic reqular language L such that the
minimal NFA for L is not unique.

Proof. Let L = Ule(ami)*. Then by Lemma 4.1 and Theorem 3.5, there exists a
minimal NFA M; for L with 1+ Zle m; states. By Lemma 3.2, there exists a DFA
My of size lem(my, ma, ..., my) states recognizing the same language as M;. Since
the number of states in M; and Ms are equal, they are both minimal NFAs for L.
They are clearly non-isomorphic. ®

Corollary 4.3 There are infinitely many n € Nt such that there exists a unary
n-language whose minimal NFA is not unique.

Proof. This corollary is due to a result of Sylvester [16], which gives an infinite
sequence of numbers n;, for which {ny,no,...,ng} satisfies (2) for all £ > 2. By
the construction of Theorem 4.2, each of the sets {ni,no,...,n;} yields a language
whose minimal NFA is not unique. The infinite sequence is given by the recurrence

[16]

ny = 2

2 (6)
ng=mnp_ 1 —Ng—1 +1

which gives the sequence 2,3,7,43,1807,.... (sequence A000058 in Sloane [15]).

This yields the following sequence of sizes of non-unique cyclic unary NFAs: 6, 42,

1806, 3263442, ... (i.e., one less than the terms of AO0O0058 beginning from 7). ®

4.3 Non-unique Minimal NFAs which use Nondeterminism

Consider a solution to the equation

1 1 1
l=—4+—4+-+— (7)
ni no ng
where 1 < n; < mnp < --- <mng and for all 1 < i < j <k, n; does not divide n;.
Further, let t € NT be chosen so that ¢ does not divide n; and n; does not divide ¢
forall 1 <i<k.

Let n = lem(ny, ng,...,ng). Then clearing fractions, we get that
" on
n= —.
Z n;
=1
Let m; = . Then lem(my,ma,...,my) = n. Thus,
k
Zmi = lem(my,mo,...,mg).
i=1

Thus, if we have a solution to (7), then we can construct two NFAs, neither of which
is a DFA, of the same size accepting the same language. To do so, we construct one



NFA with loops of size t,mq, msg,...,my, and one with loops of size t and n. Both
use ¢t +n + 1 states.

Solutions to (7) are given by Burshtein [6] and Barbeau [1]. The solution of
Burshtein gives

n = 2370011756142691891856238402240943163451780,
k=179 and t = 8. The solution of Barbeau gives
n = 922407487964965540217809013609019944760349124593205792356433370,

k=101 and t = 4.

Unfortunately, however, neither Burshtein’s nor Barbeau’s solution satisfy the
local-lem property of Theorem 3.5. Consider that 14,21,35 € {ni, no,...,n;} for
both solutions. Then we have that n/14,n/21,n/35 € {my,ma,...,my} for both
solutions. As n = lem(my,ma, ..., my),

9135 T 7
and further
n+n+n_n(1+1+1)>n
14 21 3, 72 3 5 7

To illustrate this point, for the Burshtein example, we note that we can replace the
loops of size

my7y = 67714621604076911195892525778312661812908
mrs = 112857702673461518659820876297187769688180
myr = 169286554010192277989731314445781654532270

by a loop the size of their lcm,
338573108020384555979462628891563309064540

which is less than the sum of these three loop sizes,
349858878287730707845444716521282086033358.

The following remains open:

Open Problem 4.4 Does there exist a cyclic unary reqular language L with two

minimal NFAs, both in t-CNF?

5 Nondeterministic Radius

We now turn to the automata-theoretic notion of the radius of a DFA, NFA or
regular language.
If M =(Q,%,6,q0, F) is an initially connected NFA, for all g € Q, define

depth(q) = min{|z| : ¢ € d(qo, 2)}-



The radius of M, denoted rad(M), is max{depth(q) : ¢ € Q}.

Given a regular language L, its deterministic radius (denoted rad(L)) is the
minimal radius of any DFA accepting it. The nondeterministic radius of L (denoted
nrad(L)) is the minimal radius of any NFA accepting it.

Ellul [9, Thm. 44] has established the following result about (deterministic) ra-
dius:

Theorem 5.1 Let L be a reqular language, and M be the minimal DFA for L. Then
rad(L) = rad(M).

Our goal in this section is to establish that the result does not hold if we replace
deterministic radius with nondeterministic radius in Theorem 5.1. We will require
the following result:

Theorem 5.2 Let k> 2, my,ma,...,m, € NT, and L = Ule(ami)*. Suppose the
following conditions hold:

(a) 1+ Zle m; > lem(my, mo,...,my), and

(b) for all proper subsets S C {mi,mgo...,my} with |S| > 2, we have Y gm <
lem(S).

Then we have that
(i) nsc(L) =lem(my,ma,...,my), and

(ii) the minimal NFA for L is unique.

Note that condition (b) is the same as Theorem 3.5, while condition (a) is re-
versed from Theorem 3.5 (further, Theorem 3.5 gives both necessary and sufficient
conditions).

Proof. The proof is adapted from the proof of Theorem 3.5. We can again assumne,
contrary to what we want to prove, that there exists a NFA M in t-CNF which

accepts L with less than lem(mg, mo, ..., my) states. We then apply the same con-
struction to M to arrive at an NFA with 1 4 Zle m; states. However, in this
case, this is more than lem(mq,mo,...,my), by (a). Thus, M is not minimal. This

establishes the result. W

We now give our result:

Theorem 5.3 For infinitely many n, there exists a cyclic unary reqular language L,
with nsc(Ly) = n, but for any minimal NFA M accepting Ly, rad(M) > nrad(Ly,).

Proof. Let n; for i > 1 be defined by (6). Let n} for i > 1 be defined by n/, = n; —2.
Note that we have that nj = (Hf;ll n;) — 1 for all & > 2.

Let k > 3. Let n = lem(nq,...,n,_1,n,) and define m; =n/n; for 1 <i <k—1
and my = n/nj. Let L, = Ule(ami)*. Then we claim that L,, satisfies the
conditions of the theorem.



First, we claim that ged(n;,n;) =1 for all 1 <i < j <k—1 and ged(n;,n)) =1
for all 1 < ¢ < k — 1. The first claim follows by (3). For the second, as nj =
15! i 4 1, we have that nj, = [[¥2'n; — 1, and nj, = —1 (mod n;) for all 1 < j <
kE — 1. From these facts, it follows that ged(m;,m;) =1 for all 1 <i < j <k, and
lem(my,...,mg) =n.

To establish (a), note that as nq,...,ng_; are defined by (6), then by (2), we
have that

+—— =1 (8)

By definition, 7}, < [[%_, n;. Thus, Y67 L4 L > S™2l 1y

i - = 1. Consider

now

ny,

Thus, (a) is satisfied.

We now turn to condition (b). For all S C {m,...,my} with |S| > 2, lem(S) =
n. Thus, it suffices to show that )~ - om < nforall S C {mq,...,my} with [S| > 2.
Note that if S # {m1,...,my},

The last inequality is by (8). Thus, (b) holds as well. Therefore, nsc(L,) = n by
Theorem 5.2, and the minimal NFA for L,, is unique, and is a DFA. Thusrad(M) = n
for all minimal NFAs M accepting L,,.

However, consider the t-CNF NFA M accepting L,, with loop sizes myq,...,mg.
The radius of this NFA is my = n/2. Thus, nrad(L,) < n/2. This establishes the
theorem. H

As an example, for k =5,
(n1,n2,n3,n4,n5) = (2,3,7,41, 1805),
and n = lem(2, 3,7,41,1805) = 3108210. Finally,
(my, ma, ms, myg, ms) = (1554105, 1036070, 444030, 75810, 1722).

The nondeterministic radius of L, = U2_;(a™)* is thus at most 1554105, which is
achieved by a t-CNF NFA of size 3111738. However, nsc(L,,) = 3108210.

We can extend Theorem 5.3 as follows. Let p; be the i-th prime with p; = 2.
Let @ : Nt — N* be the function defined by

m

w@(n) = min{m € N* : Zi > 1}

- (2
=n

As thesum ) ;- 1/p; diverges, w(n) exists for all n > 1; further @(n) > n. The first

few values of w(n) for n > 1 are 3, 10, 29, 69, 148, 258, 430, 658, 985, 1401 (A092325



in Sloane [15]). Let n > 1, and P, = H?:(:)pz For n > 1, let {mp,..., My} be
defined by m; = P, /p; for all n <i < w(n).

Then we can verify that we can apply Theorem 5.2 to {my,...,m4y)} for all
n > 1. Thus, if L,, = Uz(g) (a™)*, nsc(Ly,) = P,. However, nrad(L,,) < P, /pn.

Given a regular language L, let nrad—min(L) be the minimal radius of any min-
imal NFA accepting L. Then we have established the following result:

Theorem 5.4 There exists a family of cyclic unary reqular languages { Ly }o° | such
that nsc(Ly) > n and
nrad(Ly,)

n—oo nrad—min(Ly,)

=0.

We recall the following open problem raised by Ellul [9, p. 112]:

Open Problem 5.5 Given a regular language L, is the quantity nrad(L) com-
putable?

We note that in the class of examples we have given for Theorem 5.3, the state
complexity of the t-CNF recognizing L,, (with smaller radius) grows unboundedly
in the size of the minimal NFA for L,,. Further, the example given for Theorem 5.4
shows that the size of nrad—min(L) grows unboundedly compared to nrad(L). Thus,
we cannot hope to compute nrad(L) by even checking all NFAs within a constant size
of the minimal NFA for L, or to approximate nrad(L) by calculating nrad-—min(L).

6 Conclusion

We have given infinitely many cyclic unary languages whose minimal NFA is not
unique. We have also noted that there exist infinitely many unary regular languages
whose nondeterministic radius is not given by the radius of any minimal NFA.
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