
Codes Defined by Multiple Sets of

Trajectories 3

Michael Domaratzki a,∗,1, Kai Salomaa b,2

aJodrey School of Computer Science, Acadia University,
Wolfville, NS Canada B4P 2R6

bSchool of Computing, Queen’s University,
Kingston, ON Canada K7L 3N6

Abstract

We investigate the use of shuffle on trajectories to model certain classes of languages
arising in the theory of codes. In particular, for each finite set of sets of trajectories,
which we call a hyperset of trajectories, we define a class of languages induced by
that hyperset of trajectories. We investigate properties of hypersets of trajectories
and the associated classes of languages, including the problem of decidability of
membership and the problem of equivalence of hypersets of trajectories.

Key words: shuffle on trajectories, deletion along trajectories, theory of codes

1 Introduction

Shuffle on trajectories was introduced as a framework for modelling language
operations which act by inserting the letters of one word into another word
in a sequential manner [26]. This is accomplished by modelling a particular
operation by a set of trajectories, a language over a binary alphabet. Since the
introduction of shuffle on trajectories, there has been substantial interest in

∗ Corresponding Author.
Email addresses: mike.domaratzki@acadiau.ca (Michael Domaratzki),

ksalomaa@cs.queensu.ca (Kai Salomaa).
1 Research supported in part by a grant from the Natural Sciences and Engineering
Research Council of Canada.
2 Research supported in part by the Natural Sciences and Engineering Research
Council of Canada grant OGP0147224.
3 A preliminary version of this paper appeared at AFL 2005 [9].

Preprint submitted to Elsevier Science 3 January 2006

several different related areas, including algebraic properties of shuffle on tra-
jectories [25,27], language equations defined by shuffle on trajectories [2,8,20],
generalizations [6,19,24], and applications to areas such as noisy channels [19]
and DNA computing [18]. The first author has presented a survey of recent
results on trajectories [7].

A large amount of work in the literature has considered the problems of exam-
ining code-like properties of languages in several different general frameworks
[12–15,17,30]. Recently, trajectories have also been employed to model classes
of languages related to codes [4] and the natural binary relation defined by a
set of trajectories has also been examined [16,5]. The use of trajectories is a
natural way to study certain classes of languages related to codes, which we
call T -codes.

However, there exist natural classes of languages studied in connection to the
theory of codes which are not T -codes. Classes and their associated binary
relations studied by Day and Shyr [1], Fan et al. [10], Ito et al. [11], Long [21],
Long et al. [22,23], Shyr [29], Yu [31] and the first author [3] are instead defined
by a binary relation dependent on multiple sets of trajectories.

In this paper, we study the classes of languages which are naturally defined
by multiple sets of trajectories. We examine decidability and find that, sur-
prisingly, the natural, uniform membership problem is undecidable for regular
languages and regular sets of trajectories. We also examine the equivalence
problem for the classes of languages defined by multiple sets of trajectories.
Decidability of this problem remains open.

2 Definitions

Let Σ be a finite set of symbols, called letters. Then Σ∗ is the set of all finite
sequences of letters from Σ, which are called words. The empty word ε is the
empty sequence of letters. The length of a word w = w1w2 · · ·wn ∈ Σ∗, where
wi ∈ Σ, is n, and is denoted |w|. For any w ∈ Σ∗ and a ∈ Σ, we denote by
|w|a the number of occurrences of a in w. A language L is any subset of Σ∗.
By abuse of notation, we represent the singleton language {w} by w.

If L1, L2 ⊆ Σ∗, then the concatenation of L1 and L2 is denoted L1L2, and is
given by L1L2 = {xy : x ∈ L1, y ∈ L2}. Further, if Li is a language for
1 ≤ i ≤ n, then by

∏n
i=1 Li we mean the language L1L2 · · ·Ln.

A morphism h : ∆∗ → Σ∗ is any function satisfying h(xy) = h(x)h(y) for
all x, y ∈ ∆∗. For additional background in formal languages and automata
theory, please see Rozenberg and Salomaa [28]. We denote the finite, regular,

2

context-free and recursive languages by fin,reg,cf and rec, respectively.

The shuffle on trajectories operation is a method for specifying the ways in
which two input words may be merged, while preserving the order of symbols
in each word. Each trajectory t ∈ {0, 1}∗ with |t|0 = n and |t|1 = m specifies
one particular way in which we can form the shuffle on trajectories of two
words of length n (as the left operand) and m (as the right operand). The
word resulting from the shuffle along t will have length n + m, with a letter
from the left input word in position i if the i-th symbol of t is 0, and a letter
from the right input word in position i if the i-th symbol of t is 1.

We now give the definition of shuffle on trajectories, originally due to Mateescu
et al. [26]. Shuffle on trajectories is defined by first defining the shuffle of two
words x and y over an alphabet Σ on a trajectory t, a word over {0, 1}. We
denote the shuffle of x and y on trajectory t by x t y.

If x = ax′, y = by′ (with a, b ∈ Σ) and et ∈ {0, 1}∗ (with e ∈ {0, 1}), then

x et y =

 a(x′ t by
′) if e = 0;

b(ax′ t y
′) if e = 1.

If x = ax′ (a ∈ Σ), y = ε and et ∈ {0, 1}∗ (e ∈ {0, 1}), then

x et ε =

 a(x′ t ε) if e = 0;

∅ otherwise.

If x = ε, y = by′ (b ∈ Σ) and et ∈ {0, 1}∗ (e ∈ {0, 1}), then

ε et y =

 b(ε t′ y
′) if e = 1;

∅ otherwise.

We let x ε y = ∅ if {x, y} 6= {ε}. Finally, if x = y = ε, then ε t ε = ε if t = ε
and ∅ otherwise.

It is not difficult to see that if t =
∏n

i=1 0ji1ki for some n ≥ 0 and ji, ki ≥ 0 for
all 1 ≤ i ≤ n, then we have that

x t y = {
n∏

i=1

xiyi :

x =
n∏

i=1

xi, y =
n∏

i=1

yi, with |xi| = ji, |yi| = ki for all 1 ≤ i ≤ n}

if |x| = |t|0 and |y| = |t|1, and x t y = ∅ if |x| 6= |t|0 or |y| 6= |t|1.

3

We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃
t∈T

x t y.

Further, for L1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

Thus, for example, it is not hard to see that if T = 0∗1∗, then L1 T L2 = L1L2

(the usual concatenation operation) while if T = 0∗1∗0∗, L1 T L2 = L1 ← L2,
the insertion operation, defined by x← y = {x1yx2 : x = x1x2}.

We also require the definition of the natural binary relation defined by a set
of trajectories. For all T ⊆ {0, 1}∗, let ωT be the binary relation on Σ∗ defined
by

x ωT y ⇐⇒ y ∈ x T Σ∗

for all x, y ∈ Σ∗. The relation ωT has previously been studied by the first
author [5], as well as by Kadrie et al. [16] for infinite strings. Consider the
following examples:

(i) If T = 0∗1∗, then ωT is the prefix relation, i.e., x ωT y if and only if there
exists z ∈ Σ∗ such that y = xz.

(ii) If T = 1∗0∗1∗, then ωT is the factor or subword relation, i.e., xωT y if and
only if there exists w1, w2 ∈ Σ∗ such that y = w1xw2.

(iii) If T = {0, 1}∗, then ωT is the embedding relation (or substring relation).

Let PT (Σ) be the set of non-empty subsets of Σ+ which are anti-chains under
ωT . Equivalently, a non-empty language L ⊆ Σ+ is in PT (Σ) if and only if
the equality L ∩ (L T Σ+) = ∅ holds. If L ∈ PT (Σ) we say that L is a T -
code. Investigation of the classes PT (Σ) was undertaken by the first author
[4]. As an example, if T = 0∗1∗, then PT (Σ) is the set of prefix codes over Σ.
If T = {0, 1}∗, the associated class PT (Σ) is known as the set of hypercodes
(see, e.g., Shyr [29, Sect. 5.2]).

Let T ⊆ 2{0,1}∗ . We call such a set of sets of trajectories T a hyperset of
trajectories ; such a hyperset of trajectories is always assumed to be a finite
set of sets of trajectories. Define ωT as

x ωT y ⇐⇒
∧

T∈T

x ωT y.

That is, x ωT y if and only if x ωT y for all T ∈ T.

The class P(∧)
T (Σ) is defined as follows: for all non-empty languages L ⊆ Σ+,

L ∈ P(∧)
T (Σ) if and only if L is an anti-chain under ωT. That is, for all x, y ∈ L,

if x ωT y, then x = y.

4

The definition of P(∧)
T (Σ) is motivated by the interest in the class P(∧)

Tps
(Σ) for

Tps = {0∗1∗, 1∗0∗}. Note that x ωTps y implies that x is both a prefix and a
suffix of y: xω0∗1∗ y implies that y = xz for some z ∈ Σ∗ and similarly xω1∗0∗ y
implies that y = wx for some w ∈ Σ∗. We refer the reader to Jürgensen and
Konstantinidis [12, pp. 550–551] for references and a discussion of P(∧)

Tps
(Σ).

We also define a second class of languages, indexed by an integer m, which
has often been considered in conjunction with P(∧)

T (Σ) for particular T. For all

m ≥ 0, let P(m)
T (Σ) be defined as follows: for all non-empty languages L ⊆ Σ+,

L ∈ P(m)
T (Σ) if and only if for all L′ ⊆ L with |L′| ≤ m, L′ ∈ ∪T∈TPT (Σ). That

is, L ∈ P(m)
T (Σ) if, for all L′ ⊆ L of size at most m, there exists T ∈ T such

that L′ ∈ PT (Σ). We note that the definition of the class P(m)
T (Σ) is an (m+1)-

dependence system, in the terminology of Jürgensen and Konstantinidis [12].

The class P(m)
T (Σ) has been studied for the following hypersets of trajectories:

(i) Tps = {0∗1∗, 0∗1∗}. The class P(m)
Tps

(Σ) is known as the class of m-prefix-
suffix codes (or m-ps-codes). See Ito et al. [11] for details;

(ii) Tio = {0∗1∗0∗, 1∗0∗1∗} [23,3]. The class P(m)
Tio

(Σ) is known as the class of
m-infix-outfix codes ;

(iii) Tk−io = {(1∗0∗)k1∗, (0∗1∗)k0∗} and Tk−ps = {(0∗1∗)k, (1∗0∗)k} for k ≥ 1.

The class P(m)
Tk−io

(Σ) (resp., P(m)
Tk−ps

(Σ)) is known as the class of m-k-infix-

outfix codes (resp., m-k-prefix-suffix codes). For results on these classes,
see Long et al. [22, Sect. 4] or Long [21, Sect. 2.3]).

3 Properties

We begin with some elementary properties of the classes P(∧)
T (Σ) and P(m)

T (Σ).
First, we note that hypersets of size one give us precisely T -codes:

Lemma 1 For all T ⊆ {0, 1}∗, if T = {T}, then P(∧)
T (Σ) = PT (Σ).

Further, containment between hypersets of trajectories implies containment
between the associated classes of languages.

Lemma 2 Let S,T ⊆ 2{0,1}∗ with S ⊆ T. Then P(∧)
S (Σ) ⊆ P(∧)

T (Σ). Further,

for all m ≥ 1, P(m)
S (Σ) ⊆ P(m)

T (Σ).

PROOF. Let L ∈ P(∧)
S (Σ). Assume there exist x, y ∈ L such that x ωT y.

Then xωT y for all T ∈ T. In particular, as T ⊇ S, xωS y for all S ∈ S. Thus,

5

x ωS y and x = y, as L ∈ P(∧)
S (Σ). Thus, L ∈ P(∧)

T (Σ). This establishes the
first statement.

For the second statement, let m ≥ 1. Let L ∈ P(m)
S (Σ) and L′ ⊆ L with

|L′| ≤ m be arbitrary. Then there exists S ∈ S ⊆ T such that L′ ∈ PS(Σ).

Thus, as S is indeed in T, we have that L ∈ P(m)
T (Σ). 2

For all T ⊆ 2{0,1}∗ , let min(T) be defined by

min(T) = {T ∈ T : ∀T ′ ∈ T, T 6⊃ T ′}.

That is, min(T) is the set of minimal elements of T, as a subset of the lattice
2{0,1}∗ ordered by inclusion.

Lemma 3 Let T ⊆ 2{0,1}∗. Then the following equalities holds for all alphabets
Σ:

P(∧)
T (Σ) =P(∧)

min(T)(Σ),

P(m)
T (Σ) =P(m)

min(T)(Σ) ∀m.

PROOF. Let us establish the first equality. As min(T) ⊆ T, P(∧)
min(T)(Σ) ⊆

P(∧)
T (Σ) by Lemma 2. Thus, it remains to show the reverse inclusion. Let

L /∈ P(∧)
min(T)(Σ). Let x, y ∈ L with x 6= y be such that xωmin(T)y. In particular,

x ωT y for all T ∈min(T).

Let T0 ∈ T −min(T). Then there exists T1 ∈ min(T) such that T1 ⊆ T0.
As T1 ∈ min(T), x ωT1 y, i.e., y ∈ x T1 Σ∗. As T1 ⊆ T0, y ∈ x T0 Σ∗. Thus,
x ωT0 y. In this way, we have that x ωT y for all T ∈ T. Thus, x ωT y and

L /∈ P(∧)
T (Σ).

Now, we establish the second equality. Let m ≥ 1. Once again, as min(T) ⊆ T,

P(m)
min(T)(Σ) ⊆ P(m)

T (Σ) by Lemma 2. Let L ∈ P(m)
T (Σ). Then for all L′ ⊆ L,

with |L′| ≤ m, there exists T ∈ T such that L′ ∈ PT (Σ).

Consider now an arbitrary L′ ⊆ L with |L′| ≤ m. Then L′ ∈ PT (Σ) for some
T ∈ T. If T ∈ min(T), then we are done. Otherwise, if T ∈ T −min(T),
then there exists T ′ ∈ min(T) such that T ⊃ T ′. Assume, contrary to what
we want to prove, that L′ /∈ PT ′(Σ). Then there exists x, y ∈ L′ and t ∈ T ′

such that y ∈ x t′ Σ
+. But t ∈ T as well, so L /∈ PT (Σ), a contradiction.

Thus, L ∈ PT ′(Σ).

Therefore, for arbitrary L′ ⊆ L with |L′| ≤ m, there exists T ∈ min(T) such
that L′ ∈ PT ′(Σ), as required. 2

6

We say that T ⊆ 2{0,1}∗ is minimal if T = min(T).

4 Relationships Between Classes

In this section, we investigate various relationships between the classes P(∧)
T (Σ)

and P(m)
T (Σ). We begin with a result which motivates our introduction of the

classes P(m)
T (Σ)—we prove that P(2)

T (Σ) is always exactly P(∧)
T (Σ).

Lemma 4 Let T ⊆ 2{0,1}∗ be a hyperset of trajectories. Then

P(∧)
T (Σ) = P(2)

T (Σ).

PROOF. Let L ∈ P(2)
T (Σ). Let u, v ∈ L and suppose uωTv. Therefore, uωT v

for all T ∈ T. As L ∈ P(2)
T (Σ), {u, v} ∈ PT (Σ) for some T ∈ T. Thus, u = v.

We conclude that L is an anti-chain under ωT and L ∈ P(∧)
T (Σ).

For the reverse inclusion, let L ∈ P(∧)
T (Σ). Assume L /∈ P(2)

T (Σ). Then there
exists {u, v} ⊆ L (u 6= v) such that {u, v} /∈ ∪T∈TPT (Σ). Thus, {u, v} /∈
PT (Σ) for all T ∈ T. We have that u ωT v or v ωT u for all T ∈ T. Assume
that there exist T1, T2 ∈ T such that u ωT1 v and v ωT2 u. Then u ωT1 v implies
|v| ≥ |u| and v ωT2 u implies |u| ≥ |v|. Thus |u| = |v|. As v ∈ u T1 Σ∗, this
implies that u = v. Thus, we must have without loss of generality that u ωT v
holds for all T ∈ T. Thus, uωTv, and consequently, u = v, as L ∈ P(∧)

T (Σ). 2

Lemma 4 was previously observed for, e.g., the case Tps = {0∗1∗, 1∗0∗}; see Ito
et al. [11]. The following equations detail the hierarchies induced by varying

m in P(m)
T (Σ), and their collapse. These equations, which hold for all T ⊆

2{0,1}∗ , can be proven using dependency theory [12] (in the following, |T| is
the cardinality of T as a subset of 2{0,1}∗):

P(m)
T (Σ)⊇P(m+1)

T (Σ) ∀m ≥ 0; (1)

P(2|T|)
T (Σ) =P(2|T|+i)

T (Σ) =
⋃

T∈T

PT (Σ) ∀i ≥ 0. (2)

See, e.g., Ito et al. [11, Cor. 3.2] for (2) in the particular case of Tps =
{0∗1∗, 1∗0∗}.

We now consider whether there exists a hyperset of trajectories for which the
m-th and m+1-st levels of the above hierarchy are distinct for all m ≥ 1. The
answer is yes, but clearly by (2), the size of T must depend on m.

7

Lemma 5 Let m ≥ 1. There exists T ⊆ 2{0,1}∗ such that P(m)
T (Σ) 6= P(m+1)

T (Σ).

PROOF. Let m ≥ 1 and ti = 1i−101m−i+1 for all 1 ≤ i ≤ m. We let T =
{{ti}}mi=1. Let L = {ti}mi=1 ∪ {0}. Note that |L| = m + 1. It is now straight-

forward to verify that L ∈ P(m)
T (Σ)− P(m+1)

T (Σ). 2

The following inclusion holds between P(∧)
T (Σ) and the union of the associated

class of T -codes:

Lemma 6 For all T ⊆ 2{0,1}∗,⋃
T∈T

PT (Σ) ⊆ P(∧)
T (Σ).

PROOF. Let L ∈ ∪T∈TPT (Σ). In particular, let T0 ∈ T be such that L ∈
PT0(Σ). Let x, y ∈ L and assume, contrary to what we want to prove, that
x ωT y. Therefore, x ωT y for all T ∈ T and in particular, x ωT0 y. Thus x = y

as L ∈ PT0(Σ). Therefore, L is an anti-chain under ωT, and L ∈ P(∧)
T (Σ). 2

Under certain additional conditions, the previous inclusion is proper if we
allow the alphabet size to grow in relation to |T|. We say that T ⊆ {0, 1}∗ is
ST-strict if 0∗ + 1∗ ⊆ T . We say that T ⊆ 2{0,1}∗ is ST-strict if T is ST-strict
for all T ∈ T.

We say that T is fully incomparable if, for all T ∈ T, we have that

T −
⋃

S∈T−{T}
S 6= ∅.

Note that full incomparability implies minimality.

Lemma 7 Let T ⊆ 2{0,1}∗ with |T| ≥ 2 be fully incomparable and ST-strict.
Then

P(∧)
T (Σ)−

⋃
T∈T

PT (Σ) 6= ∅

for all Σ with |Σ| ≥ |T|+ 1.

PROOF. As T is fully incomparable, for all T ∈ T, there exists

tT ∈ T −
⋃

T ′∈T
T ′ 6=T

T ′.

8

Let αT = |tT |0. As each T is ST-strict, αT 6= 0. For all T ∈ T, let aT be
a distinct letter. Let hT : {0, 1}∗ → {aT , b} be given by hT (0) = aT and
hT (1) = b. Let ΣT = {aT : T ∈ T} ∪ {b}. We now define L ⊆ Σ+

T as follows:

L =
⋃

T∈T

{aαT
T , hT (tT)}.

Note that hT (tT) 6= aαT
T , as T is ST-strict.

We now establish that L satisfies the conditions of the lemma: let T ∈ T.
Then as hT (tT) ∈ aαT

T tT b+, L /∈ PT (ΣT).

Assume that L /∈ P(∧)
T (ΣT). Then there exist u, v ∈ L such that uωTv. That is,

u ωT v for all T ∈ T. As each pair {aαT
T , hT (tT)} ⊆ {aT , b}+ and |hT (tT)|b 6= 0

for all T ∈ T, we must have that u = a
αT0
T0

and v = hT0(tT0) for some T0 ∈ T.

Therefore, hT0(tT0) ∈ a
αT0
T0 T Σ+

T for all T ∈ T. By the definition of T ,
this implies that tT0 ∈ T for all T ∈ T, a contradiction to our choice of tT0 .

Therefore, L ∈ P(∧)
T (ΣT). The result now follows, as |ΣT| = |T|+ 1. 2

In general, some increase in alphabet size is necessary, as is shown in the
following lemma:

Lemma 8 There exists T = {T1, T2, T3} which is fully incomparable and ST-
strict such that

P(∧)
T ({a, b}) = PT1({a, b}) ∪ PT2({a, b}) ∪ PT3({a, b}).

PROOF. Let T = {01, 10, 001, 010, 011, 100, 101, 110}, Ti = T ∪ {04−i1i} ∪
0∗ ∪ 1∗ for 1 ≤ i ≤ 3 and T = {T1, T2, T3}.

Let L ∈ P(∧)
T ({a, b})−∪3

i=1PTi
({a, b}). As L /∈ PTi

({a, b}), there exist xi, yi ∈ L
with xi 6= yi and xi, yi 6= ε such that xi ωTi

yi for all 1 ≤ i ≤ 3. Note that
|xi| < |yi|. Further, for all 1 ≤ i ≤ 3, |yi| ≤ 4.

Assume that |yi| < 4 for some 1 ≤ i ≤ 3. Then let ti ∈ Ti and αi ∈ {a, b}+
be such that yi ∈ xi ti αi. As |ti| = |yi| < 4, ti ∈ T . Thus, xi ωTj

yi for all

1 ≤ j ≤ 3, whereby xi ωT yi, which contradicts that L ∈ P(∧)
T ({a, b}).

Thus, |yi| = 4 for all 1 ≤ i ≤ 3. Let ti = 04−i1i. We must have that yi ∈
xi ti {a, b}+ for all 1 ≤ i ≤ 3. Thus, by definition of T , |xi| = 4− i.

Consider i = 3. Then |x3| = 1. Without loss of generality, let x3 = a. For
i = 2, we have that |x2| = 2. Assume that x2 6= b2. Then x2 ∈ x3 T {a, b}, by
our choice of T . Thus, x3 ωTi

x2 for all 1 ≤ i ≤ 3 and therefore x3 ωT x2, again
a contradiction. Thus, x2 = b2.

9

We now turn to i = 1, and x1, which satisfies |x1| = 3. We again see that if
x1 6= b3 then x3 ωT x1. Thus, x1 = b3. But now x1 ∈ x2 T b. Therefore, x2 ωT

x1. Thus L /∈ P(∧)
T ({a, b}). This is a contradiction. Therefore P(∧)

T ({a, b}) =
∪3

i=1PTi
({a, b}). 2

5 Decidability

We now consider decidability questions. For T -codes (i.e., for PT (Σ)), given
a context-free set of trajectories T and L ∈ reg, it is decidable whether
L ∈ PT (Σ) [4]. However, we see here that the situation is more complicated
for hypersets of trajectories.

Given a hyperset of trajectories in which one of the sets of trajectories is finite,
the membership problem for recursive languages is decidable.

Lemma 9 Let T = {T1, . . . , Tn} where Ti ∈ fin for some i with 1 ≤ i ≤ n,
and Ti ∈ rec for all 1 ≤ i ≤ n. Given a recursive language L ∈ Σ∗, the
problem L ∈ P(∧)

T (Σ)? is decidable.

PROOF. Let 1 ≤ i ≤ n be chosen so that Ti is finite. Let m = max{|t| :
t ∈ Ti}. Consider that if x ωT y, then in particular y ∈ x Ti

Σ∗, and thus

|y| ≤ m. Thus, in order to test if L ∈ P(∧)
T (Σ), it suffices to test those words

in L(m) = L ∩ Σ≤m. Note that as L is recursive, L(m) is an effective finite set.

Let x, y ∈ L(m) be arbitrary. Let r = |y|. As Tj is recursive for all 1 ≤ j ≤ n,
we can effectively determine all tj ∈ Tj with |tj| = r and test if y ∈ x tj Σ∗.
Thus, we can determine if xωTj

y for all 1 ≤ j ≤ n, i.e., whether xωT y. Thus,

it is decidable whether L ∈ P(∧)
T (Σ). 2

We now consider the decidability of membership in P(∧)
T (Σ) where T con-

sists entirely of regular languages. The positive decidability of membership in
P(∧)

Tps
(Σ) for regular languages (see Ito et al. [11] or Jürgensen et al. [13]) relies

intrinsically on the nature of the members of Tps (recall Tps = {1∗0∗, 0∗1∗}).
The corresponding positive decidability problem for Tio also relies on the na-
ture of the sets of trajectories involved [3] (Tio = {1∗0∗1∗, 0∗1∗0∗}). Kari et
al. [18, Thm. 4.7] have resolved the decidability of a somewhat similar decision
problem for two sets of trajectories in their framework of bond-free property.
However, their approach is not applicable to our formalism. We recall a par-
ticular case of their result, translated into our framework (the most general
result presented by Kari et al. involves involutions of interest in DNA research,
but is also not applicable to our situation):

10

Theorem 10 Let T = {T1, T2} be a hyperset of trajectories where Ti ∈ reg
for i = 1, 2. Given a regular language R ⊆ Σ∗, it is decidable whether there
exist w1, w2 ∈ R, and w ∈ Σ+ such that wωTi

wi for i = 1, 2 and either w 6= w1

or w 6= w2.

In fact, we have the following rather surprising undecidability result:

Theorem 11 Given T = {T1, T2}, where Ti ∈ reg, for i = 1, 2 and a regular

language R it is undecidable whether or not R ∈ P(∧)
T (Σ).

PROOF. Let I = (u1, . . . uk; v1, . . . vk), ui, vi ∈ Ω+, i = 1, . . . , k be an arbi-
trary instance of the Post correspondence problem.

Let d : Ω∗ → Ω∗ be the morphism defined by the condition d(a) = aa for all
a ∈ Ω. Denote

M = max{|d(ui)|, |d(vi)| | 1 ≤ i ≤ k}.
Further, we choose an injective mapping f : {1, . . . , k} → N such that

(∀i, j ∈ {1, . . . k}) i 6= j implies |f(i)− f(j)| > 2M (3)

and

(∀i, j ∈ {1, . . . k}) 2

3
f(i) < f(j)−M. (4)

The conditions (3) and (4) can always be satisfied by choosing f(i) to be
sufficiently large. The reader can verify that for all k,M ≥ 1, the function
f(i) = 6kM + 3iM satisfies (3) and (4).

Denote Σ = Ω ∪ {#, $}, where #, $ 6∈ Ω, and define the regular language
R ⊆ Σ∗ by

R = ({d(ui)$
f(i)d(vi)$

f(i) | 1 ≤ i ≤ k}+ ·#) + (Ω2)∗.

We define the hyperset of trajectories T = {T1, T2} where

T1 = {0|d(ui)|12f(i)+|d(vi)| | 1 ≤ i ≤ k}+ · 1,
T2 = {1|d(ui)|+f(i)0|d(vi)|1f(i) | 1 ≤ i ≤ k}+ · 1.

Note that T1, T2 are both regular sets of trajectories. We claim that R 6∈
P(∧)

T (Σ) if and only if the PCP instance I has a solution.

Firstly, assume that I has a solution (i1, . . . , in), n ≥ 1. This implies that the
equality d(ui1) · · · d(uin) = d(vi1) · · · d(vin) holds. Let us denote this word by
x. Since x ∈ (Ω2)∗, we have x ∈ R. We observe that

d(ui1)$
f(i1)d(vi1)$

f(i1) · · · d(uin)$f(in)d(vin)$f(in)# ∈ d(ui1) · · · d(uin) T1Σ
∗,

11

and,

d(ui1)$
f(i1)d(vi1)$

f(i1) · · · d(uin)$f(in)d(vin)$f(in)# ∈ d(vi1) · · · d(vin) T2Σ
∗.

Since the word d(ui1)$
f(i1)d(vi1)$

f(i1) · · · d(uin)$f(in)d(vin)$f(in)# is in R, this

means that R /∈ P(∧)
T (Σ).

Conversely, assume that there exist x, y ∈ R, x 6= y, such that

y ∈ x Ti
Σ∗, i = 1, 2. (5)

Since for any t ∈ Ti, |t| is odd and |t|0 is even, it follows that |x| is even and
|y| is odd and so x ∈ (Ω2)∗ and y ∈ {d(ui)$

f(i)d(vi)$
f(i) | 1 ≤ i ≤ k}+ · #.

Denote

y = d(ui1)$
f(i1)d(vi1)$

f(i1) · · · d(uin)$f(in)d(vin)$f(in)#, n ≥ 1. (6)

By (5) there exist t1 ∈ T1 and w ∈ Σ∗ such that y = x t1w. By the definition
of T1 there exist r ≥ 1 and 1 ≤ js ≤ k for 1 ≤ s ≤ r such that we can write

t1 = 0|d(uj1
)|12f(j1)+|d(vj1

)|0|d(uj2
)|12f(j2)+|d(vj2

)| · · · 0|d(ujr)|12f(jr)+|d(vjr)| · 1.

Let z = 12f(j1)+|d(vj1
)| and t′1 ∈ {0, 1}∗ be such that t1 = 0|d(uj1

)|zt′1. Consider
that |z| ≤ 2f(j1)+M . By (4), 2f(j1)+M < 3f(i) for all 1 ≤ i ≤ k. Therefore,
z cannot “produce” 4 more than two (entire) subwords $f(i), 1 ≤ i ≤ k, in the
shuffle x t1 w. Note that by (4) with i = j = j1 we certainly have

1

3
f(j1) > M. (7)

For the lower bound for the length of z we get

|z|> 2f(j1) =
3

2
f(j1) +

1

2
f(j1)

>f(i) +
3

2
M +

1

2
f(j1)

>f(i) + 2M.

for any 1 ≤ i ≤ k. Above the second inequality follows by (4) and the last
inequality by (7). The above means that z has to “produce” more than one
subword $f(i) in the shuffle x t1w, (that is, it has to produce at least part of
a second $-subword, since the gaps between $-subwords is at most M). Since

4 By “produce”, we mean that for each trajectory symbol of z, a single symbol
appears in the result y. Thus, we say that each of these symbols in y is produced
by z.

12

the word x doesn’t contain any symbols $, it follows that z has to produce
exactly two subwords of the form $f(i).

Now, consider that the prefix of x of length |d(uj1)|must produce only symbols
from Ω, as x ∈ Ω∗. Therefore, z must begin by producing symbols of d(ui1),
which is the initial block of y consisting of letters from Ω. Taken together,
the above discussion implies that the prefix of w of length |z| is of the form
α$f(i1)d(vi1)$

f(i1)β for some α, β ∈ Ω∗.

Now we claim that (3) implies that α = β = ε and i1 = j1. Now, consider that

|α|+ |β|+ 2f(i1) + |d(vi1)| = 2f(j1) + |d(vj1)| (8)

as the first is the length of the block of y “produced by” z and the second is
the length of z, which are necessarily equal. Rearranging, and taking absolute
values, we get

2|f(j1)− f(i1)| = ||α|+ |β|+ |d(vi1)| − |d(vj1)|| .

Now, consider the inequalities

0 ≤ |α|, |β| ≤M and 2 ≤ |d(vi1)|, |d(vj1)| ≤M. (9)

The first inequality follows from the fact that as α, β are subwords of d(ui1)
and d(ui2), respectively, we have |α|, |β| ≤M . From (9), we get that

2|f(j1)− f(i1)| = ||α|+ |β|+ |d(vi1)| − |d(vj1)|| ≤ 3M − 2. (10)

Assume now that i1 6= j1. By (3), we have that |f(j1)− f(i1)| > 2M , thus, by
(10), 4M < 3M −2. This is a contradiction and i1 = j1. Consequently, by (8),
α = β = ε.

Continuing inductively we see that necessarily r = n and js = is for all
s = 1, . . . , n. Thus,

x = d(ui1) · · · d(uin).

In a completely similar way, by considering t2 ∈ T2 and w′ ∈ Σ∗ such that
y = x t2w

′ we get that
x = d(vi1) · · · d(vin).

This means that the PCP instance I has a solution (i1, . . . , in). 2

We also have the following undecidability result:

Theorem 12 There exists a fixed hyperset of trajectories T = {T1, T2} where
Ti ∈ reg for i = 1, 2, such that the following problem is undecidable: “Given
L ∈ cf, is L ∈ P(∧)

T (Σ)?”

13

PROOF. The problem is undecidable, e.g., for Tio = {0∗1∗0∗, 1∗0∗1∗} [3]. 2

Finally, we have the following open problem:

Open Problem 13 For which hypersets of trajectories T ⊆ 2{0,1}∗ is the
following problem decidable: “Given L ∈ reg, is L ∈ P(∧)

T (Σ)?”

It is conceivable that the question stated in Open Problem 13 could be de-
cidable for all hypersets T = {T1, . . . , Tn} where Ti ∈ reg for 1 ≤ i ≤ n, in
particular, if the alphabet Σ is fixed. If this is the case, by Theorem 11, given
T, the corresponding algorithm cannot be found effectively. We recall that pos-
itive decidability results for Tps = {0∗1∗, 1∗0∗} [11] and Tio = {0∗1∗0∗, 1∗0∗1∗}
[3] are known.

6 Equivalence and Slices

We now focus on the equivalence problem for hypersets of trajectories. In
particular, given T1,T2 ⊆ 2{0,1}∗ , we say that T1 and T2 are ∧-equivalent
with respect to Σ if P(∧)

T1
(Σ) = P(∧)

T2
(Σ). We simply say that T1,T2 are ∧-

equivalent if they are ∧-equivalent with respect to every finite alphabet Σ. We
use the notation T1 ≡∧ T2 to indicate that T1,T2 are ∧-equivalent.

Similarly, we say that T1,T2 are m-equivalent with respect to Σ if P(m)
T1

(Σ) =

P(m)
T2

(Σ). Again, we say that T1,T2 are m-equivalent if they are m-equivalent
with respect to every finite alphabet Σ. We use the notation T1 ≡m T2 to
indicate that T1,T2 are m-equivalent.

We first consider ∧-equivalence. Note that ∧-equivalence and 2-equivalence
are identical conditions, by Lemma 4. Let m, n ≥ 0. Given T ⊆ 2{0,1}∗ , the
(m,n)-slice of T, denoted Υ(T; m, n), is defined by

Υ(T; m, n) = min({Ψ−1([m, n]) ∩ T : T ∈ T}).

Here, Ψ is the Parikh mapping, defined by Ψ(w) = (|w|0, |w|1), and extended
to languages as Ψ(L) = ∪w∈LΨ(w). Note that ∅ ∈ Υ(T; m, n) is possible, in
which case Υ(T; m, n) = {∅}.

Lemma 14 Let m, n ≥ 0. Let T ⊆ 2{0,1}∗ satisfy Υ(T; m,n) 6= {∅}. Then for
all Σ and all a ∈ Σ, am ωT am+n.

PROOF. Let T = {T1, . . . , Tn}. Then as {∅} 6= Υ(T; m, n), we have ∅ /∈
Υ(T; m, n) by the minimality of Υ(T; m, n). Therefore, for all 1 ≤ i ≤ n,

14

there exists ti ∈ Ti such that Ψ(ti) = [m, n]. It is easy to verify that am+n ∈
am

ti an. Thus, amωTi
am+n for all 1 ≤ i ≤ n, which establishes the lemma. 2

We now show that if T1,T2 always have equal (m, n)-slices, then they are ∧-
equivalent. This motivates the name slices: if we take a hyperset of trajectories
and separate it into its slices, then recombining the slices arbitrarily always
yields a ∧-equivalent hyperset of trajectories.

Lemma 15 Let T1,T2 ⊆ 2{0,1}∗. For all Σ, Υ(T1; m, n) and Υ(T2; m, n) are
∧-equivalent for all m, n ≥ 0 if and only if T1,T2 are ∧-equivalent.

PROOF. In what follows, let Υi = Υ(Ti; m, n) for i = 1, 2. (⇒): Assume

without loss of generality that L ∈ P(∧)
T1

(Σ)−P(∧)
T2

(Σ). As L /∈ P(∧)
T2

(Σ), there
exist x, y ∈ L such that x ωT2 y. Let |x| = m and |y| = m + n.

As in the proof of Lemma 4, we see that x ωΥ2 y. Thus, {x, y} /∈ P(∧)
Υ2

(Σ) =

P(∧)
Υ1

(Σ). Thus, x ωΥ1 y. As L ∈ P(∧)
T1

(Σ), x ωT1 y does not hold. Thus, there
exists T ∈ T1 such that x ωT y does not hold. Let S ∈ Υ1 be such that
S ⊆ Ψ−1(m, n) ∩ T . As x ωΥ1 y, x ωS y and thus x ωT y holds as well. This is

a contradiction. Therefore P(∧)
T1

(Σ) = P(∧)
T2

(Σ).

(⇐): Let m, n ≥ 0 be chosen so that Υ1, Υ2 are not ∧-equivalent. Without

loss of generality, let L ∈ P(∧)
Υ1

(Σ)− P(∧)
Υ2

(Σ).

Let x, y ∈ L be such that x ωΥ2 y. As |t|0 = m and |t|1 = n for all t ∈ Υ2,
we must have that |x| = m and |y| = m + n. We now claim that {x, y} ∈
P(∧)

T1
(Σ)− P(∧)

T2
(Σ).

Assume first that {x, y} /∈ P(∧)
T1

(Σ). Then x ωT y for all T ∈ T1. However, this

implies that x ωS y for all S ∈ Υ1. But then L /∈ P(∧)
Υ1

(Σ), a contradiction.

Thus, {x, y} ∈ P(∧)
T1

(Σ).

Now, assume that {x, y} ∈ P(∧)
T2

(Σ). Thus, x ωT2 y does not hold. Therefore,
there exists T ∈ T2 such that x ωT y does not hold. Now, there must exist
S ∈ Υ2 such that S ⊆ T ∩ Ψ−1([m, n]). Further, as x ωΥ2 y, x ωS y. But

now x ωT y, a contradiction. Therefore, {x, y} /∈ P(∧)
T2

(Σ). This completes the
proof. 2

We will require the following Lyndon-Schützenberger Theorem (see, e.g., Shyr
[29, Lemma 1.6]):

15

Theorem 16 Let x ∈ Σ∗ and y, z ∈ Σ+ be such that xy = zx. Then there
exist α, β ∈ Σ∗ and e ≥ 0 such that x = (αβ)eα, y = βα and z = αβ.

In Lemma 15, ∧-equivalence implies only the equivalence of slices, rather than
equality. This is demonstrated in the following lemma:

Lemma 17 Let n ≥ 1, T = {{0n1}, {10n}} and T1,T2 ⊆ (2Ψ−1([n,1]) − {∅})
satisfy T ⊆ Ti for i = 1, 2. Then P(∧)

T1
(Σ) = P(∧)

T2
(Σ).

PROOF. Assume that P(∧)
T1

(Σ) 6= P(∧)
T2

(Σ). Without loss of generality, we let

L be a language such that L ∈ P(∧)
T1

(Σ)−P(∧)
T2

(Σ). As L /∈ P(∧)
T2

(Σ), let x, y ∈ L
be such that x ωT2 y. By choice of T2, |x| = n and |y| = n + 1. Further, as
{0n1}, {10n} ∈ Υ(T2, n, 1), we must have that y = xa and y = bx for some
a, b ∈ Σ. From this, we can easily see that a = b, x = an and y = an+1

by Theorem 16. Thus, by Lemma 14 and our choice of T1, x ωT1 y. Thus,

L /∈ P(∧)
T1

(Σ), which contradicts our choice of L. 2

Using the same idea as in Lemma 17 we can construct much more complex
hypersets of trajectories which are ∧-equivalent but have unequal slices. In
particular, if we allow T1,T2 to be the (n, 1)-slices of two larger hypersets of
trajectories, all of whose other slices are equal, then the result still holds.

For instance, if T1, T2 ⊆ {0, 1}∗ are arbitrary sets of trajectories for which
Ψ(T1) = Ψ(T2) then we have that the following hypersets of trajectories are
∧-equivalent:

T1 = {0∗1, 10∗, T1},
T2 = {0∗1, 10∗, T2}.

We note that if T1 6= T2, we do not necessarily have Υ(T1; m,n) = Υ(T2; m,n)
for any m, n ≥ 0.

It is clear that given two hypersets of trajectories T1,T2 such that the inclu-
sions Ψ(T1), Ψ(T2) ⊆ [m, n] for some m, n ≥ 0, we can determine whether
T1 ≡∧ T2. However, the following problem is still open:

Open Problem 18 Given T1,T2, each consisting of regular sets of trajecto-
ries, can we determine whether T1 and T2 are ∧-equivalent?

We can restate Open Problem 18 as follows:

Open Problem 19 For given regular sets of trajectories T1, · · · , Tk ⊆ {0, 1}∗
and a regular set of trajectories U ⊆ {0, 1}∗ is it decidable whether or not there

16

exist an alphabet Σ and x, y ∈ Σ+ such that for all 1 ≤ i ≤ k, y ∈ x Ti
Σ+

but y /∈ x U Σ+?

The problem of m-equivalence of hypersets of trajectories is left as a topic for
future research.

7 Maximality

The concept of maximality is key in the theory of codes. Maximal codes are
codes none of whose proper supersets are also codes. This concept has been
examined extensively with respect to many subclasses of codes, for instance,
maximal prefix codes. In this section, we consider maximality with respect to
the classes we have considered in this paper.

We define M(∧)
T (Σ) (resp., M(n)

T (Σ) for all n ≥ 1) as follows: M(∧)
T (Σ) =

{L ∈ P(∧)
T (Σ) : (∀L′ ⊆ Σ∗)L ⊂ L′ ⇒ L′ /∈ P(∧)

T (Σ)}. (resp., M(n)
T (Σ) =

{L ∈ P(n)
T (Σ) : (∀L′ ⊆ Σ∗)L ⊂ L′ ⇒ L′ /∈ P(n)

T (Σ)}.) In these definitions,
⊂ indicates proper containment. By Zorn’s Lemma, it is easy to see that
for all L ∈ P(∧)

T (Σ) (resp., L ∈ P(n)
T (Σ)) there exists L′ ⊆ M(∧)

T (Σ) (resp.,

L′ ∈M(n)
T (Σ)) such that L ⊆ L′.

Our first result on maximality states that ∧-equivalence carries over to maxi-
mal classes:

Lemma 20 Let T1,T2 ⊆ 2{0,1}∗ be hypersets of trajectories. Let n ≥ 1. For all
alphabets Σ, T1 ≡∧ T2 (resp., T1 ≡n T2), if and only if M(∧)

T1
(Σ) =M(∧)

T2
(Σ)

(resp., M(n)
T1

(Σ) =M(n)
T1

(Σ)).

PROOF. We establish the result only for ∧-equivalence. The other case is
left to the reader.

(⇒): Assume that M(∧)
T1

(Σ) 6= M(∧)
T2

(Σ). Without loss of generality, let L ∈
M(∧)

T1
(Σ)−M(∧)

T2
(Σ). As L /∈M(∧)

T2
(Σ), there are two cases: either L /∈ P(∧)

T2
(Σ)

or L ∈ P(∧)
T2

(Σ)−M(∧)
T2

(Σ).

In the first case, L /∈ P(∧)
T1

(Σ) as T1 ≡∧ T2. This contradicts that L ∈
M(∧)

T1
(Σ) ⊆ P(∧)

T1
(Σ). In the second case, by assumption, there exists L′ ∈

P(∧)
T2

(Σ) such that L ⊂ L′. By assumption, L′ ∈ P(∧)
T1

(Σ), again contradicting

that L ∈M(∧)
T1

(Σ).

(⇐): Let M(∧)
T1

(Σ) = M(∧)
T2

(Σ), and let L ∈ P(∧)
T1

(Σ). Then there exists L′ ∈

17

M(∧)
T1

(Σ) = M(∧)
T2

(Σ) such that L ⊆ L′. Note that this implies that L′ ∈
P(∧)

T2
(Σ). But now the relation L ⊆ L′ implies that L ∈ P(∧)

T2
(Σ) as well, as

required. 2

We note that it is decidable, given a regular language R and a regular set
of trajectories T whether or not R is a maximal T -code [4]. This question
is open for hypersets of regular sets of trajectories. Questions of maximality
of code-like classes defined by the more general construct of word operations
have also been investigated by Kari and Konstantinidis [17].

8 Conclusions

In this paper, we have begun examining classes of languages defined by hy-
persets of trajectories. This is an extension of those classes defined by a single
set of trajectories, which themselves extend many classes of languages such as
prefix codes, suffix codes, and hypercodes, among others.

Particular instances of codes defined by hypersets of trajectories have previ-
ously been studied in the literature, suggesting for example, the connection
between the two classes of languages, P(∧)

T (Σ) and P(2)
T (Σ). We have extended

these results. However, other surprising results have been obtained. In par-
ticular, we have shown that the regular languages membership problem for
hypersets of trajectories is undecidable, even if all the sets of trajectories in-
volved are regular.

Many open problems remain in this area. In particular, we have left open the
decidability of equivalence for hypersets of regular sets of trajectories.

Acknowledgements

We thank the referees for their useful comments.

References

[1] Day, P.-H., and Shyr, H. Languages defined by some partial orders. Soochow
J. Math. 9 (1983), 53–62.

[2] Domaratzki, M. Deletion along trajectories. Theor. Comp. Sci. 320, 2–3
(2004), 293–313.

18

[3] Domaratzki, M. On the decidability of 2-infix-outfix codes. Tech. Rep. 2004-
479, School of Computing, Queen’s University, 2004.

[4] Domaratzki, M. Trajectory-based codes. Acta Inf. 40, 6–7 (2004), 491–527.

[5] Domaratzki, M. Trajectory-based embedding relations. Fund. Inf. 59, 4
(2004), 349–363.

[6] Domaratzki, M. Semantic shuffle on and deletion along trajectories.
In Developments in Language Theory (2004), C. Calude, E. Calude, and
M. Dineen, Eds., vol. 3340 of LNCS, Springer, pp. 163–174.

[7] Domaratzki, M. More words on trajectories. Bull. Eur. Assoc. Theor. Comp.
Sci. 86, (2005), 107–145.

[8] Domaratzki, M., and Salomaa, K. Decidability of trajectory-based
equations. Theor. Comp. Sci. 345 (2005) 304–330.

[9] Domaratzki, M., and Salomaa, K. Codes defined by Multiple Trajectories.
In Automata and Formal Languages: 11th International Conference, AFL 2005
(2005), Z. Ésik and Z. Fülöp, eds., pp. 97–111.

[10] Fan, C.-M., Shyr, H., and Yu, S. S. d-Words and d-languages. Acta Inf.
35 (1998), 709–727.

[11] Ito, M., Jürgensen, H., Shyr, H., and Thierrin, G. n-prefix-suffix
languages. Intl. J. Comp. Math. 30 (1989), 37–56.

[12] Jürgensen, H., and Konstantinidis, S. Codes. pp. 511–600. In [28].

[13] Jürgensen, H., Salomaa, K., and Yu, S. Transducers and the decidability
of independence in free monoids. Theor. Comp. Sci. 134 (1994), 107–117.

[14] Jürgensen, H., Shyr, H., and Thierrin, G. Codes and compatible
partial orders on free monoids. In Algebra and Order: Proceedings of the First
International Symposium on Ordered Algebraic Structures, Luminy–Marseilles
1984 (1986), S. Wolfenstein, Ed., Heldermann Verlag, pp. 323–334.

[15] Jürgensen, H., and Yu, S.-S. Relations on free monoids, their independent
sets, and codes. Int. J. Comput. Math. 40 (1991), 17–46.

[16] Kadrie, A., Dare, V., Thomas, D., and Subramanian, K. Algebraic
properties of the shuffle over ω-trajectories. Inf. Proc. Letters 80, 3 (2001),
139–144.

[17] Kari, L., and Konstantinidis, S. Language equations, maximality and
error-detection. J. Comp. Sys. Sci. 70 (2005) 157–178.

[18] Kari, L., Konstantinidis, S., and Sośık, P. On properties of bond-free
DNA languages. Theor. Comp. Sci. 334 (2005) 131–159.

[19] Kari, L., Konstantinidis, S., and Sośık, P. Operations on trajectories
with applications to coding and bioinformatics. Int. J. Found. Comp. Sci. 16,
3 (2005), 531–546.

19

[20] Kari, L., and Sośık, P. Aspects of shuffle and deletion on trajectories. Theor.
Comp. Sci. 332, 1–3 (2005), 47–61.

[21] Long, D. Study of Coding Theory and its Application to Cryptography. PhD
thesis, City University of Hong Kong, 2002.

[22] Long, D., Jia, W., Ma, J., and Zhou, D. k-p-infix codes and semaphore
codes. Disc. Appl. Math. 109 (2001), 237–252.

[23] Long, D., Ma, J., and Zhou, D. Structure of 3-infix-outfix maximal codes.
Theor. Comp. Sci. 188 (1997), 231–240.

[24] Mateescu, A. Splicing on routes: a framework of DNA computation. In
Unconventional Models of Computation (1998), C. Calude, J. Casti, and
M. Dinneen, Eds., Springer, pp. 273–285.

[25] Mateescu, A., and Mateescu, G. Associative and fair shuffle of ω-words.
Tech. Rep. TUCS-TR-162, University of Turku, 1998.

[26] Mateescu, A., Rozenberg, G., and Salomaa, A. Shuffle on trajectories:
Syntactic constraints. Theor. Comp. Sci. 197 (1998), 1–56.

[27] Mateescu, A., Salomaa, K., and Yu, S. On fairness of many-dimensional
trajectories. J. Automata, Languages and Combinatorics 5 (2000), 145–157.

[28] Rozenberg, G., and Salomaa, A., Eds. Handbook of Formal Languages,
Vol. 1. Springer-Verlag, 1997.

[29] Shyr, H. Free Monoids and Languages. Hon Min Book Company, Taichung,
Taiwan, 2001.

[30] Shyr, H., and Thierrin, G. Codes and binary relations. In Séminaire
d’Algébre Paul Dubreil, Paris 1975–1976 (1977), A. Dold and B. Eckmann,
Eds., vol. 586 of Lecture Notes in Mathematics, Springer-Verlag, pp. 180–188.

[31] Yu, S. S. d-Minimal languages. Disc. Appl. Math. 89 (1998), 243–262.

20

