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Abstract

We describe a new way to model deletion operations on formal languages, called
deletion along trajectories. We examine its closure properties, which differ from
those of shuffle on trajectories, previously introduced by Mateescu et al. In partic-
ular, we define classes of non-regular sets of trajectories such that the associated
deletion operation preserves regularity. Our results give uniform proofs of closure
properties of the regular languages for several deletion operations.

We also show that deletion along trajectories serves as an inverse to shuffle on
trajectories. This leads to results on the decidability of certain language equations,
including those of the form Liwir X = R, where L, R are regular languages and X
is unknown.

Key words: deletion along trajectories, shuffle on trajectories, language equations,
regular languages

1 Introduction

Shuffle on trajectories, defined by Mateescu et al. [19], unifies operations which
insert all the symbols of one word into another (see Section 2 for definitions).
Operations in the literature generalized by shuffle on trajectories include con-
catenation, reverse and bi-concatenation, arbitrary, literal and perfect shuffles,
and others. This formalism has proven to be very powerful, and much work
has recently been done on shuffle on trajectories [6,8,21,22]. Mateescu has de-
fined an extension of shuffle on trajectories called splicing on routes, which
generalizes operations on DNA strands [18].

Concurrent to this research, Kari and others [12,14] have done research into
the inverses of insertion- and shuffle-like operations, which have yielded decid-
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ability results for equations such as X L = R where L, R are regular languages
and X is unknown. The inverses of insertion- and shuffle-like operations are
deletion-like operations such as deletion, quotient, scattered deletion and bi-
polar deletion [12].

In this paper, we introduce the notion of deletion along trajectories, which is
the equivalent of shuffle on trajectories for deletion-like operations. We show
how it unifies operations such as deletion, quotient, scattered deletion and
others. We investigate the closure properties of deletion along trajectories.
We also show how each shuffle operation based on a set of trajectories 1" has
an inverse operation (both right and left inverse, see Section 5), defined by
a deletion along a renaming of 7. This yields the result that it is decidable
whether equations of the form Luir X = R for regular languages L and R
have a solution X, for any regular set 1" of trajectories.

We also investigate those 1" which are not regular but for which the deletion
along the set of trajectories 1" preserves regularity. Theorems 4.1 and 4.2 ex-
plicitly define classes of sets of trajectories, which include non-regular sets,
which preserve regularity. These theorems give uniform proofs of certain clo-
sure properties for the regular languages.

2 Definitions

For additional background in formal languages and automata theory, see Yu
[27] or Hopcroft and Ullman [9]. Let ¥ be a finite set of symbols, called letters.
Then ¥* is the set of all finite sequences of letters from X, which are called
words. The empty word € is the empty sequence of letters. The length of a
word w = wyjwy - w, € X*, where w; € X, is n, and is denoted |w|. Note
that € is the unique word of length 0. A language L is any subset of ¥*. By L,
we mean X* — L, the complement of L. If L,..., Ly C ¥* are languages, we
use the notation Hle L; = LyLy--- L. If L is a language and k is a natural
number, then we denote L=F = {wiug---u; = i <k,uj € LV1I<j<i}

A deterministic finite automaton (DFA) is a five-tuple M = (Q, 3,0, qo, F')
where @) is a finite set of states, ¥ is an alphabet, 0 : @ X X — @ is a
transition function, ¢y € @) is the start state, and F' C () is the set of final
states. We extend d to () x X* in the usual way. A word w € X* is accepted
by M if §(qo, w) € F. The language accepted by M, denoted L(M), is the set
of all words accepted by M. A language is called regular if it is accepted by
some DFA.

A nondeterministic finite automaton (NFA) is a five-tuple M = (Q, %, 0, qo, F)
where @), 3, ¢o and F" are as in the deterministic case, while the nondeterminis-



tic transition function is given by 6 : Q@ x (XU {e}) — 29. Again, ¢ is extended
to @ x X* in the natural way. A word w is accepted by M if 6(qg, w) N F # ().
It is known that the language accepted by an NFA is regular.

We denote by N the set of non-negative integers: N = {0,1,2,...}. Let I CN.
If there exist ng,p € N, p > 0, such that forallx > ng, v € I < x+p€
I, then we say that I is ultimately periodic (u.p.). It is known that if I is
ultimately periodic, then {z € ¥* : |z| € I} is regular for any alphabet X.

Given alphabets ¥, A, a morphism is a function h : X* — A* satisfying
h(zy) = h(z)h(y) for all z,y € X*. Given a morphism h : ¥* — A* and a
language L C ¥*, then the image of L under h is given by h(L) = {h(z)

x € L}, while if L' C A* the inverse image of L' under h is defined by
=YL ={z € x* : h(z) e L'}.

We recall the definition of shuffle on trajectories, originally given by Mateescu
et al. [19]. Shuffle on trajectories is defined by first defining the shuffle of two
words x and y over an alphabet ¥ on a trajectory ¢, which is simply a word
in {0,1}*. We denote the shuffle of 2 and y along trajectory ¢ by x i, y.

If 2 =ax, y =0y (with a,b € ¥) and ¢t = et’ (with e € {0,1}), then

a(z"wy by') if e = 0;
TlWeyr Y =
blax' wy y') if e = 1.

Ifz=ar (a€X),y=cand t=cet' (e € {0,1}), then

a(z'y €) if e = 0;
Ty € =
1] otherwise.

fex=€ey=0by (beX)and t =et' (e € {0,1}), then

blewyy') ife =1;
Ellepy Y =
1] otherwise.

We let zw .y =0 if {z,y} # {e}. Finally, if t =y = ¢, then euye = e ift = ¢
and () otherwise.

We extend shuffle on trajectories to sets T C {0, 1}* of trajectories as follows:

zwry = {Jzuwy.
terT



Further, for L, Ly, C ¥*, we define

l;lUJj‘lQ = LJ rury.

reLq
yEL>

We now give our main definition, called deletion along trajectories, which
models deletion operations controlled by a set of trajectories. Let x,y € ¥* be
words with © = az’, y = by’ (a,b € X). Let t be a word over {i,d} such that
t = et’ with e € {i,d}. Then we define x ~», y, the deletion of y from z along
trajectory t, as follows:

a(z' ~y by') if e = i
gy =9 a' ~pyf if e=d and a = b;

0 otherwise.
Also, if x = az’ (a € X) and t = et’ (e € {i,d}), then

a(x’ ~yp €) if e = 1;
T "~ € =
0 otherwise.

If x # €, then © ~, y = . Further, ¢ ~; y = € if t = y = ¢. Otherwise,
E~p Y = 0.

Example 2.1 Let © = abcabe, y = bac and t = (id)®. Then we have that
X~y = ach. If t = i2d%i then . ~; y = 0.

Let T' C {i,d}*. Then

T~sp Yy = Uxfwty.
ter

We extend this to languages as expected: Let Ly, Ly C ¥* and T C {i,d}*.
Then

Ly ~oq Ly = U T~ Y.
reLq
yeLs
Note that ~» is neither an associative nor a commutative operation on lan-
guages, in general. We consider the following examples of deletion along tra-
jectories:

(a) if T'=i*d*, then ~»p= /, the right-quotient operation;
(b) if T' = d*i*, then ~»p=\, the left-quotient operation;
(c) if T'=i*d*i*, then ~»p=—, the deletion operation (see, e.g., Kari [11,12]);



(d) if "= (i + d)*, then ~»p=~>, the scattered deletion operation (see, e.g.,
Ito et al. [10]);

(e) if T = d*i*d*, then ~»p==, the bi-polar deletion operation (see, e.g.,
Kari [12]).

(f) let & > 0 and T = i*d*i=F. Then ~»7, =—F the k-deletion operation
(see, e.g., Kari and Thierrin [13]).

Also, we note the difference between deletion along trajectories from the op-
eration splicing on routes defined by Mateescu [18], which is a generalization
of shuffle on trajectories which allows discarding symbols from either input
word. Splicing on routes serves to generalize the crossover operation used in
DNA computing by restricting the manner in which it may combine symbols,
in a manner similar to how shuffle on trajectories restricts the way in which
the shuffle operator may combine symbols (see Mateescu [18] for details and
a definition of the crossover operation). Recently, we have shown that splicing
on routes may be simulated by a fixed combination of shuffle and deletion
along trajectories [5].

3 Closure and Characterization Results

The following lemma is proven by a direct construction:

Lemma 3.1 IfT,Ly, Ly are reqular, then Ly ~»1 Ly is also reqular.

PROOF. Let My, M,, My be DFAs for Ly, Ly, T, respectively, with

Mj:(QjaE;(Sj,qj,Fj), for j =1,2,
My =(Qr,{1,d}, 07, g1, Fr).

Then let M = (Ql X Q2 X QT,E,(S, [ql,QQ,qT],Fl X Fy x FT) be an NFA with
0 given by

5([(1]7 gk, qﬁ]) a) = {[61((1]7 a): qk, (ST(QZ) Z)]}
for all [g;, i, q¢] € Q1 X Q2 X Qr and a € X. Further,

6([a), ar» ael, €) = {[01(qj, @), 02(q, a), o7 (qe, d)] : a € X}

for all [g;, g, ¢r] € Q1 X Q2 X Qr. We can verify that M accepts Ly ~»¢ Ly, O

We now show that if one of Ly, Ly or 1" is non-regular, then L; ~»p Lo may
not be regular (for the definitions of context-free languages (CFLs) and linear



CFLs, see, e.g., Hopcroft and Ullman [9]):

Theorem 3.2 There exist languages Ly, Ly and a set of trajectories T C
{i,d}* satisfying each of the following:

(a) Ly is a CFL, Ly is a singleton and T is reqular, but Ly ~»p Lo is not
reqular;

(b) Ly, T are regular, and Ly is a CFL, but Ly ~»p Ly is not regular;

(¢c) Ly is reqular, Ly is a singleton, and T is a CFL, but Ly ~» Lo is not
reqular.

In each case, the CFL may be chosen to be a linear CFL.

PROOF. We first note the following identity:
L~ {e} = L.
Thus, if we take any non-regular (linear) CFL L, we can establish (a).
For (b), we take the following languages:
Ll — (a2)*(62)*,
T = (di)*,
Ly={a"b" : n>0}.

Note that Lg is a non-regular (linear) CFL. With these languages, we get that
Ly~ Ly = Lo. Finally, to establish part (c), we take

Ly :a*#b*a
T={"di" : n>0},
Ly= {#}

We note that 7" is a non-regular linear CFL, and that
Ly ~q Ly = {a"b" : n>0}.

This establishes the theorem. O

In Section 4, we discuss non-regular sets of trajectories which preserve regu-
larity.

Recall that a weak coding is a morphism 7 : ¥* — A* such that 7(a) €
AU {e} for all a € X. We have the following characterization of deletion along
trajectories:



Theorem 3.3 Let X be an alphabet. There exist weak codings py, p2, T, and
a reqular language R such that for all Ly, Ly C X* and oll T C {i,d}",

Ly~ Ly = ¢ (pl_l(Ll) Nps (Ly) N7~ HT) N R) .

PROOF. Let & = {& : a € X} be a copy of X. Define the morphism
p1: (BUXSU{i,d})* — X as follows: pi(a) = pi(a) = a for all a € ¥ and
p1(i) = p1(d) = e. Define py : (S UL U {i,d})* — ©* as follows: py(d) = a for
all a € X, pa(a) = € for all a € ¥ and pa(d) = p2(i) = €.

Define 7 : (XU XU {i,d})* — X* as follows: 7(a) = 7(a) = € for all a € X,
7(i) = i and 7(d) = d. We define ¢ : (X U X U {i,d})* — I* as ¢(a) = e for
alla € X, p(a) = a for all a € ¥, and ¢(i) = ¢(d) = e. Finally, we note that
the result can be proven by letting R = (i¥ + d¥)*. O

Recall that a cone (or full trio) is a class of languages closed under morphism,
inverse morphism and intersection with regular languages [20, Sect. 3|. Thus,
we have the following corollary:

Corollary 3.4 Let L be a cone. Let Ly, Ly, T be languages such that two are
reqular and the third is in L. Then Ly ~p Ly € L.

Note that the closure of cones under quotient with regular sets [9, Thm. 11.3] is
a specific instance of Corollary 3.4. Lemma 3.1 can also be proven by appealing
to Theorem 3.3. We also note that the CFLs are a cone, thus we have the
following corollary (a direct construction is also possible):

Corollary 3.5 Let T, Ly, Ly be languages such that one is a CFL and the
other two are reqular languages. Then Ly ~1 Ly is a CFL.

The following result shows that if any of the conditions of Corollary 3.5 are
not met, the result might not hold:

Theorem 3.6 There exist languages Ly, Ly and a set of trajectories T C
{i,d}* satisfying each of the following:

(a) Ly, Ly are (linear) CFLs and T is regular, but Ly ~»1 Ly in not a CFL;

(b) Ly, T are (linear) CFLs, and Ly is a singleton, but Ly ~»p Ly is not a
CFL;

(c) Ly is regular, Ly, T are (linear) CFLs, but Ly ~»1 Ly is not a CFL.

PROOF. (a) The result is immediate, since it is known (see, e.g., Ginsburg
and Spanier [7, Thm. 3.4]) that the CFLs are not closed under right quotient



(given by the trajectory T' = i*d*). The languages described by Ginsburg and
Spanier which witness this non-closure are linear CFLs.

(b) Let X = {a,b,c,#}. Then let

Ly ={a"0"#c™ : n,m > 0};
Ly ={#};
T ={*"di" : n>0}.

Note that L;,T are indeed linear CFLs. Then we can verify that
Ly ~q Ly = {a"b"c" : n >0},
which is not a CFL.

(c) Let ¥ = {a,b,c,#}. Then let

Ll — (a2)*(b2)*#c*;
Ly={a"0"# : n >0},
T ={(di)>di" : n > 0}.

Then we can verify that Ly ~»p Ly = {a"0"c¢" : n > 0}, which is not a CFL.
This completes the proof. O

Note that the context-sensitive languages (CSLs, see, e.g., Mateescu and Sa-
lomaa [20, Sect. 2]) are not a cone, since they are not closed under arbitrary
morphism. Thus, Corollary 3.4 does not apply to the CSLs. In fact, it is known
(see, e.g., Mateescu and Salomaa [20, Thm. 2.12]) that the CSLs are not closed
under quotient with regular languages.

3.1  Recognizing Deletion Along Trajectories

We now consider the problem of giving a monoid recognizing deletion along
trajectories, when the languages and set of trajectories under consideration
are regular. Harju et al. [8] give a monoid which recognizes L, wir Ly, when
Ly, L, and 1" are regular.

For a background on recognition of formal languages by monoids, consult Pin
[24]. Let L C ¥* be a language. We say that a monoid M recognizes L if there
exist a morphism ¢ : ¥* — M and a subset F' C M such that L = ¢ }(F).

The following is a characterization of the regular languages due to Kleene (see,
e.g., Pin [24, p. 17]):



Theorem 3.7 A language is reqular iff it is recognized by a finite monoid.

Consider arbitrary regular languages Ly, Ly C ¥* and T' C {4, d}*. Then our
goal is to construct a monoid recognizing L; ~»p Ls.

Let My, My, My be finite monoids recognizing L, Ly, Ly, with morphisms ¢; :
¥* — M; for j = 1,2, op : {i,d}* — My and subsets Fy, Fy, Fr, respectively.

As in Harju et al. [8], we consider the monoid P(M; x M,y x Mr) consisting
of all subsets of M; x My x My. The monoid operation is given by

AB ={zy :x € A,y € B}
for all A,B S P(Ml X M2 X MT)

We can now establish that P(M; x M, x My) recognizes Ly ~»q Ly. We first
define a subset D C M; x M, x Mz which will be useful:

D = {[p1(), p2(x), or(d™)] : €T}

Then we define ¢ : ¥* — P(M; x My x Mr) by giving its action on each
element a € X:

p(a) = {1 (za), (@), pr(d™0)] = € T}

Then, we note that for all y € X*,

p()D = {le1(a), p2(B), er(t)] © y€a~n fa,B8eXte{idf'}. (1)
Thus, it suffices to take

F={KeP(M, x Myx Myp) : KDN(F, X Fy x Fr) # 0}.
Thus, considering (1), we have that
Ly ~q Ly = o 1(F).

This establishes the following result:
Lemma 3.8 Let L; be a regular language recognized by M; for j = 1,2 and
T C {i,d}* be a regular set of trajectories recognized by the monoid My. Then
P(M; x My x My) recognizes Ly ~>q Lo.

Thus, Lemma 3.8 gives another proof of Lemma 3.1.



3.2 Equivalence of Trajectories

We briefly note that two sets of trajectories define the same operation if and
only if they are equal. More precisely, if 77, Ty C {i,d}*, say that T} and T
are equivalent if Ly ~»p, Ly = Ly ~»p, Ly for all languages Ly, Ls.

Lemma 3.9 Let T1,T> C {i,d}*. Then T1, Ty are equivalent iff Ty = Ty.

PROOF. If 77 = 15 then clearly 7} and 7% are equivalent. If 77 and 75
are not equal, then without loss of generality, let ¢t € T} — T5. Let n = |t|;
and m = |t|4. Then it is not hard to see that i" € {t} ~»p, {d™}, but that
i" & {t} ~q, {d™}, ie., T} and T, are not equivalent. 0O

Thus, for instance, it is decidable whether 7',7T5 are equivalent if, e.g., 17 is
regular and 75 is an unambiguous CFL, but undecidable if 7} is regular and
15 is an arbitrary CFL.

4 Regularity-Preserving Non-Regular Trajectories

Consider the following result of Mateescu et al. [19, Thm. 5.1]: if Ly oy Ly is
regular for all regular languages L, Ly, then T is regular. This result is clear
upon noting that for all 7', 0* iy 1" =T.

However, in this section, we note that the same result does not hold if we
replace “shuffle on trajectories” by “deletion along trajectories”. In particular,
we demonstrate a class of sets of trajectories C, which contains non-regular
languages, such that for all regular languages Ry, Ry, and forall H € C, Ry ~p
Ry is regular. We also characterize all H C ¢*d* which preserve regularity, and
give some examples of non-CF trajectories which preserve regularity.

As motivation, we begin with a basic example. Let ¥ be an alphabet. Let
H = {i"d" : n > 0}. Note that

Ry ~py Ry ={x € ¥ : Jdy € Ry such that zy € R, and |z| = |y|}.
We can establish directly (by constructing an NFA) that for all regular lan-
guages Ry, Ry C X*, the language R; ~py Ry is regular. However, H is a
non-regular CFL.
Remark that Ry ~y R5 is similar to proportional removals studied by Stearns

and Hartmanis [26], Amar and Putzolu [1,2], Seiferas and McNaughton [25],

10



Kosaraju [15,16], Kozen [17], Zhang [28], the author [4] and others. In partic-
ular, we note the case of 1(L), given by

1
§(L) ={r € ¥ : Jy € ¥* such that zy € L and |z| = |y|}.

Thus, %(L) = L ~»py ¥*. The operation %(L) is one of a class of operations

which preserve regularity. Seiferas and McNaughton completely characterize
those binary relations r C N? such that the operation

P(L,r)={z € ¥ : Jy € ¥* such that zy € L and r(|z|,|y|)}
preserves regularity.
Call a relation r C N? u.p.-preserving if A u.p. implies

r1(A) ={i : 3j € A such that r(i, )}

is also u.p. Then, the binary relations r that preserve regularity are precisely
the u.p.-preserving relations [25].

We note the inclusion
1
Ly~pg Ly C §(L1) N Li/Ly

holds for H = {i"d" : n > 0}. However, equality does not hold in general.
Consider the languages Ly = {02,0*}, Ly = {0°}. Then 0 € (L) N Ly/Ls.
However, 0 ¢ L) ~»y L. Thus, we note that

1
Ly~py Ly # §(L1) N Li/Ly

in general.

We now consider arbitrary relations » C N? for which
H, = {i"d™ : r(n,m)} Ci*d*

preserves regularity. We have the following result:

Theorem 4.1 Let r C N? be a binary relation and H, = {i"d™ : r(n,m)}.
The operation ~ g, is reqularity-preserving iff r is u.p.-preserving.

PROOF. Assume that ~»y, is preserves regularity. Then L ~» 3* is regular
for all regular languages L. But

L~y S = P(L,7).

11



Thus, r must be u.p.-preserving.

For the reverse implication, we modify the construction of Seiferas and Mc-
Naughton [25, Thm. 1]. Let Lq, Ly be regular, and let M; = (Q1, %, 01, qo, F1)

be the minimal complete DFA for L;. Then, for each ¢ € @, we let qu)
be the language accepted by the DFA Ml(Q) = (Q1,%,01,q0,{q})- Let R,
be the language accepted by the DFA Nl(q) = (@Q1,%,01,q, F1). Note that
L9 = {we X" : 6(q,w)=¢q} and R, ={w € X* : §(q,w) € Fi}.

As M; is complete, 5* = U,cq, L'9 . Thus,

Ly~p, Ly = |J (Ly~u, L) N LY.
qEQ1

Thus, it suffices to demonstrate that (L; ~»y, L) N L7 is regular. But we
note that

(Ly ~ g, Lo) N LYY

={z € LI : 3y € L, such that zy € L, and r(|z|, |y)},
={z e L\ : 3y € (R, N Ly) such that r(|z|, |y|)},

—{z € X" : Iy e (R,N Ly) such that r(|z|, |y|)} N LIV,
={zex : |aler'({lyl:y e (RN L)P}N L.

It is easy to see that if L is regular, {|y| : v € L} is a u.p. set. As r is
u.p.-preserving, r ({|y| : y € R, N Ly)}) is also u.p. O

Note that, in general,
Ll ~H, L2 7£ P(Ll,r) N Ll/LQ.

Consider the following particular examples of regularity-preserving trajecto-
ries:

(a) Consider the relation e = {(n,2") : n > 0}. Then H, preserves regularity
(see, e.g., Zhang [28, Sect. 3]). However, H, is not CF. The set H, is,
however, a linear conjunctive language (see Okhotin [23] for the definition
of conjunctive and linear conjunctive languages, and for the proof that
H, is linear conjunctive).

(b) Consider the relation f = {(n,n!) : n > 0}. Then H; preserves regularity
(see again Zhang [28, Thm. 5.1]). However, Hy is not a CFL, nor a linear
conjunctive language [23].

12



Thus, there are non-CF trajectories which preserve regularity. Kozen states
that there are even H, which preserve regularity but are “highly noncom-
putable” [17, p. 3].

We can extend the class of non-regular sets of trajectories T" such that L; ~p
Ly is regular for all regular languages L, L, by considering 7' such that
T C (d**)™d* for some m > 1?. To consider such non-regular T, it will
be advantageous to adopt the notations of Zhang [28] on boolean matrices.
We summarize these notions below; for a full review, the reader may consult
the original paper.

For any finite set @, let M(Q) denote the set of square Boolean matrices
indexed by Q. Let V(Q) denote the set of Boolean vectors indexed by . For
an automaton over a set of states (), we will associate with it matrices from

M(Q) and vectors from V(Q).

In particular, let M = (Q,%,0,qo, F') be a DFA. Then for each a € %, let
V. € M(Q) be the matrix defined by transitions on a, that is V,(q1,¢) = 1
iff 5(q1,a) = 2. Let V = 3,5 Vo (where addition is taken to be Boolean
addition, i.e., 0+0 =0,04+1 =140 = 1+ 1 = 1). Thus, note that
V (g1, g2) = 1 iff there is some a € ¥ such that 6(¢;, a) = go. Note that taking
powers of V yields information on paths of different lengths: for all ¢ > 0,
Vi(q1,qz) = 1 iff there is a path of length i from q; to gy.

For any Q" C @, let I € V(Q) be the characteristic vector of @), given by
Io(q) =1iff ¢ € Q" If Q' is a singleton ¢, we denote Ity by I,. Note that if
Q1,Q> € Q and 7 > 0, then Ig, - V' - I, = 1 iff there is a path of length i
from some state in (), to some state in Q3 (here, I* denotes the transpose of
I).

Call a function f : N — N ultimately periodic with respect to powers of
Boolean matrices [28], abbreviated m.u.p. (for “matrix ultimately periodic”),
if, for all square Boolean matrices V, there exist natural numbers e, p (p > 0)
such that for all n > e,

v/ () — yfnte)

Let m > 1. We will define a class of T C (d*i*)™d* such that for all regular
languages R, Ry, Ry ~7 Ry is regular. In particular, let m > 1, and let
fz(]) : N — N be a m.u.p. function foreach 1 < ¢ <m+1and 1 < j < m.

2 The choice of T C (d*i*)™d* rather than, e.g., T C (i*d*)™ or T C (d*i*)™ is
arbitrary. The same type of formulation and arguments can be applied to these
similar types of sets of trajectories.
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Define X, : N - Nfor1 </<m+1 by

Xg(nl,ng,..., Z Z( ’I’L]
We will use the abbreviation 7 = (ny, ns, ..., ny). Finally, we define
H nYgXm1 (D 7 = (ny, L ngy,) € NT) (2)

The set 1" satisfies our intuition that the ‘s-portions’ may not interact with
each other, but may interact with any ‘d-portion’ they wish to. Our claim that
these T' preserve regularity is proven in the following theorem.

Theorem 4.2 Let m > 1, and fl(j) be m.u.p. for1<l<m+1andl <j<
m. Let T C (d*i*)™d* be defined by (2). Then for all reqular languages Ry, Rs,
the language Ry ~1 Ry is reqular.

Let m = {0,1,2,3,...,m} for any m > 1.

PROOF. Let M; = (Q;, %, d;, s;, F;) be a DFA accepting R; for i = 1,2. Let
Moy = (@1 x Q2, X%, 0o, (51,82),F1 X Fy) where 0 is given by 6((q1,q2), a) =
(01(q1, @), 02(gq2, @)) for all (q1,¢q2) € Q1 X Q2 and all a € X. Note that M,
accepts Ry N Ry. Let V be the adjacency matrix for M; 5. Foreach 1 < j <m
and 1 < ¢ < m+1, let egj) > 0 and péj) > 0 be chosen so that v/ () =

er(’)(n+p§]) for all n > eéj).

Foralll<j<mand1</<m+1,let glgj) = eéj) —i—p&j), and define the set

f(])

MG, 0) = {V/I'D : 0<i<ed +pi) x gV

We will define an NFA M = (Q, X, d, S, F') which we claim accepts Ry ~ Ry.
The NFA will be nondeterministic, and will also have multiple start states.
Our state set () is given by

Q=mx ([J(JI M3, 0) x Q} x Q2) x [[ M(j,m +1).
=1 j=1 j=1
Let p10 = [Vf(]) 0] € M(4,¢). Our set S of initial states is given by

S = {1} % ([T TL e % {a.d] = 4 € @i} % Q1 x @2) % 1] g

(=1j=1 j=1
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To partially motivate this definition, the elements of the form @3 will represent
one path through M;: the first element will represent our nondeterministic
“guess” of where the path starts, the second state will actually trace the
path through M) (along a portion of our input word) and the third state
represents our guess of where the path will end. Thus, during the course of
our computation, the first and third elements are never changed; only the
second is affected by the input word. The first and third elements are used to
verify (once the computation has completed) that our guesses for the start and
finish are correct, and that they correspond (“match up”) with the guessed
paths for the adjacent components. The elements of )y will represent our
guesses of the intermediate points of the path through Ms; similarly to our
guesses in (Jq, it will not change through the computation.

Our set of final states /' is given by those states of the form
j i)\m 1 2 3 m ] i)\ m
{m} x (A7, gt a4 ro)iss (A, e )is)

where the following conditions are met:

(3)

(F-i) forall 1 < ¢ < m, I‘Ifi)p (1175, APy .t =1 (we let g5’ = s1,

( T[-l) (qgl))r[)
the start state of M; and ry = so the start state of Ms);
(F'ii) I(q,(;?),rm) ’ ( ;1:1 A7(7]1)+1) : Ilt?1><F2 =1
(F-iii) for all 1 < ¢ < m, we have qf) = ql@_

We will see that the matrix Agj) will ensure that there is a path of length

fl(j)(nj) through M; x M,. Thus, condition (F-i) will ensure that we have
a path from our guessed end state of the previous i-portion through to the
guessed start state of the next ¢-portion. This will correspond to the presence
of some word w of length > 7%, flm(nj) which takes M from the end state of
the previous i-portion to the start of the next é-portion. The condition (F-ii)
will ensure that the final d-portion ends in a final state in both M; and M>.

Condition (F-iii) verifies that the nondeterministic “guesses” for the end of
each i-portion path is correct.

Finally, we may define the action of 6. We will adopt the convention of Zhang
[28] and denote by (c)® the quantity

c if ¢ < a;

a+ ((¢ —a) mod b ) otherwise.

Further, to describe the action of § more easily, we introduce auxiliary func-
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tions Ty, forall 1 <¢<m+1and 1 <o < m. In particular

Tﬂ,a : H W(Jag) — H W(Jag)
j=1 j=1
is given by
(4)¢.0) N\
Tla((vf (i) Céj))jzl)
( )(< (e) > ( ))
Do) (a1 Te G+ G P D@y ()vm
=((VI D, ef)ezt v A D (T, ),

Note that Y, , updates the a-th component, while leaving all other compo-
nents unchanged.

Then we define 6 by

(4)¢.(7) i (4) ( ) i
5 (( ((vf] ( g )7 CE]))?Llapél)apf)ap?)a )E 1 (an{+1( n]H—l), C£7JL)+1)9n—1> 70’>

() .0G)
= {(a+ 8, (Cears((77
) (]) 5 1 2 3
Tatp, a+ﬂ((vf“+5( ats), Cglﬂ)?:l)apa-i—ﬁv 01 (pa-i-ﬁ: a), pEx—i)—ﬂv Ta+p
(@) (.(3) i 1 9 3
(Cears (VI ), i 0f b o) a g

@) () ;
Tm+1,oz+ﬁ((vf”i+1 n{”+1)70%2|—1);n—1)> 0 <m— Oé} .

R L W S ) vt

Note that, though the definition of ¢ is complicated, its action is straight-
forward. The index « indicates the ‘i-portion’ which is currently receiving the
input. Given that we are currently in the a-th i-portion, we may nondeter-
ministically choose to move to any of the subsequent portions. The action of
the function T, , is to simulate the corresponding function f;*.

We show that L(M) C Ry ~»p Ry. If we arrive at a final state, by (F-i), for
each 1 < ¢ < m there is a word x; of length X,(7) which takes us from state
qﬁ)l to qél) in M, and also takes us from r,_; to r, in Ms. By the choice of S,
9 and condition (F-iii), for each 1 < ¢ < m, there is a word w; of length n;
which takes us from state qél) to qf). Further, the input word is of the form
w = wywsg - - - Wy, Finally, by (F-ii), there is a word z,,4; of length X,,,,(7)
which takes us from state ¢,, to a final state in M; and from r,, to a final

state in M,. The situation is illustrated in Figure 1.
Thus, we conclude that x;w; - xmwmxm+1 € Ry, x1 Ty € Ry and |2y =

X(7 ) foralll < ¢ < m+1. Thus wy - Wy, € Ry ~7 Ry. A similar argument,
which is left to the reader, shows the reverse inclusion. O
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Tm+1
o------- »0-—-----— 0-—-----— G- - —— - PO - - — - —— - - — >0 ¢ Fs>
82 T1 To r3 Tm
T iTLMz
w1 w2 Wm
o o o - o
(3) (1) (3)
gt" ¢i¥ " ) 4 s
z1 T2 z3 Tm41
e »0 Yoo o O0-------- >0 o---=-=--- =0 € Fy X Fy
(1)
(s1,52) (g7, r0) (@) (a5",72) (a57,72) (2, rs) (@), rm)

Fig. 1. Construction of the words in M; and My from the action of M.

As an example, consider m = 1 and let fl(l), f2(2) both be the identity function.
Then the conditions of Theorem 4.2 are met and T = {d""d" : n > 0}.
Consider then that

Ry~p X ={x : Jy,z € yl#l such that yrz € Ry}.

This is the ‘middle-thirds’ operation, which is sometimes used as a challenge
problem for undergraduates in formal language theory (see, e.g., Hopcroft
and Ullman [9, Ex. 3.17]). We may immediately conclude that the regular
languages are preserved under the middle-thirds operation.

We note that the condition that (ny,ns,...,n,) € N™ in (2) can be replaced
by the conditions that, for all 1 < j < m, n; € I; for an arbitrary u.p. set
I; € N. The construction adds considerable detail to the proof of Theorem 4.2,
and is omitted. With this extension, we can also consider a class of examples
given by Amar and Putzolu [2], which are equivalent to trajectories of the
form

AP(ky, ko, o) = {i™d™ 2t o m > 0},
for fixed ki, ks, « > 0 with o < ky + ko. For any kq, ko, « > 0, we can conclude

that the operation ~»4 preserves regularity, where A = AP(ky, ko, ). This
was established by Amar and Putzolu [2] by means of even linear grammars.

5 Deletion as an Inverse of Shuffle on Trajectories

In this section, we show that deletion along trajectories constitutes the in-
verse of shuffle on trajectories, in the sense introduced by Kari [12]. We then
show how this implies several positive decidability results regarding equations
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involving shuffle on trajectories (undecidability results will be examined in a
forthcoming paper).

Given two binary word operations o,% : (X*)2 — 2% we say that o is a
left-inverse of x [12, Defn. 4.1] if, for all u, v, w € X*,

WEUXKY <= UEWO.

Let 7 : {0,1}* — {i,d}* be the morphism given by 7(0) = ¢ and 7(1) = d.
Then we have the following characterization of left-inverses:

Theorem 5.1 Let T' C {0,1}* be a set of trajectories. Then wip and ~(p)
are left-inverses of each other.

PROOF. We show that for all ¢ € {0,1}*, w € v v <= u € W~y v.
The proof is by induction on |w|. For |w| = 0, we have w = e. Thus, by
definition of w; and ~»;, we have that

ECULLY <= u=V=1t=¢€ <= UE (e~ V).
Let w € ¥ and assume that the result is true for all words shorter than w.
Let w = aw' for a € X.

First, assume that aw’ € v v. As [t| = |w|, we have that ¢ # e. Let t = et/
for some e € {0,1}. There are two cases:

(a) If e =0, then we have that u = au’ and that w' € v'1y v. By induction,
u' € w' ~s -y v. Thus,

(W~ 7y v) = (aw' ~Sir(e) V)

:a(w' At U) > aul = Uu.

(b) If e = 1, then we have that v = av’ and w' € wwy v'. By induction,
u € w' ~qy v'. Thus,

(W ~>r) v) = (W' ~>gry V')

= (W'~ V') D w.
Thus, we have that in both cases u € w ~»; ) v.

Now, let us assume that v € w ~ ;) v. As [t| = |7(t)] = |w| > 1, let t = et/
for some e € {0, 1}. We again have two cases:

(a) If e = 0, then 7(e) = 4. Then necessarily u = av’, and v’ € W' ~ ;) v.
By induction w' € vty v. Thus,
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(wwigv) = (au' wey v)
=a(u'wyv) 3 aw' = w.

(b) If e =1, then 7(e) = d. Then necessarily v = av’, and u € (W'~ V').
By induction, w' € wuiy v'. Thus,

(uwgv) = (uwy av')
=a(uwyp v') 3 aw' = w.

Thus w € v, v. This completes the proof. O

We note that Theorem 5.1 agrees with the observations of Kari [12, Obs. 4.7].

5.1 Solving XwrL =R and X ~r L =R

The following is a result of Kari [12, Thm. 4.6]:

Theorem 5.2 Let L, R be languages over ¥ and o,* be two binary word op-
erations, which are left-inverses to each other. If the equation X o L = R has
a solution X C X*, then the language

R =RxL

is also a solution of the equation. Moreover, R' is a superset of all other
solutions of the equation.

By Theorem 5.2, Theorem 5.1 and Lemma 3.1, we note the following corollary:

Corollary 5.3 Let T C {0,1}*. Let T, L, R be reqular languages. Then it is
decidable whether the equation X 1 L = R has a solution X.

The idea is the same as discussed by Kari [12, Thm. 2.3]: we compute R’ given
in Theorem 5.2, and check whether R’ is a solution to the desired equation.
Since all languages involved are regular and the constructions are effective, we
can test for equality of regular languages. Also, we note the following corollary,
which is established in the same manner as Corollary 5.3:

Corollary 5.4 Let T C {i,d}*. Let T, L, R be regular languages. Then it is
decidable whether the equation X ~»p L = R has a solution X.
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5.2 Solving Ly X =R

Given two binary word operations o, % : (X*)2 — 2% we say that o is a
right-inverse [12, Defn. 4.1] of % if, for all u, v, w € ¥*,

WEUXKY <= VEUSW.

Let ¢ be a binary word operation. The word operation ¢” given by uo"v = vou
is called reversed ¢ [12].

Let 7 : {0,1}* — {i,d}* be the morphism given by 7(0) = d and 7(1) = i.
We can repeat the above arguments for right-inverses instead of left-inverses:

Theorem 5.5 Let T C {0,1}* be a set of trajectories. Then Wiy and (~ )"
are right-inverses of each other.

PROOF. Let symy: {0,1}* — {0,1}* be the morphism given by sym(0) =
1 and sym,(1) = 0. Then it is easy to note that

TEULRV <= T € Ulllgym,(t) U-

Thus, using Theorem 5.1, we note that

TEULLV <= T € Ullgym,(t) U
U E T r(syms (1) U

r

— U E U(MT(Syms(t))) xT.

Thus, the result follows on noting that 7 = 7 o sym,. O

This again agrees with the observations of Kari [12, Obs. 4.4].

Corollary 5.6 Let T C {0,1}*. Let T, L, R be reqular languages. Then it is
decidable whether the equation Liur X = R has a solution X.

We note that Campeanu et al. have recently investigated the decidability of
the existence of solutions to the equation X;1uX5 = R (i.e., unrestricted shuffle
given by 7' = (0 4+ 1)*) where X;, X, are unknown and R is regular [3]. We
will investigate the decidability of R = X;wp Xo, where 1" is a fixed set of
trajectories, X, Xy are unknown and R is regular, in a forthcoming paper.
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5.3 Solving {z}wr L =R

In this section, we briefly address the problem of finding solutions to equations
of the form

{z}wr L=R

where T is a fixed regular set of trajectories, L, R are regular languages, and
x is an unknown word. This is a generalization of the results of Kari [12].

Theorem 5.7 Let ¥ be an alphabet. Let T C {0, 1}* be a fized regular set of
trajectories. Then for all reqular languages R, L C ¥*, it is decidable whether
there exists a word © € ¥* such that {x} wp L = R.

PROOF. Let r = min{|y| : y € R}. Given a DFA for R, it is clear that
we can compute 7 by breadth-first search. Then note that |z| = |z| + |y| for
all z € zwry (regardless of T'). Thus, it is clear that if there exists z € ¥*
satisfying {z} 1wy L = R, then |z| < r. Our algorithm then simply considers
all words x of length at most r, and checks whether {z} 1, L = R holds. O

5.4 Solving L~ X =R

We now consider the decidability of solutions to the equation L ~¢p X = R
where T is a fixed set of trajectories, L, R are regular languages and X is
unknown.

This involves considering the right-inverse of ~» for all T C {4, d}*. However,
unlike the left-inverse of ~»r, the right-inverse of ~»¢ is again a deletion op-
eration. Let symy : {i,d}* — {i,d}* be the morphism given by symgy(i) = d
and symgy(d) = 1.

Theorem 5.8 Let T C {i,d}* be a set of trajectories. The operation ~»r has
Tight-1nverse ~ gym. (1)

PROOF. By Theorems 5.5 and 5.1, we note that

TEY~ 2 <= YET W14 2
= 2 Y a(r-le) T

The result follows on noting that 7 o 77! = symy. O
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We note that Theorem 5.8 agrees with the observations of Kari [12, Obs. 4.4].
Also, we have the following result:

Corollary 5.9 Let T C {i,d}*. Let T, L, R be regular languages. Then it is
decidable whether the equation L ~7 X = R has a solution X.

5.5 Solving {x} ~¢p L =R
In this section, we are concerned with decidability of the existence of solutions
to the equation

{z}~r L=R

where z is a word in ¥*, and L, R,T are regular languages. Equations of
this form have previously been considered by Kari [12]. Our constructions
generalize those of Kari directly.

We begin with the following technical lemma:

Lemma 5.10 Let ¥ be an alphabet. Then for all sets of trajectories T C
{i,d}*, and for oll R, L C X*, the following equality holds:

(FLUT—I(T) L)y={xeX* : {z}~r L CR}.
PROOF. Let = be a word such that {x} ~»y L C R, and assume, contrary

to what we want to prove, that x € RLIJT—I(T) L. Then there exist y € R,z € L
and t € 771(T) such that = € yw; 2. By Theorem 5.1,

Y ET ) 2.

As 7(t) € T, we conclude that y € ({z} ~¢ L) N R. Thus {2} ~¢ L C R
does not hold, contrary to our choice of . Thus = € (R,—1(y) L).

For the reverse inclusion, let £ € (R -1(r) L). Further, assume that ({z} ~r
L) N R # (. In particular, there exist words z € L and ¢t € T such that

T~y 2N R#D.
Let y be some word in this intersection. As y € x ~»; z, by Theorem 5.1, we

have that = € yuw, -1 2. Thus, v € RLLIT—I(T) L, contrary to our choice of .
This proves the result. O

Thus, we can state the main result of this section:
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Theorem 5.11 Let ¥ be an alphabet. Let T C {i,d}* be an arbitrary reqular
set of trajectories. Then the problem “Does there exist a word x such that
{z} ~7 L = R” is decidable for regular languages L, R.

PROOF. Let L, R be regular languages. We note that if R is infinite, then
the answer to our problem is no; there can only be finitely many deletions
along the set of trajectories 71" from a finite word x. Thus, assume that R is
finite. Then we can construct the following regular language:

P = (RUJT—l(T) L) - U (EU_IT—I(T) L)

SCR

Note that C denotes proper inclusion. We claim that P = {x : {2}~y L =
R}.

Assume x € P. Then by Lemma 5.10, we have that

re{z : {z} ~¢ L C R}; (3)
z¢{x : {x} ~r L CSC R} (4)

Thus, we must have that {z} ~¢r L = R, since {2} ~»¢ L is a subset of R,
but is not contained in any proper subset of R.

Similarly, if {«} ~»r L = R, by Lemma 5.10 we have that « € (Ruw,-1)L).
But as {z} ~»¢ L is not contained in any S with S C R, we have that
T ¢ Ung (EUJTfl(T) L) ThuS, x e P.

Thus, if R is finite, to decide if a word x exists satisfying {z} ~¢ L = R,
we construct P and test if P # (). Since P will be regular, this can be done
effectively (as we have noted, if R is infinite, we answer no). O

6 Conclusion

We have defined deletion along trajectories, and examined its closure prop-
erties. Deletion along trajectories is shown to be a useful generalization of
many deletion-like operations which have been studied in the literature. The
closure properties of deletion along trajectories differ from that of shuffle on
trajectories in that there exist non-regular and non-CF sets of trajectories
which define operations which preserve regularity. We have shown that a large
class of sets of trajectories, which includes several operations known in the
literature, define deletion operations which preserve regularity.

23



We have also demonstrated that deletion along trajectories constitutes an
elegant inverse to shuffle on trajectories operations. This leads to positive
decidability results for equations involving shuffle on trajectories and deletion
along trajectories.
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