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Abstract

We survey recent results on the enumeration of formal languages. In
particular, we consider enumeration of regular languages accepted by de-
terministic and nondeterministic finite automata with n states, regular lan-
guages generated by regular expressions of a fixed length, and ω-regular
languages accepted by Müller automata. We also survey the uncomputabil-
ity of enumeration of context-free languages and more general structures.

1 Introduction
Given a set of objects, enumeration asks “how many distinct objects are there?”
Easy examples of enumeration problems are “how many binary sequences of
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length n are there?” (2n) and “how many distinct subsets of size m can we
take from a set of n elements?” (

(
n
m

)
). A sampling of other classical topics

for enumeration familiar to computer scientists include graphs (“how many non-
isomorphic graphs on n vertices are there?”), trees, primitive and Lyndon words
[33, A000031], and monotone Boolean functions (this enumeration problem is
known as Dedekind’s problem [33, A000372]). With over 100 000 sequences, the
Encyclopedia of Integer Sequences [33] contains a wealth of examples related to
enumeration.

The enumeration of structures in formal language theory is a topic that has
been considered for almost fifty years, and the objects in formal language theory
yield many interesting enumeration problems. In this survey, we consider recent
results on the enumeration of formal languages. Many of these results concern
enumeration of finite automata, but we also consider enumeration of regular ex-
pressions, context-free languages, and more general results.

Why enumeration? There are several compelling reasons for studying the enu-
meration of formal languages beyond the intrinsic research challenge. In particu-
lar, research on enumeration is closely linked to problems of random generation
of automata [3], average case complexity [27] and establishing lower bounds by
counting arguments (see, e.g., Domaratzki et al. [11, Thm. 2.5] for an example
from formal language theory). Results on enumeration are useful in varied loca-
tions when, for one reason or another, the number of regular languages of a given
size is required. A recent example is given Gramlich and Schnitger [14], who use
bounds on the number of regular languages accepted by NFAs with n states in
proving inapproximability results for finding minimal NFAs for a given DFA.

2 Enumeration and Formal Language Theory
Given an infinite set of objects S, enumeration asks the question “how many dis-
tinct objects are there in S of size n”? The goal of enumeration is to express
this quantity exactly as a function of n, typically in a closed form. Asymptotics
for these functions are typically also of interest to researchers, for comparative
purposes.

There are some important assumptions in enumeration problems. The two
most crucial—especially in relation to formal language enumeration—are the
measurement and the idea of equivalence. First, we must have a measure on S
such that the number of objects of size n is finite for all n. Clearly, without a mea-
sure satisfying these requirements, asking enumeration questions doesn’t make
sense. When enumerating structures in formal language theory, there are often
several different descriptional complexity measures available. This gives many,
often unique research questions for the same structure, as we see in this survey.
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Secondly, our enumeration problem asks about the number of distinct objects
of size n. Thus, we must have a concept of which objects are and are not equiva-
lent.

Typically, in classical areas like graph theory, the notion of equivalence means
isomorphic: two directed graphs are equivalent if they are isomorphic. In for-
mal language theory, we still use the notion of isomorphic—when discussing the
uniqueness of minimal DFAs, for instance. However, when dealing with devices
which generate or accept languages, our primary notion of equivalence is usually
equality of the languages they generate or accept. Thus, we focus on this concept
of equivalence in this survey: two language devices are equivalent if they accept
or generate the same language.

3 Preliminaries

We assume the reader is familiar with the basic notions of formal language theory,
in particular, the concepts of deterministic and nondeterministic finite automata
(DFAs and NFAs), regular expressions, regular languages, context-free grammars
(CFGs) and context-free languages (CFLs). See, for example, Rozenberg and
Salomaa [32] for an introduction to concepts used in this survey.

We will employ a few descriptional complexity measures of regular languages
below. The (deterministic) state complexity of a regular language L is the minimal
number of states in any DFA accepting L. See Yu [36, 37] for surveys of results on
state complexity. The nondeterministic state complexity [17] of a regular language
L is, as expected, the minimal number of states in any NFA accepting L.

4 Early Results

Since nearly the inception of the study of formal languages, there has been in-
terest in enumeration problems relating to automata. For a list of references and
background, we refer the reader to Domaratzki et al. [9], where it is noted that
the problem was considered at least as early as 1959, and in 1960, Harary listed
enumeration of automata as an unsolved problem in graph enumeration. Harrison
[16] wrote “A census of finite automata” in 1965, which provided enumeration
results using group-theoretic means. Many other papers also attacked the enumer-
ation of automata, including strongly-connected, initially-connected1 and minimal

1Recall that a DFA is initially-connected if, for each state q, there is a word w such that
δ(q0,w) = q, and similarly for an NFA. Initially-connected automata are also called accessible
in the literature.
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automata. Much research was independently conducted in the Soviet Union and
in the West.

Most early research focuses on enumerating automata by considering them to
be distinct if they are non-isomorphic, and little attention is given to the languages
accepted by the automata. Some of the work on enumeration of minimal automata
does begin to address the number of languages accepted by DFAs. To see this, let
fk(n) be the number of pairwise non-isomorphic minimal DFAs with n states over
a k-letter alphabet and gk(n) be the number of distinct regular languages accepted
by DFAs with n states over a k-letter alphabet. Then we note that gk(n) =

∑n
i=1 fk(i)

[9, Prop. 1]. Thus, in what follows, we are generally looking for bounds on gk(n),
but it will be sufficient to obtain bounds on fk(n).

For research on enumeration of minimal finite automata, we mention here
in particular the less well-known work of Narushima [24, 25, 26], who devel-
oped new methods, namely inclusion-exclusion properties on semi-lattices, for
enumeration of minimal automata. These techniques appear to have never been
exploited to enumerate formal languages (in particular, the relationship between
Narushima’s methods and methods for enumerating initially-connected automata
does not appear to have been studied) and the inclusion-exclusion principles do
not appear to have ever been employed to give any asymptotic analysis of the
number of minimal automata with n states.

There is also other work on minimal automata which we do not cover in this
survey. The work of Korshunov [18, 19] (a survey in Russian is also available
[20]) enumerates minimal automata. However, as noted in Domaratzki et al. [9],
the automata studied by Korshunov lack a distinguished initial state. Korshunov
also studies initially-connected automata (in which an initial state is given [20, Ch.
4]), however, it does not appear that the work was broadened to study initially-
connected minimal automata.

5 Enumeration by State Complexity
Renewed interest in the enumeration of formal languages can be traced to the
work of Nicaud which investigated average state complexity of operations on reg-
ular languages [27]. In order to examine the average case complexity of these
operations, an exact characterization of all distinct automata with n states is re-
quired. Nicaud gives such a characterization for unary regular languages and, as a
by-product, also gives an asymptotic enumeration of unary regular languages. Re-
call that fk(n) denotes the number of pairwise non-isomorphic minimal DFAs with
n states over a k-letter alphabet and gk(n) denotes the number of distinct regular
languages accepted by DFAs with n states over a k-letter alphabet. The following
result is due to Nicaud [27]:
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Theorem 1. The function f1(n) satisfies f1(n) ∼ n2n−1.

This result of Nicaud was considered by Domaratzki et al. [9]. In particular,
the asymptotic bound on f1(n) can be further refined, and an asymptotic bound on
g1(n) can also be given [9]:

Corollary 2. The following asymptotic bound holds: g1(n) = 2n(n−α+O(n2−n/2))
where α is a constant with approximate value 1.382714455402.

The value of α in Theorem 2 is given by a sum involving the Möbius function
[9]. Domaratzki et al. also examine the behaviour of the function fk(n) for k ≥
2. These results depend on the following theorem due to Liskovets [23] and,
independently, Robinson [31]. Let Ck(n) be the number of initially-connected
DFAs (without final states) on n states over an alphabet of size k.

Theorem 3. Let n, k ≥ 2. The function Ck(n) satisfies the following recurrence:

Ck(n) = nnk −

n−1∑
i=1

(
n − 1
i − 1

)
Ck(i)n(n−i)k. (1)

The asymptotics of Ck(n) are are given by Robinson [31]:

Ck(n) = nknγn(1+o(1))
k , (2)

where γk is a constant depending only on k, the size of the alphabet. Korshunov
[20, p. 50] also gives precise results in this area. Using Theorem 3, Domaratzki et
al. [9] give asymptotic bounds on fk(n) for k ≥ 2:

Theorem 4. The function fk(n) is bounded below by a function which is asymp-
totically (k − o(1))n2n−1n(k−1)n and bounded above by 2nCk(n)/(n − 1)!.

Thus, considering the estimates of (2), the upper and lower bounds in Theo-
rem 4 differ by a factor of (γke)n. For k = 2 this is approximately 2.27n [9].

Reis et al. [30] have also considered enumeration of automata and in particu-
lar, initially-connected DFAs. By proposing a canonical, compact string represen-
tation for initially-connected DFAs, Reis et al. give an alternate formula for Ck(n)
[30].

Theorem 5. The function Ck(n) satisfies the following formula:

Ck(n) =
k∑

b1=1

2k−b1∑
b2=1

3k−b1−b2∑
b3=1

· · ·

k(n−1)−
∑n−2
`=1 b`∑

bn−1=1

n∏
j=1

jb j−1. (3)
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Finally, we consider the recent work by Bassino and Nicaud [1], who also
study the enumeration of non-isomorphic initially-connected DFAs. Recall that
the Stirling numbers of the second kind, denoted here by S 2(n,m), are defined by
S 2(0, 0) = 1, S 2(n, 0) = 0 for all n ≥ 1 and, for all n,m ≥ 1,

S 2(n,m) = mS 2(n − 1,m) + S 2(n − 1,m − 1).

The main enumerative result of Bassino and Nicaud gives bounds on Ck(n) [1]:

Theorem 6. Let n, k ≥ 1. The following asymptotic bound holds:

Ck(n) ∈ Θ (nS 2(kn, n)) . (4)

We note that Theorem 6 is obtained from exact bounds on Ck(n). Bassino
and Nicaud also reinterpret a result of Korshunov using Stirling numbers of the
second kind. Note that Theorems 3, 5 and 6 all do not account for the choices of
final states. Thus, each of these quantities can be multiplied by a factor of 2n, as
is done in the upper bound of Theorem 4.

5.1 Enumeration by Nondeterministic State Complexity
Despite the long history of enumeration of finite automata, and the central im-
portance of nondeterminism in automata theory, there does not appear to have
been any consideration of the enumeration of nondeterministic finite automata
or of regular languages by their nondeterministic state complexity until very re-
cently. Estimates of this quantity have appeared in at least one instance (in 1997
by Pomerance et al. [29], which we note below), but the first study of the enu-
meration problem appears to be by Domaratzki et al. [9]. Let Gk(n) denote the
number of distinct regular languages accepted by NFAs with n states over a k-
letter alphabet. We first consider the unary case [9]:

Theorem 7. The function G1(n) satisfies the inequality G1(n) ≥ 2n+(2.295−o(1))
√

n
log n .

Theorem 7 is given by languages which are accepted by NFAs in Chrobak
normal form [4]. A non-trivial upper bound on G1(n) is given by Pomerance et
al. [29]:

Theorem 8. There are O(n/(log n))n distinct unary languages accepted by NFAs
with n states.

For larger alphabets, the following bounds are known [9]:

Theorem 9. For k ≥ 2, we have n2(k−1)n2
≤ Gk(n) ≤ (2n − 1)2kn2

+ 1.
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One fact worth noting is that the upper bound in Theorem 9 does not en-
force that the NFAs are initially-connected. In fact, it can be shown that there are
asymptotically 2kn2

initially-connected NFAs on n states over a k-letter alphabet
with a fixed initial state and no final states [9, Thm. 12]. This result is derived
from analyzing the recurrence analogous to (2) for NFAs.

5.2 Enumeration of Finite Languages by State Complexity
We now turn to enumeration of finite languages. Recently, finite languages have
received an increasing amount of attention. The state complexity of language
operations acting on finite languages is almost as well-studied as that of regular
languages (the survey of Yu [37] also covers the case where the languages are
finite). Further, the relationship between the state complexity and the longest
word in a finite language has been recently studied [2].

Let f ′k (n) denote the number of pairwise non-isomorphic DFAs with n states
over a k-letter alphabet which accept finite languages. For finite unary languages,
enumeration is trivial: the number of finite unary languages accepted by a DFA
with n states is exactly 2n−1. For larger alphabets, the problem has been studied
by Domaratzki et al. [9], Domaratzki [7] and Liskovets [22].

For arbitrary alphabets, a lower bound may be given by an explicit construc-
tion [9, Thm. 15]:

Theorem 10. For k, n ≥ 2, f ′k (n) ≥ 2n−2((n − 1)!)k−1.

Domaratzki [7] gives an improved lower bound on the number of finite lan-
guages accepted by DFAs with n states over a binary alphabet. In particular, the
following bound is given by explicitly constructing large sets of finite languages
all accepted by DFAs with n states [7]:

Theorem 11. For all n ≥ 5, f ′2(n) ≥ (2n−3)!
(n−2)! cn−2

1 for some constant c1 ' 1.0669467.

An upper bound on the number of finite languages accepted by DFAs with
n states over a binary alphabet is possible by giving another combinatorial in-
terpretation to the classical Genocchi numbers. The Genocchi numbers G2n for
n ≥ 1 can be defined in terms of the following generating function (see Sloane
[33, A001469] for further references):

2t
et + 1

= t +
∑
n≥1

(−1)nG2n
t2n

(2n)!
.

In particular, we have the following result [6]:

Theorem 12. For all n ≥ 2, f ′2(n) ≤ 2n−2G2n.
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Theorem 12 can be extended to alphabets of size k using an generalization of
the Genocchi numbers due to Han [15].

Enumeration of finite languages has also been considered by Liskovets [22]
by enumerating acyclic unlabelled DFAs. Using two approaches previously de-
veloped, Liskovets gives an exact enumeration of unlabelled DFAs accepting finite
languages.

Let ak(n, r) be the recurrence defined by

ak(n, r) =
n−1∑
t=0

(
n
t

)
(−1)n−t−1(t + r)k(n−t)ak(t, r)

for n, r ≥ 1 and ak(0, r) = 1 for all r ≥ 0. The recurrence ak(n, r) enumerates
DFAs which are called quasi-acyclic by Liskovets, but is primarily an auxiliary
recurrence for the following result [22]:

Theorem 13. Let ck(n) be the function defined by ck(1) = 1 and

n∑
t=1

(
n − 1
t − 1

)
ak(n − t, t + 1) · ck(t) = ak(n, 1)

for n ≥ 2. Then ck(n) gives the number of labelled, initially-connected acyclic
DFAs on n states over a k-letter alphabet.

As Liskovets notes, the number of unlabelled initially connected acyclic DFAs
is given by the quantity ck(n)/(n− 1)!. The above bounds can be further improved
by considering only DFAs with a unique so-called pre-dead state (the pre-dead
state is the state for which all of its transitions enter the dead state). Though
Liskovets does not give asymptotics for ck(n), numerical evidence suggests it gives
a good upper bound on the number of finite languages accepted by DFAs with at
most n states.

5.3 Enumeration of Finite Languages by Nondeterministic State
Complexity

For enumeration of finite languages by nondeterministic state complexity, let G′k(n)
denote the number of finite languages over a k-letter alphabet with nondetermin-
istic state complexity n. We have the following result [9].

Theorem 14. We have G′1(n) = 2n, and for all k ≥ 2 and n ≥ 2,

2(k−1)n(n−1)/2 ≤ G′k(n) ≤ 2n−1+kn(n−1)/2.
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5.4 Enumeration by ⊕-State Complexity

Recently, van Zijl [35] has considered enumeration problems for ⊕-DFAs and ⊕-
NFAs. A symmetric difference NFA (or ⊕-NFA) is a 5-tuple M = (Q,Σ, δ, q0, F),
where each component is the same as a traditional NFA. However, we extend δ to
a function δ : Q × Σ∗ → 2Q as follows:

δ(q, ε) = {q} ∀q ∈ Q

δ(q, aw) =
⊕

q′∈δ(q,a)

δ(q′,w) ∀q ∈ Q,w ∈ Σ∗, a ∈ Σ.

Here, ⊕ is the symmetric difference operation on sets: X1⊕X2 = (X1\X2)∪(X2\X1).
Thus, ⊕-NFAs are obtained from traditional NFAs by extending the transition
function to words by using symmetric difference instead of union. A ⊕-DFA is
any DFA obtained by applying the subset construction to a ⊕-NFA.

van Zijl considers enumeration of regular languages by the number of states
in the ⊕-NFA and ⊕-DFA simultaneously. This problem has been considered for
traditional NFAs and DFAs by Domaratzki et al. [9]. Let ϕ be the Euler totient
function. We have the following result [35, Thm. 10]:

Theorem 15. For all n ≥ 1, there are at least 2n

n ϕ(2n−1) distinct regular languages
over a binary alphabet such that each is accepted by an n-state ⊕-NFA, and the
minimal ⊕-DFA for each has 2n − 1 states.

6 Enumeration by Regular Expression Size
Lee and Shallit have recently investigated the enumeration of regular languages by
regular expression size [21]. This follows previous work, most recently by Ellul et
al. [13], on the study of regular expression size as a descriptional complexity mea-
sure for regular languages. The work of Ellul et al. [13] includes investigations
of trade-offs between regular expression size and automata size and the effect of
operations on regular expression size.

The study of the descriptional complexity of regular expressions requires us to
be precise about our measure of the length of a regular expression. For instance,
Lee and Shallit [21] and Ellul et al. [13] consider the following three measures:

(a) The ordinary length of a regular expression, that is, the number of symbols
in the regular expression, including parentheses, ε and ∅.

(b) The reverse polish length, which is the length of the equivalent expression
written in reverse polish (postfix) notation.

9



(c) The alphabetic length, which counts only letters from the alphabet Σ, and
ignores all operators, occurrences of ε and ∅, and parentheses.

Ellul et al. [13] note that each of these lengths is linearly related to each other,
provided the expressions do not contain some basic forms of redundancy (such
redundancy-avoiding expressions are called irreducible by Ellul et al. [13], where
we refer the reader for more details).

The techniques of Lee and Shallit are themselves worth mentioning. The first
step is constructing a CFG G such that L(G) generates the language of all valid
regular expressions over an alphabet Σ (i.e., L(G) consists of words over the al-
phabet Σ ∪ {(, ), ∅, ε,+, ∗}, each of which is a valid regular expression). Using
the Chomsky-Shützenberger Theorem, G can be translated to a system of linear
equations which (implicitly) give the number of regular expressions of a given
length. Lee and Shallit then use Gröbner bases to obtain a generating function
for the number of regular expressions of length n. This technique enumerates all
valid regular expressions, which treats regular expressions as being distinct if they
differ as words generated by the grammar G.

In the following, S k(n) denotes the number of valid regular expressions of
ordinary length n over a k-letter alphabet. The following result is due to Lee and
Shallit [21]:

Theorem 16. The function S k(n) satisfies S k(n) ∼ ckα
n
kn−3/2, for some constant

ck, where α1 = 6.1552665 and α2 = 7.2700161767.

Clearly, S k(n) is an upper bound on the number of distinct regular languages
generated by a regular expression of length n over a k-letter alphabet, denoted by
Rk(n). By further refining the grammars used to generate regular expressions to
reduce the number of repeated regular expressions, Lee and Shallit give improved
upper bounds on Rk(n):

Theorem 17. The function Rk(n) satisfies the upper bounds in Table 1, where the
length of the regular expressions is ordinary length.

k 1 2 3 4 5 6
Rk(n) O(2.9090n) O(4.2198n) O(5.3182n) O(6.4068n) O(7.4736n) O(8.5261n)

Table 1: Upper bounds on Rk(n) for 1 ≤ k ≤ 6.

Lee and Shallit also give upper bounds for Rk(n) using reverse polish and al-
phabetic length, as well as establish lower bounds on Rk(n) [21]:
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k 1 2 3 4 5 6
Rk(n) Ω(1.3247n) Ω(2.7799n) Ω(3.9582n) Ω(5.0629n) Ω(6.1319n) Ω(7.1804n)

Table 2: Lower bounds on Rk(n) for 1 ≤ k ≤ 6.

Theorem 18. The function Rk(n) satisfies the lower bounds in Table 2, where the
length of the regular expressions is ordinary length.

Again, lower bounds for reverse polish and alphabetic length are also given.
The bounds in Table 2 are obtained by explicitly constructing large sets of dis-
tinct regular expressions of the given length. We note that Lee and Shallit also
give bounds on the number of star-free and finite languages accepted by regular
expressions of a given length.

7 Enumeration of ω-regular Languages
Finite automata recognizing infinite words are a classic model of study in the field
of formal language theory. For an introduction to automata on infinite words see,
e.g., Pin and Perrin [28] or Thomas [34]. A one-way infinite word w over the
alphabet Σ is a mapping w : N → Σ. Denote wi = w(i). We view w as a word
which has a starting point w1 and proceeds to the right w = w1w2w3w4 · · · . The
set of all one-way infinite words is denoted Σω.

One model for accepting the ω-regular languages (i.e., the sets of one-way
infinite words recognized by a regular expression involving the operator Xω) are
Müller automata. A (deterministic) Müller automaton M is given by a 5-tuple
M = (Q,Σ, δ, q0,F ) where Q is a finite set of states, Σ is the alphabet, δ : Q×Σ→
Q is the transition function, q0 ∈ Q is the initial state and F ⊆ 2Q is the acceptance
table. For any infinite word w ∈ Σω, w is accepted by a Müller automaton M if,
when starting in the initial state, the set of states visited by w infinitely often is
an element of F . As usual, the language accepted by M is the set of all words
accepted by M.

Let f (ω)
k (n) be the number of distinct ω-regular languages accepted by a deter-

ministic Müller automata with n states over a k-letter alphabet. Domaratzki [5]
has given upper and lower bounds on the number of ω-regular languages accepted
by Müller automata:

Theorem 19. For all k ≥ 2, there exists a constant γk depending only on k such
that for all n ≥ 3, the following bound hold:

f (ω)
k (n) ≤

nknγn(1+o(1))
k 22n−n−1

(n − 1)!
·

k∑
m=0

(
n
m

)
.
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Further, for all n > k ≥ 2,

f (ω)
k (n) ≥ 22n−bn/kc−1−1.

Note that the constant γk in Theorem 19 is the same as the constant in (2). The
upper bound of Theorem 19 is interesting, since it relies on the fact that some of
the 22n

possible acceptance tables, called strongly inadmissible acceptance tables,
are not valid for any possible assignment of transition functions [5].

8 Enumeration of Context-Free Languages
Domaratzki et al. [10] have recently considered enumeration questions for context-
free languages. The main stumbling block to counting the number of context-free
languages of a given size is the fact that deciding if two context-free grammars
are equivalent (i.e., generate the same language) is undecidable. However, this
does not preclude that the enumeration of context-free languages of size n is com-
putable as a function of n. But in fact, it does turn out that the function counting
the number of CFLs of a given size is uncomputable.

In the following theorem [10], we restrict our attention to descriptional com-
plexity measures that are well-behaved. By well-behaved, we mean that the total
number of CFGs of any given size is finite. We note that, for instance, the minimal
number of nonterminals in any CFG generating a CFL is not a well-behaved de-
scriptional complexity measure, since all finite CFLs are generated by CFGs with
one nonterminal.

Theorem 20. If c(n) is the number of CFLs of size n (for any well-behaved, com-
putable descriptional complexity measure), then c(n) is uncomputable.

However, despite the fact that the number of CFLs of size n is uncomputable,
we can still approximate this quantity. For instance, it can be shown that the
number of CFLs generated by a CFG in Chomsky Normal Form with at most n
nonterminals over a fixed sized alphabet is 2Θ(n3) [10, Thm. 7].

8.1 Related Enumeration Results
Theorem 20 can be extended to give a general result on the uncomputability of
enumerative functions. In what follows, let X be a recursive language, d be a
computable and well-behaved descriptional complexity measure, R be an equiv-
alence relation on X and gR(n) denote the number of equivalence classes on the
elements of measure n in X. Let Σk,∆k be levels in the arithmetic hierarchy. We
have the following result [10]:
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Theorem 21. For any equivalence relation R on X that is complete for Σk or for
∆k, the corresponding function gR(n) is not computable.

For instance, Domaratzki et al. [10] note the following applications of Theo-
rem 21:

• The number of distinct rational relations defined by nondeterministic finite
transducers with n states is uncomputable.

• The number of distinct recursively enumerable languages recognized by
Turing machines of size n is uncomputable.

However, not all equivalence relations are captured by Theorem 21. We mention
some interesting open problems in this area in Section 9.

9 Open Problems
Enumeration of formal languages has several areas of investigation which are
open. We mention some open problems which seem particularly interesting.

We first note some asymptotic bounds that we think might be easily improved.
Enumeration of regular languages by nondeterministic state complexity is a very
natural problem that has not received much attention. The bounds for many of
these problems are likely to be able to be improved. We mention in particu-
lar the number of unary regular languages accepted by NFAs with n states as
one such open problem. The current best known upper bound is logarithmi-
cally n log(cn)− n log log(n) while the best known lower bound is logarithmically
n + (c − o(1))

√
n

log n .

Enumeration of automata accepting ω-regular languages is an interesting area
which has received only minimal attention. The unique mode of acceptance for
Müller automata presents an interesting enumeration problem, and some results
have been obtained by Domaratzki [5]. However, tight bounds have not been
obtained, and enumeration of Büchi automata has not been considered. The ac-
ceptance mode of Büchi automata yield a distinct notion of equivalence and it
would be interesting to give asymptotics for the number of ω-regular languages
accepted by Büchi automata with n states.

Theorem 21 gives a general result for proving that several enumerative func-
tions are uncomputable. However, the result is not applicable in all cases. For
instance, the following problem is open [10]: Is the number of regular languages
generated by CFGs of a fixed size computable?

Recently, measuring the descriptional complexity of regular languages by the
minimal number of transitions required by an NFA to recognize a language has

13



received increased attention. This raises the natural question: how many regular
languages can be accepted by NFAs with at most n transitions? Gramlich and
Schnitger give an upper bound on the number of binary regular languages accepted
by an NFA with n transitions: they show that this quantity is at most n8n+2 [14]. We
can also adapt the result of Liskovets [23] and Robinson [31] of Theorem 3 (see
also Domaratzki et al. [9] for the case of NFAs) for enumerating the number of
labelled, initially-connected NFAs over n states with m transitions. In particular, if
Tk(n,m) is the number of initially-connected NFAs with n states and m transitions
over a k-letter alphabet (without final states), we can easily show that Tk(n,m)
satisfies the following recurrence:

Tk(1, 1) = k,
Tk(n,m) = 0 if n ≥ m + 2 and

Tk(n,m) =
(
kn2

m

)
−

(
kn(n − 1)

m

)
−

n−1∑
i=1

m∑
j=1

(
n − 1
i − 1

)
Tk(i, j)

(
kn(n − i)
(m − j)

)
.

However, tight asymptotic bounds for enumerating regular languages by the num-
ber of transitions are unknown.

Enumeration by other descriptional complexity measures is also an area for fu-
ture research. For instance, the measure of radius [12, 8] has been implicitly stud-
ied in relation to the enumeration of finite languages [7] and as descriptional com-
plexity measure [2]. Further, simultaneous enumeration by several descriptional
complexity measures has only received some attention in the literature [9, 35]. We
feel that there are many interesting avenues of research in the area of enumeration
of formal languages.

Finally, we note that explicitly computing values of the functions described
here is often challenging for even small values of n. As an example, we note that
the values of G1(n) (the number of unary regular languages accepted by NFAs
with n states) is known only for values of n ≤ 6.

10 Conclusions

Enumeration problems in formal language theory have many applications, and
also presents interesting challenges relating to our understanding of the structure
of language devices, especially distinctness and minimality. The recent work sur-
veyed here shows that results in enumeration of formal languages often yield en-
lightening results that further our knowledge of the theory of formal languages
in general. Though these fundamental questions have been examined for many
years, interesting challenges still remain.
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