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Abstract. We consider theoretical properties of the template-guided
recombination operation. In particular, we consider the decidability of
whether two sets of templates are equivalent, that is, whether their ac-
tion is the same for all operands. We give a language-theoretic charac-
terization of equivalence which leads to decidability results for common
language classes. In particular, we show a positive answer for regular sets
of templates. For context-free sets of templates, the answer is negative.

1 Introduction

The rearrangement of DNA in stichotrichous ciliates has received a significant
amount of attention in the literature as a model of natural computing. Several
potential formal models for the rearrangement have been proposed, including
both intra-molecular and inter-molecular models. Ehrenfeucht et al. [7] give a
detailed overview of ciliate DNA rearrangement and an investigation of one of
the proposed models.

Template-guided recombination (TGR) is one of the formal models for re-
combination of DNA in stichotrichs. The model, proposed by Prescott et al. [9],
has been the subject of much research in the literature [3–6, 8]. Much of this
work on TGR has focused on examining the closure properties of the operation.
For example, McQuillan et al. [8] have recently shown that if a context-free lan-
guage is iteratively operated upon with a regular set of templates (see Section 2
for definitions), then the resulting language is a context-free language which can
be effectively constructed.

TGR specifies a set of templates which defines how the operation works:
changes to the set of templates affect how the TGR operation functions on its
operand, which represents the scrambled DNA in the ciliate. It is reasonable,
therefore, to ask exactly what changes to the set of templates affect the op-
eration of TGR. This is the question we address in this paper: given two sets
of templates, do they define equivalent TGR operations? We give a natural
condition on subwords of templates which exactly characterizes equivalence for
template sets over an alphabet of at least three symbols.

From this characterization, we then establish decidability results: given two
regular sets of templates, it is decidable whether they are equivalent. We also
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show an interesting universality result: determining whether a set of templates
is equivalent to the universal set of all templates is not difficult, as it can be
decided even for recursive sets. However, for alphabets of size at least three,
there exists a fixed regular set of templates T0 such that it is undecidable if a
given context-free set of templates is equivalent to T0.

As a proposed model for natural computing, understanding the equivalence
of template sets is a critical prerequisite for understanding the potential for
employing the natural computing power of ciliate DNA rearrangement. Under
the hypothesis that a distinct set of DNA material (the templates) exactly guides
rearrangement, a potential method for altering of the computational action of
the rearrangement is a modification of the set of templates which are present
during rearrangement.

With the results in this paper, we are able to determine exactly the situations
in which modifying the set of templates modifies the computational process of
rearrangement which occurs. For a recent survey of experimental results and
hypotheses in identifying exogenic factors affecting ciliate DNA rearrangement,
see Cavalcanti and Landweber [2]. Recent experimental results lend some support
to the TGR model. Vijayan et al. [11] demonstrate that the addition of permuted
RNA to the parental macronucleus does affect the rearrangement process during
conjugation, and a modified micronucleus is produced.

Recently, Angeleska et al. [1] have reconsidered the TGR model by incorpo-
rating RNA templates (either single-stranded or double-stranded RNA). Their
model does not incorporate any part of the RNA template into the rearranged
DNA and reduces the number of required cuts to the DNA backbones. How-
ever, as noted by the authors, the new model does not have any impact when
considered as an inter-molecular operation of formal languages as we do here.

2 Preliminary Definitions

We use the tools of formal language theory to study TGR. For additional back-
ground on formal languages, see Rozenberg and Salomaa [10]. Let Σ be a finite
set of symbols, called letters; we call Σ an alphabet. Then Σ∗ is the set of all
finite sequences of letters from Σ, which are called words. The empty word ε
is the empty sequence of letters. We denote by Σ+ the set of non-empty words
over Σ, i.e., Σ+ = Σ∗−{ε}. The length of a word w = w1w2 · · ·wn ∈ Σ∗, where
wi ∈ Σ, is n, and is denoted by |w|.

A word x ∈ Σ∗ is a prefix of a word y ∈ Σ∗ if there exists w ∈ Σ∗ such that
y = xw. Similarly, x is a suffix of y if there exists u ∈ Σ∗ such that y = ux.
If x ∈ Σ∗, then pref(x) (resp., suff(x)) is the set of all prefixes (resp., suffixes)
of x. We also use the notation first(x) and last(x) to denote the first and last
letter of a non-empty word. That is, if x ∈ Σ+ and x = x1x2 where x1 ∈ Σ and
x2 ∈ Σ∗, then first(x) = x1. Similarly, if x = y1y2 where y1 ∈ Σ∗ and y2 ∈ Σ,
then last(x) = y2.

A language L is any subset of Σ∗. Given languages L1, L2 ⊆ Σ∗, their con-
catenation is defined by L1L2 = {xy : x ∈ L1, y ∈ L2}. Given an alphabet Σ,



we use the notation Σk to denote the set of all words in Σ∗ of length k, while
Σ≥k (resp., Σ≤k) denotes the set of all words in Σ∗ of length k or greater (resp.,
length k or less).

A deterministic finite automaton (DFA) is a five-tuple M = (Q, Σ, δ, q0, F )
where Q is the finite set of states, Σ is the alphabet, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final
states. We extend δ to Q×Σ∗ in the usual way: δ(q, ε) = q for all q ∈ Q, while
δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗ and a ∈ Σ. A word w ∈ Σ∗ is
accepted by M if δ(q0, w) ∈ F . The language accepted by M , denoted L(M), is
the set of all words accepted by M , i.e., L(M) = {w ∈ Σ∗ : δ(q0, w) ∈ F}.
A language is called regular if it is accepted by some DFA. If L is a regular
language, the state complexity of L, denoted by sc(L), is the minimum number
of states in any DFA which accepts L.

We assume the reader is familiar with the classes of context-free and recur-
sive languages. A language is a context-free if it is generated by a context-free
grammar. A language is recursive if it is accepted by a Turing machine which
halts on all inputs. The classes of regular, context-free and recursive languages
form a strict hierarchy of inclusions.

2.1 Template-Guided Recombination

We now give the formal definition of TGR, which was proposed by Prescott et
al. [9] and first studied as a formal operation by Daley and McQuillan [4]. If
n1, n2 ≥ 1 and x, y, z, t ∈ Σ∗ are words, we denote by (x, y) `t,n1,n2 z the fact
that we can write

x = u1αβv1 (1)
y = v2βγu2 (2)
z = u1αβγu2 (3)
t = αβγ (4)

with α, β, γ, u1, u2, v1, v2 ∈ Σ∗, |α|, |γ| ≥ n1 and |β| = n2. If n1, n2 are un-
derstood, then we denote the relation `t,n1,n2 by `t. The word t is called the
template.

Intuitively, x and y are the DNA strands which are to be recombined using
the template t. The regions v1 and v2 represent the internal eliminated sequences
(IESs) which do not form part of the final rearranged sequence, and β, which
has a minimum length restriction, represents the pointer sequences in the ciliate
DNA. Note that in the definition of (x, y) `t z, the words x and y are sepa-
rate DNA sequences and so TGR is an inter-molecular model for ciliate DNA
recombination. Recently, however, an intra-molecular TGR has been considered
as well [3].

If T,L ⊆ Σ∗ are languages, then tT,n1,n2 (L) is defined by

tT,n1,n2 (L) = {z : ∃x, y ∈ L, t ∈ T such that (x, y) `t,n1,n2 z}.



Again, we use the notation tT (L) if n1, n2 are understood or unimportant. The
language T is the set of templates.

We require the following simple observation about TGR:

Observation 1. If x, y, z, t ∈ Σ∗ such that (x, y) `t,n1,n2 z, then |z| − (|x| +
|y|) = −n2 − (|v1|+ |v2|), where v1, v2 are as in (1)–(4).

We now come to the definition of equivalence for sets of templates. Let
n1, n2 ≥ 1. For T1, T2 ⊆ Σ∗, we say that T1 and T2 are (n1, n2)-equivalent,
denoted by T1 ≡n1,n2 T2, if tT1 (L) =tT2 (L) for all L ⊆ Σ∗. By T1 vn1,n2 T2,
we mean tT1 (L) ⊆tT2 (L) for all languages L ⊆ Σ∗. Note that T1 ≡n1,n2 T2 if
and only if T1 vn1,n2 T2 and T2 vn1,n2 T1 hold. We also note that ≡n1,n2 is an
equivalence relation.

We consider the relationships between ≡n1,n2 and ≡n′
1,n′

2
for different values

of n1, n2, n
′
1, n

′
2. We can show that these relations are incomparable.

Theorem 2. Let Σ be an alphabet with size at least two and n1, n2 ≥ 1. The
relations ≡n1,n2 and ≡n1,n2+1 (resp., ≡n1,n2 and ≡n1+1,n2) are incomparable.

3 Language Theoretic Characterization

We can now give our main result, a language-theoretic characterization of equiv-
alence of sets of templates. Let (C1) be the following condition:

∀t, t1, t2 ∈ Σ∗ with |t| = 2n1 + n2,

if t1tt2 ∈ T1 then ∃t′1 ∈ suff(t1), t′2 ∈ pref(t2)(t′1tt
′
2 ∈ T2).

(C1)

Condition (C1) is illustrated in Figure 1: for every subword t of length 2n1 +n2

in a template in T1, there must be an extension of t in T2 which agrees with the
template in T1 on the subwords flanking t.

Fig. 1. Illustration of condition (C1).

Our main result uses condition (C1) to characterize equivalence of sets of
templates:

Theorem 3. Let Σ be an alphabet with |Σ| ≥ 3, n1, n2 ≥ 1 and T1, T2 ⊆ Σ∗.
The condition (C1) holds if and only if T1 vn1,n2 T2.



Proof. (⇒): Suppose that (C1) holds. Let L be an arbitrary language and let
x ∈tT1 (L). Then there exist y, z ∈ L, t ∈ T1 such that (y, z) `t x. Write x, y, z, t
as

y = u1αβv1,

z = v2βγu2,

x = u1αβγu2,

t = αβγ,

where |α|, |γ| ≥ n1, |β| = n2 and u1, u2, v1, v2 ∈ Σ∗. Now write α = α1α2 and
γ = γ1γ2 where |α2| = n1 and |γ1| = n1. Thus, α2βγ1 is a subword of t of
length 2n1 + n2. By (C1), let α′1 ∈ suff(α1) and γ′2 ∈ pref(γ2) be chosen so that
t′ = α′1α2βγ1γ

′
2 ∈ T2. Let α1 = α′′1α′1 and γ2 = γ′2γ

′′
2 for appropriate choices of

α′′1 , γ′′2 . Note that

y = u1α
′′
1(α′1α2β)v1,

z = v2(βγ1γ
′
2)γ

′′
2 u2,

x = u1α
′′
1α′1α2βγ1γ

′
2γ

′′
2 u2.

Thus, (y, z) `t′ x and so x ∈tT2 (L). We conclude that T1 vn1,n2 T2.
(⇐): Suppose for all L ⊆ Σ∗, we have tT1 (L) ⊆tT2 (L). Let t, t1, t2 ∈ Σ∗

with |t| = 2n1 + n2 and t1tt2 ∈ T1. Let t0 = t1tt2. Further, write t = αβγ where
|α| = |γ| = n1 and |β| = n2. Now, let X1, X2 ∈ Σ be letters chosen so that they
satisfy

X1 6= first(γ), X2 6= last(α),
X1 6= last(γt2), X2 6= first(t1α).

Note that this is possible since Σ has at least three letters.
Define the language L ⊆ Σ∗ as L = {t1αβX1, X2βγt2}. Note that t0 ∈

tT1 (L) ⊆tT2 (L), as (t1αβX1, X2βγt2) `t0 t0. Thus, there exist x, y ∈ L and
t′ ∈ T2 such that (x, y) `t′ t0. There are three cases, according to the choices for
x, y.

(a) x = t1αβX1, y = X2βγt2. Thus, we must be able to write

x = t1αβX1 = u1α
′β′v1,

y = X2βγt2 = v2β
′γ′u2,

t0 = t1αβγt2 = u1α
′β′γ′u2,

t′ = α′β′γ′,

where |α′|, |γ′| ≥ n1, |β′| = n2. Note that by Observation 1, |t1αβγt2| =
|t1αβX1|+ |X2βγt2|−n2−|v1|−|v2|. Simplifying, we get that |v1|+ |v2| = 2.
We claim that |v1| = |v2| = 1. If not, then |v1| = 2 and |v2| = 0 or |v1| = 0
and |v2| = 2. We prove that the first case produces a contradiction; the
second case is symmetrical.



If |v1| = 2 and |v2| = 0, then the equality t1αβX1 = u1α
′β′v1 implies that

|u1α
′β′| = |t1αβ| − 1 and (as |β| = |β′| = n2) |t1α| − 1 = |u1α

′|. Further
X2βγt2 = β′γ′u2. Consider now that

t1αβγt2 = u1α
′β′γ′u2

= u1α
′X2βγt2

In this case, as |t1α| − 1 = |u1α
′|, we have that X2 = last(α), a contra-

diction to our choice of X2. (The case |v1| = 0 and |v2| = 2 produces the
contradiction that X1 = first(γ).)
Therefore, |v1| = |v2| = 1. Thus, v1 = X1, v2 = X2 and we get that t1αβ =
u1α

′β′ and βγt2 = β′γ′u2. We immediately conclude that β = β′ as both
have length n2. As |α′| ≥ n1 = |α|, the equality t1αβ = u1α

′β′ implies that
there exists t′1 ∈ suff(t1) such that α′ = t′1α. Similarly, γ′ = γt′2 for some
t′2 ∈ pref(t2) by the equality βγt2 = β′γ′u2. Finally, as t′ = α′β′γ′ = t′1αβγt′2
and t′ ∈ T2, we note that condition (C1) holds, as required.

(b) x = X2βγt2. Then regardless of the choice of y ∈ L, we have that

x = X2βγt2 = u1α
′β′v1 (5)

y = v2β
′γ′u2 (6)

t0 = t1αβγt2 = u1α
′β′γ′u2 (7)

Thus, equating (5) and (7), we get that X2 = first(t1α), a contradiction.
(c) y = t1αβX1. This is similar to case (b); we ultimately arrive at the contra-

diction X1 = last(γt2).

We conclude that in all applicable cases, condition (C1) holds. ut

Example 1. Consider the following example with n1 = n2 = 1:

T1 = {baaab, caaac},
T2 = {baaab, caa, aac}.

Note that condition (C1) does not hold: for t = aaa, t1 = t2 = c, there is no prefix
t′2 of t2 and suffix t′1 of t1 such that t′1aaat′2 is in T2. Verifying Theorem 3, we
note that caaac ∈tT1 ({aac, caa}), but the same word is not in tT2 ({aac, caa}).

This example shows that condition (C1) cannot be replaced with the follow-
ing more simple condition:

∀t ∈ sub2n1+n2(T1),∃t′1, t′2 ∈ Σ∗(t′1tt
′
2 ∈ T2). (8)

(here subm(L) is the set of all subwords of length m in L), since (8) does hold for
the above sets T1 and T2. Intuitively, (8) is not an adequate formulation since it
does not enforce that the chosen words t′1, t

′
2 agree with the regions surrounding

the occurrence of t as a subword of length 2n1 + n2 in a template in T1.



We note that condition (C1) in Theorem 3 does not place any restrictions on
templates in T1 of length less than 2n1 +n2. Further, the extensions constructed
(i.e., t′1tt

′
2 in (C1)) also have length at least 2n1+n2. Thus, there is no restriction

on templates less than this critical length 2n1 + n2. In other words, if T1 ≡n1,n2

T2, then T1 ∩ Σ≤2n1+n2−1 and T2 ∩ Σ≤2n1+n2−1 can be modified completely
arbitrarily and equivalence will still hold.

Finally, we do not know if the condition |Σ| ≥ 3 in Theorem 3 can be
improved to |Σ| ≥ 2. However, the case of |Σ| = 1 is, as would be expected,
trivial. In the case of a unary alphabet, we can replace condition (C1) by the
following simpler condition:

∀t ∈ T1, |t| ≥ 2n1 + n2, ∃t′ ∈ T2, 2n1 + n2 ≤ |t′| ≤ |t|.

We omit the proof.

4 Decidability Results

We now turn to employing Theorem 3 to demonstrate that we can determine
algorithmically whether two sets of templates are equivalent. We first demon-
strate that we can do so if the two sets of templates are regular. To establish
this, we show that if T1 and T2 do not satisfy (C1), a bound on the length of a
template in T1 demonstrating this fact can be given:

Lemma 1. Let T1, T2 ⊆ Σ∗ be regular sets of templates, with sc(Ti) = mi for
i = 1, 2. If (C1) does not hold, then there exists t ∈ T1 with |t| ≤ m12m2+2n1+n2

which witnesses this fact.

Proof. Let Mi = (Qi, Σ, δi, qi, Fi) be DFAs with |Qi| = mi and L(Mi) = Ti for
i = 1, 2.

The proof is by contradiction: Assume that (C1) does not hold. Let t ∈ T1 be
the shortest template that witnesses the fact that (C1) does not hold. Suppose
that t has length strictly greater than m12m2 +2n1 +n2. As (C1) does not hold,
there exists a decomposition of t as t = t1t

′t2 such that |t′| = 2n1 + n2, and for
all pairs (t′1, t

′
2) where t′1 ∈ suff(t1) and t′2 ∈ pref(t2), t′1tt

′
2 /∈ T2.

By the length of t, we must have that either |t1| > m12m2−1 or |t2| >
m12m2−1. Assume first that |t1| > m12m2−1. Let k = |t1| and t1 = η1η2 · · · ηk

where ηi ∈ Σ for all 1 ≤ i ≤ k.
For all 1 ≤ j ≤ k, let Πj ⊆ Q2 be the set of states

Πj = {δ2(q2, s) : s ∈ suff(η1 · · · ηj)}.

Note that

(a) q2 ∈ Πj for all 1 ≤ j ≤ k, since ε ∈ suff(η1 · · · ηj).
(b) If q ∈ Πj and t′2 ∈ pref(t2), then δ2(q, ηj+1 · · · ηkt′t′2) /∈ F2; if this state were

in F2, then the subtemplate ηi · · · ηkt′t′2 ∈ T2 for some i with 1 ≤ i ≤ j + 1
(exactly the index i such that δ(q2, ηi · · · ηj) = q ∈ Πj).



By (a), there are at most 2m2−1 possibilities for Πj . Then considering all of
the pairs (Πi, δ1(q1, η1 · · · ηi)) for all 1 ≤ i ≤ k, as k > m12m2−1, there must
exist 1 ≤ j < j′ ≤ k such that (Πj , δ1(q1, η1 · · · ηj)) = (Πj′ , δ1(q1, η1 · · · ηj′)).

Claim. The template t0 = η1η2 · · · ηjηj′+1ηj′+2 · · · ηkt′t2 witnesses that (C1)
does not hold.

Proof. First, t0 ∈ T1. To see this, note that δ1(q1, η1 · · · ηj) = δ1(q1, η1 · · · ηj′) by
choice of j, j′, and so substituting the prefix η1 · · · ηj for η1 · · · ηj′ does not affect
the finality of M1 after reading the entire template, and t0 is accepted by M1.

Next, for each suffix t′′ of η1 · · · ηjηj′+1 · · · ηk and each prefix t′2 of t2 we
must have that t′′t′t′2 /∈ T2. For the suffixes of ηj′+1 · · · ηk (and any prefix of
t2), this holds since they are also suffixes of t1. Consider then a suffix of the
form ηi · · · ηjηj′+1 · · · ηk for some 1 ≤ i ≤ j. Note that δ2(q2, ηi · · · ηj) ∈ Πj =
Πj′ . Thus, there exists a suffix ηr · · · ηj′ of η1 · · · ηj′ such that δ2(q2, ηi · · · ηj) =
δ2(q2, ηr · · · ηj′). By (b) above, for all t′2 ∈ pref(t2), δ(q2, ηi · · · ηjηj′+1 · · · ηkt′t′2) =
δ(q2, ηr · · · ηj′ηj′+1 · · · ηkt′t′2) /∈ F2 and thus, ηi · · · ηjηj′+1 · · · ηkt′t′2 /∈ T2 for any
prefix t′2 of t2, as required. ut

Now, as j < j′, we have that t0 is shorter than t, contrary to our assumption
that t was the shortest template in T1 such that (C1) does not hold. The case
where |t2| > m12m2−1 is similar. Thus, we must have that |t| ≤ m12m2+2n1+n2.

ut

Corollary 1. Let n1, n2 ≥ 1 and T1, T2 ⊆ Σ∗ (|Σ| ≥ 3) be effective regular sets
of templates. Then it is decidable whether T1 ≡n1,n2 T2.

Proof. We can assume without loss of generality that T1, T2 ⊆ Σ≥2n1+n2 , as we
have observed that templates of length less than this critical length do not affect
equivalence.

By Theorem 3, T1 ≡n1,n2 T2 if and only if (C1) holds twice, with T1 and T2

in both roles. To test (C1), it suffices to test all words up to the length given by
Lemma 1. ut

Note that Corollary 1 is not an efficient algorithm: it requires checking an
exponential number of templates up to a bound which is itself exponential in
the size of the minimal DFA for T1.

We note the following alternative proof for Corollary 1 which does not use
Lemma 1, suggested to us by an anonymous referee. Let t ∈ Σ∗ and T ⊆ Σ∗

be arbitrary, and let # /∈ Σ. Define T ‡ t = {t1#t2 : t1tt2 ∈ T}. Note that if
t is not a subword of t′, then t′ does not contribute anything to T ‡ t. It is not
difficult to demonstrate that T ‡ t is regular for all regular sets of templates T
and all t ∈ Σ∗. We then note that

T1 vn1,n2 T2 ⇐⇒ ∀t ∈ Σ2n1+n2 , T1 ‡ t ⊆ Σ∗(T2 ‡ t)Σ∗.

That is, T1 vn1,n2 T2 if and only if every word in T1 ‡ t has a subword in T2 ‡ t.
This subword must necessarily have an occurrence of #, which has effectively



replaced t, and so we capture (C1) exactly. Therefore, the process of testing the
above condition for all words of length 2n1 + n2 gives an alternate method of
deciding whether T1 vn1,n2 T2.

We can now give a somewhat surprising positive decidability result for recur-
sive sets of templates. In particular, we can establish a universality equivalence
result:

Theorem 4. Let n1, n2 ≥ 1 and Σ be an alphabet of size at least three. Given
an effectively recursive set of templates T ⊆ Σ∗, we can determine whether
T ≡n1,n2 Σ∗.

However, we also have the following result, which demonstrates that there
is at least one regular set of templates such that determining equivalence for
context-free sets of templates is undecidable:

Theorem 5. Let ∆ be an alphabet of size at least three and n1, n2 ≥ 1. There
exists a fixed regular set of templates T0 ⊆ ∆∗ such that the following problem
is undecidable: Given a context-free set of templates T ⊆ ∆∗, is T ≡n1,n2 T0?

5 Conclusions

In this paper, we have considered equivalence of sets of templates. With a natural
condition on extending subwords of the critical length 2n1 + n2 in one set of
templates to a template in the equivalent set, we have exactly characterized the
equivalence of two sets of templates for alphabets of size three or more, which is
sufficient for modelling biological processes. It is open whether the construction
can be reduced to an alphabet of size two.

Using this characterization, we have shown that it is decidable whether two
regular sets of templates are equivalent. This uses a result which establishes
that if two regular sets of templates are not equivalent, a witness can be found
within some finite bound. We have also established two other decidability results.
First, deciding equivalence to the set of all possible templates is easier than
might be expected: we can determine such an equivalence for recursive sets of
templates. However, there exists a fixed regular set of templates T0 such that it
is undecidable whether a given context-free set of templates is equivalent to T0.

We mention the problem of equivalence for iterated TGR, which has been
defined as a formal operation by Daley and McQuillan [4]. Iterated TGR serves
as a more realistic biological model of DNA rearrangement in ciliates. It is not
difficult to show that if T1 ≡n1,n2 T2, then the iterated TGR operations using
T1 and T2 are also equivalent. Thus, equivalence of two sets of templates implies
the equality of the corresponding iterated TGR operations using T1 and T2.
However, the converse, i.e., whether equivalence of templates in iterated TGR
implies equivalence for non-iterated TGR, is open and a topic for future research.
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