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Abstract

We examine scattered hairpins, which are structures fonviezh a single strand of nu-
cleotides folds into a partially hybridized stem and a lodkn specify different classes of
hairpins, we use the concept of DNA trajectories, whichvedl@recise descriptions of valid
bonding patterns on the stem of the hairpin. DNA trajectoliave previously been used to
describe bonding between separate strands.

We are interested in the mathematical properties of seakteairpins described by DNA
trajectories. We examine the complexity of the set of haifpte words described by a set
of DNA trajectories. In particular, we consider the closy@perties of language classes
under sets of DNA trajectories of differing complexity. Widaess decidability of recognition
problems for hairpin structures.

1 Introduction

A hairpin in a single strand of nucleotides is a structurenfed by the bonding of two comple-
mentary regions, which form th&em joined on one end by an intermediate, unbonded region.
Together, the stem and the unbonded region I@ibp) are known as a hairpin. We illustrate this
concept in Figure 1.
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Figure 1: A hairpin in a strand of nucleotides.

*An earlier version of this paper without proofs appeareddAL 2 [5]. Research conducted at the Jodrey School
of Computer Science, Acadia University, and supported mipaa grant from NSERC.



As research into DNA computing applications and nanoteldgyacontinues, the formal study
of hairpins gains increasing significance. Katial.[12, 14, 15] survey the use of hairpins in
various contexts. We also note the use of hairpins for visoaltrast in evaluating successful
nanotechnological constructions, as described in, &g wbrk of Rothemundt al.[22]. In some
of these applications, hairpins are desirable, while irep#pplications, they are problematic and
are to be avoided in sets of DNA strands. Further, hairpingesas the basis for more complicated
secondary structures such as pseudoknots.

Recently, Kariet al.[12, 14, 15] have studied hairpins using the tools of thecaetomputer
science. In particular, a single strand of nucleotides ésveid as a word over the alphaldet=
{A,C,G,T}. In this framework, a hairpin in a word is a decompositiorz = uvwxywherev
andx are complementary to each other, and form the stem of theihaifVe characterize the
complementarity ofv and x using an antimorphisn® (for definitions, see Section 2). Among
other results, Karet al. characterize the complexity and decidability results fairfin sets [14].
Further, Kariet al. [12] have also studiedcatteredhairpins, which represent hairpins in which
the stem is not completely hybridized, i.e., where an abjtnumber of unbonded regions occur
within the stem.

In this paper, we examine refinements of hairpins and sedlteairpins by incorporating a
parameter—a set @NA trajectories—to add increased capability in describing the set of hagpi
which are of potential interest. The use of DNA trajectotias recently been employed to model
bonding regions in separate strands, calledd-free propertiefl3].

The introduction of DNA trajectories in this paper as a rafieat of the results of Karet
al. has several advantages. One main benefit of DNA trajectitsmt they enable constraints
to be expressed as a formal language, rather than graphicaltherwise. DNA trajectories also
allow more precise specifications of the form of DNA hairpims are interested in than previous
work, which allows the tools developed in this paper to beliaggo more complex DNA com-
puting models. Further, DNA trajectories are capable ofptidg to minor structural changes:
modifications such as enforcing a minimum length of a bonaasdly introduced in DNA trajec-
tories, instead of as a separate specification (the tech@dopted by Karet al.). Beyond the use
of DNA trajectories to aid in modelling situations of praeati importance, we follow the work of
Kari et al. and examine not only sets which allow the presence of cehni@pin formations, but
hairpin-free sets, where we stipulate that hairpins fronvargspecification set cannot occur.

In our study of DNA trajectories and hairpins, we focus orsal@ properties, decidability and
relations to problems from combinatorics on words. Witlpees to closure properties, we find
that the addition of DNA trajectories gives a more complédegion than the case of hairpins and
scattered hairpins studied by Kaati al, and many results have been obtained. In particular, we
find that by allowing a set of DNA trajectories, we cannot gueee that the set of all hairpins
will still form a regular language, and several conditions avestigated which yield interesting
theoretical insights. Decidability problems are also minteresting, due to the fact that regularity
of a set of DNA trajectories does not imply the regularity loé tassociated set of hairpins or the
set of hairpin-free DNA words.



2 Definitions

For additional background in formal languages and autortiegary, please see Rozenberg and
Salomaa [23]. For an introduction to DNA computing, seerR&al. [18]. Let 2 be a finite set of
symbols, calledetters we callZ an alphabet. Thek* is the set of all finite sequences of letters
from Z, which are calledvords The empty word is the empty sequence of letters. Tlasgthof a
wordw = wiws - - - Wy, € ¥, wherew; € Z, isn, and is denote¢lv|. Given a wordv € ¥* anda € %,
|w|a is the number of occurrences afin w. Given two wordsx = x1Xz - - -Xp andy = y1y - - - Ym
wherex;,yj € 2 for 1 <i <nand 1< j < m, theconcatenatiorof x andy is denoted by and is
given byxy = X1X - Xa¥1Y2" - Ym.

A language Lis any subset of*. Given languageki,L, C 2*, their concatenation is defined
by LiLo = {xy : x€ L1,y € Lo}. We define powers of languages by= {¢} andL' = L' 1L for
all languages$ and alli > 1. ByL* we meanJiZOLi.

We use the notatiof]_; Lj to denotel L, --Ln, and the notation=* to denoteLXL*. The
reversal of a wortv = x1Xo - - - Xp (X € Z), denotedi\R, is defined bywR = X, - - - xoXq. By extension,
LR={xR: xeL}.

Let 2, A be alphabets anll: Z — A* be any function. Theh can be extended to a morphism
h: " — A* via the condition thah(uv) = h(u)h(v) for all u,v € Z*. Similarly, h can be extended
to an antimorphism via the condition that condition thativ) = h(v)h(u) for all u,v € ¥*. An
involution O is any function® : = — X such thatf? is the identity function orE. Let u denote
the mirror involution (i.e., the identity function exterdléo an antimorphism). Leat denote the
identity morphism.

Given alphabet&, A, a substitution is any function: = — 22", It is extended td: 3* — 28
by the condition thah(uv) = h(u)h(v) for all u,v € Z*. A substitution is finite ifh(a) is a finite
language oved for allac 2.

A deterministic finite automataiDFA) is a five-tupleM = (Q, Z, d, go, F ) whereQ is the finite
set of statesy. is the alphabe® : Q x £ — Qs the (partial) transition functiomp € Q is the start
state, andr C Qs the set of final states. We exteddo Q x Z* in the usual way. A wordv € >*
is accepted b if d(qo,w) € F. Thelanguage acceptetly M, denoted_(M), is the set of alll
words accepted byl. A language is calledegularif it is accepted by some DFA.

A context-free grammafCFG) is a four-tupleG = (V,%,P,S), whereV is a finite set of non-
terminals,X is a finite alphabet? CV x (V UZ)* is a finite set of productions arfslc V is the
start non-terminal. Ifa, ) € P, we usually denote this by — 3. A CFG islinear (an LCFG)
if PCV x (Z*(VU{e})Z*). ACFG isleft-linearif P CV x (Z*(VU{eg})). Itis known that we
can assume without loss of generality that the productiorsleft-linear gramma@ are of form
PCV x(Z(VU{e})) if € £L(G).

If G=(V,Z,R,S) is a CFG, then given two words,3 € (VUZ)*, we denotea =¢ B if
a = 0203, B = a1f03 for ay,a2,03,62 € (VUZ)" anda, — o € P. Let =§ denote the
reflexive, transitive closure ef. Then the language generated by a gram@®ar (V,2,P,S) is
given byL(G) = {xe 2* : S={x}. Ifalanguage is generated by a CFG (resp., LCFG), then it is
a context-free language (CFL) (resp., linear contexti{fmaguage (LCFL)). The class of languages
accepted by left-linear grammars are known to be exactlyapelar languages.



2.1 Trajectory-based Operations

The shuffle on trajectories operation is a method for spewfthe ways in which two input words
may be interleaved to form a result. Each trajectory{0,1}* with |t|o = nand|t|1 = m(i.e., with

n occurrences of 0 anegh occurrences of 1) specifies one particular way in which westarifle
two words of lengtn (as the left input word) anch (as the right input word). The word of length
n-+ mresulting from the shuffle alongwill have a letter from the left input word in positianf
thei-th symbol oft is 0, and a letter from the right input word in positioii the i-th symbol oft

is 1.

The formal definition is given as follows [17]:

Definition 2.1. Letx andy be words over an alphabEtandt, thetrajectory, be a word ove{0, 1}.
The shuffle ofx andy on trajectoryt is denoted by If t = |‘|i”:10“1I<i for somen > 0 and
ji,ki > 0forall 1<i <n,then

n n n
XLty = XVi cX=[1%,y=1[1yi, with |x| = ji,|yi| =k forall 1 <i<n
= oo = [oy= [ i =i }

if |X| = [t]o and]y| = |t|1, andxuury = 0 if |X| # |t|o Or |y| # |t|1. We extend the operation of shuffle
on trajectories to sets of trajectori€sC {0,1}* as follows:

xwry = | Xwey.
teT

Further, ifL1,Lo, C Z* are languages, then

Liutlo = U XwTty.
xelkq
yeL,
As an example, note thatTf= 0*1*, then.t is the concatenation operatido; it Ly =L1Lo.
If T=0"1*0", thenwrT is the insertion operation-, defined byL; <+ Ly = {X1yx% : X1X2 € L1,y €
Lo}.
We will also require the notion of the natural binary relataefined by shuffle on trajectories
[3]. ForT C{0,1}*, definewr as follows: for allx,y € *, xwry <= y € xuut Z*.
For example, ifT = 0*1*, thencwr is the prefix order, defined bywr y if and only ify € x2*.
If T=1{0,1}*, thenxwry is the embedding order, defined kyor y if and only ify € xuZ* (i.e.,
x can be obtained fromby deleting zero or more letters). We denote the embeddither doy <e;
note that ifx < y thenx is ascattered subwordf y.

2.2 DNA Trajectories and Hairpins

We now consider DNA trajectories, defined by Katial.[13]. A DNA trajectory is a word over

the alphabe¥p = {(E), (O, (D), ) } . The original use of a set of DNA trajectories was to define

bonding between two separate single strands of DNA. Therozace of(g) implies a bond at

4



a certain position, whilg!) (resp.,({), (£)) denotes two bases which are free (resp., an extra
unbonded nucleotide on the top strand, an extra unbondéeatiae on the bottom strand). DNA
trajectories are used to define so-calbkexhd-free propertiesn DNA code word design [13], and
we adopt them here for modelling the bonding of hairpins.

For hairpins, we can view words ov¥f as designating where bonds can occur and cannot

occur when viewing the strands with the loop at the right ek instance, the DNA trajectory
t= (L) (I)Z(E)S(I)3(;) represents the bonding depicted in Figure 2. Note that ting peandx;s,

x5 andxis, as well askg andxi4 must be bonded together (this assumes an antimorphic kpndin
pattern—see Definition 2.2 below).

X
TN
X1 X7 Xg\
Xz—Xs—X|4—>|<5—>|<6 X10
X1g—X17 = X16 —X15 = X1a—y . /X1/1
~
12

Figure 2: A DNA bond specified by The lettersg; represent arbitrary letters from the alphabet.
Let ¢y, ¢q : V5 — {0,1}* be morphisms defined by
¢U((g)) = 07 ¢U((;)> = 17 forye{f7£}7 ¢U(<?)> = &,
9a(()) = O, ¢a((}) = 1, forye{f.e}, da((}) = &
We now give our main definition.

Definition 2.2. Let 2 be an alphabef} : Z — Z be an arbitrary involution, extended to a morphism
or antimorphism, an®&C V3. Then a wordw is said to be5S-8-hairpin-free, or simplyshp:(S, 6)-
free, if the following condition holds

YU, VX, € ¥, S € S (W= UV, X Wy, (s U, andB(x) U)¢d(s)RV> = X=¢. (1)

That is,w is S-0-hairpin free if we can writav asw = uv and there exists a wond—which
represents the portions ofandv which are bonded together—such that

(1) x appears inu according to the bonding prescribed py(s) and
(2) 6(x) appears irv according to the bonding prescribed gy(s)R.

thenx = €. Note thatgy(s) is reversed sinceruns backwards from the right-to-left in our hairpin.

Example 2.3.LetZ = {a,b,c}, andt = (;) (;)2(8)3(;)3(;) be the DNA trajectory from Figure 2.

Note thatdy(t) = 1110001111 anghg(t)R = 11100011.

In this casew = a’bacd cabl? is notshp ({t}, u)-free (recall thaiu is the identity antimor-
phism) since the conditions of (1) are violated with- abacd', v = a3cabl? andx = bac How-
ever, we can verify thav = a’baca’baac is shiy ({t}, u)-free.
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Definition 2.4. We say that a languadeis shpx (S, 0)-free ifwis shp: (S, 0)-free for allw € L.

Let shp% (S 6) denote the set adhp: (S, 0)-free words. Leshp(S 8) = Z* —shp k(S 0).
Clearly,L isshp:(S, 0)-free if and only ifL C shp (S, 9).

The definition ofshp:(S, 0)-freeness is an extension of the notions of hairpin-free aesl
scattered-hairpin-freeness, investigated by I€tdl.[12, 14].

Note that in the above definiticcan be an arbitrary involution, extended to either a morphis
or antimorphism. This is similar to the work on bond-free pedies [13] and hairpin-freeness
[12, 14]. In practice, an antimorphic involution yields uéis applicable to hairpin and scattered-
hairpin structures, while morphic involutions yield sttuies where the scattered stem is bonded in
a parallel, rather than an anti-parallel, orientation. @irse, the antimorphic involutionover the
alphabeth = {A,C,G, T} defined byr (A) =T,7(T) = A, 7(C) = Gand1(G) = C is of particular
interest in practice. This involution is called the Watsonek involution. In biological settings,
only anti-parallel orientations arise, so the case whezertholution6 is extended to an antimor-
phism models this situation; the case of morphic involugigiving rise to parallel orientations is
investigated as a complementary language-theoretic pbnce

2.3 Examples of Hairpin Languages

Consider the following examples of hairpin languages:

IRk

The general form of the DNA bonds specified &y(when8 is an antimorphism) is repre-
sented by Figure 3. That is, whéhis an antimorphism, only one bonded region (sien)
is formed in this simple hairpin structure, and the lengthhid stem is at least. The set
shp&(&, 0) is the set of alB-k-hairpin-free words, studied by Kaet al.[14].

Figure 3: A simple hairpin structure.

(b) Letk,m,mp > 1. Jonoskaet al.[10, 11] defined(k, m, mp)-subword compliant languages,
which are characterized by the following set of traject®8eny, m,:

£\* e\ [\ oK™ R\
s () 4 () (0 G (8,0
! € f f b mgnl €
In particular, a language C >* is 8(k, my, mp)-subword compliant for a morphic or anti-
morphic involution® if L C shp&(Scmy.m,. 0).
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(c) Letk> 1 andS, be defined by

=((OOC) OO o

The shape described by this set of trajectories is caltattered hairpin®y Kariet al.[12].
In particular, the condition is equivalent to the following<e uand8(x) <evimply |x| <k.
An example of the shape of scattered hairpins describ&gl jren8 is an antimorphism is
given in Figure 4. The sethp £(S, 6) is denoted byhpf(8,k) by Kari et al.[12].

Figure 4: A scattered hairpin structure.

By adding DNA trajectories to scattered hairpins, we caa difine familiar languages which
have been studied by researchers in formal language théérypegin by demonstrating that the
classical languages of palindromes (modulo short palmeés) and squares are definable by a
trajectory-based hairpin condition:

Example 2.5.Let S, = (°)"{, (D)}. Thenshp:(Sp, ) = {x € =* : |x| > 2,x=xF}.
To see this, note that the scattered hairpin conditionssthat ifw € shp:(S 1), then there
exists a factorizatiow = uyv, s € (E)*{e, ()}, and a wordk, with |x| > 1 such that

X W, (s U, andx™ ey, (gr V.

Note thatgy(s) € 0* UO*1 andgq(s)R € 0*. Thus, we have that € x({e} UZ)xR. Thereforew is
a palindrome. The reverse inclusion is easily established.

The following example is established in the same way:

Example 2.6.Let S = (E)*. Thenshp:(Ss,1) = {xx: x€ =*}.

3 Preliminary Results

We first consider the implications of choosing alternaterdtédins for hairpin-freeness using DNA
trajectories. In the first case, we show that, with DNA trijeies, there is no increase in power by
adding a parametdr> 1 which enforces a minimum length of the (scattered) sterh@hgirpin.
In the second case, we show that if separate DNA trajectariesllowed to be chosen for the
bonding on both sides of the stem, the result can destroytrinetigre described by the set of DNA
trajectories.

In particular, consider the following definition:
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Definition 3.1. Letk > 1 andSC V3. Say a wordw is 8-k-S-hairpin-free (orshp: (S, 8, k)-free) if
the following condition holds:
YU,V X, € 27, S € S (W= UV XWy,(s) U, B(X) Wy, srV) = (|X| <K).

This definition more closely mirrors the definitions prowddBy Kari et al. [12, 14]. Let
shp%(S 6,k) denote the set adhp:(S, 8,k)-free words. We now show that sets of DNA tra-
jectories are sufficiently powerful to eliminate the needdonsiderings-0-k-hairpin-free words.

Lemma 3.2. Let k> 1 and SC V{3 be a set of DNA trajectories. There exists a set of DNA
trajectories $C Vj such that shpsf(S 8,k) = shp (S, 0).

Proof. Let S be defined by8 =S—{seVj : | (0 < k}. Letz¢ shpt(S, 6,k). Then there exist
u,v,X € 2*,se€ Swith z=uvand|x| > k such that

X Wy, (s) U andB(x) wy, R V.
Note that|x| = |¢u(S)|o = |5| () Thus,|s| ® >kandse S. Thereforez¢ shp%(S, 0).

Similarly, if z¢ shp(S, 0) then there exist,v,w € *, s€ S with z= uvandw # ¢ such
that
W @y, (g) Uand B (w) ws, ()R V.

Note that|s|( )= |du(s)|o > kasse S. Thus,|w| > kandz ¢ shp(S 6,k). O

b
b

For fixedk, the construction in Lemma 3.2 does not alter the complexit® if Slies in a
language class which is closed under finite modificdtion

We also consider the implications of choosing a single DN&jetrtory in the definition of
hairpin-freeness. In particular, note that a single DNfettorysis used in bothwy,s) andwg, 5=
in the definition (1). This reflects that a single DNA trajegtdefines the bonding on both sides
of the (perhaps scattered) stem of the hairpin. If sepaiase € Sare allowed to be chosen, i.e.,
usingwy, (s;) andwy,s,)r, then the structure of the s8ican be destroyed. For example, consider

the set N i
f\* /b f\* f e\ /b f\* f
() (o) (1) {=()1°0) () () =)y @
In the case of an antimorphic involutio,is represented graphically in Figure 5. Note that
¢u(S) = 10" 1* while ¢4(S) = 1*071*. Thus, if separate;,s; € Sare chosen, the possibility of
choosingsy, s, with ¢y(s;) = 120'1) anddg(sp) = 1/20'1% destroys the bonding described in (4)

and depicted in Figure 5, as these choices, 8, also forbid hairpins of the form

A\ /e /F\/b\ T /F\* f
He) o)1) ) () {=()F ©
depicted (in the case of an antimorphic involution) in Fegé: The analogous observation for

bond-free properties—that a single DNA trajectory showdused to define both the upper and
lower bonding—is examined by the author [4].

A language clasg’ is closed under finite modification if for all € ¥ and all wordsx, L U {x},L — {x} € .
Most common language classes are closed under finite mdtifican example of a class that is not is the class of
OL languages.
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Figure 5: Graphical representation of (4).
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Figure 6: Graphical representation of (5).

4 Containment and Equivalence

We begin with some preliminary results on containment andvadence between sets of DNA
trajectories defining hairpin languages. These resulteasdy established, but are required in
what follows.

Proposition 4.1. Let §,$ C V3 with § C $, Z be an alphabet an@ : Z* — >* be a morphic or
antimorphic involution. Then the following inclusion hslsh (S, 6) C shp: (S, 0).

We also note that distinct trajectories may represent theedaonding pattern. For instance,
note that an occurrence ()f) is equivalent to an occurrence @Zf) (). Due to this equivalence,
we show the existence of a normal form for sets of DNA trajeetowhich is sometimes useful.

Lemma 4.2. For all sets of DNA trajectories § VJ there exists a set of DNA trajectoriesS
(O 0O ) () {(0).} suchthat shp(s, 6) = shix(S, 6).

Proof. Consider the following rewriting rules:

OO — OO O0 — (OO
@ — ) (D) — )
Clearly, none of the above rules alter the words whichstng (S, 6)-free. Thus, to puSin the

required form, we simply migrate extra occurrenceﬂ(}for (f) to the left-hand side of no({’;)
blocks. The loop section of the hairpin is the exception. \&al dvith this by observing that, for

example, the bIocI(L)3 interpreted as a loop is equivalent(tb (L) O

If Sis in the form specified by Lemma 4.2, we say tBa& in normal form Further, ifSC V3,
then by[§ we mean the set of all DNA trajectories which can be rewrittea DNA trajectory
se€ Shy using the above rules.



5 Closure Properties

In this section we examine the closure properties of haigiguages based on the complexity of
S Examples 2.5 and 2.6 immediately yield the following lemma

Lemma 5.1. There exist a regular set of DNA trajectories S and an antwharinvolutioné (resp.,
morphic involutionag) such that shp(S, 6) is not a regular language (resp., sh(®, o) is not a
CFL).

Note that Lemma 5.1 is in contrast to the case of hairpin lagga and scattered hairpin lan-
guages, studied by Kaet al.[12], where the associated languages are regular. Debpitadt that
regularity is not preserved when using a set of DNA trajeetoto describe hairpin trajectories, we
can show that for all regular sets of trajector&and all antimorphic involution$, the language
shp (S, 0) is always context-free:

Theorem 5.2.1f 8 is an antimorphic involution and S is a regular set of DNA é@pries, then
shp:(S 0) is a linear context-free language.

Proof. Let Sbe a regular set of DNA trajectories aGd = (Vn, Vb, Ps, Ag) be a left-linear grammar
for S, where all productions iRs are of the formA — aBor A — afor ac Vp andA,B € Vy (since
we can assume without loss of generality that S). Let G = (W, Z, P, Ag) be the CFG defined as
follows: for all A— ta in Ps, witht € Vp anda € VU {€}, we add the following productions to
P:

(a) ift = (;) the production®\ — aa are added for ath € 3.
(b) ift = (%), the production\ — aa are added for ath € .
(c) ift= (;) the production® — aab are added for ath,b € 5.

(d) ift= (g , the production®\ — aa 6(a) are added for alh € .

To verify that this works, note that o = s, then inG we can build any worav which bonds

according tos from both the left and right ends @¥. Sincef is an antimorphic involution, this

process builds bonded regions which are oriented in thegpifaghion. Thud, (G) = shp:(S, 0).
0]

We note that if we relax the condition th@is regular, Theorem 5.2 does not hold.

Lemma 5.3. Let > be an alphabet withX| > 3. There exists a (linear) context-free set of DNA
trajectories SC Vjj such that shp(S, ) is not a CFL.

Proof. Let S= {(;)n(g)n ' n> O}. Then we note that ifv € shp:(S 1), then there exist a fac-
torizationw = uv, s € Sand a wordk such that

X O)¢u(s) u

XR=0(X) wy,gRr V.
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As ¢q4(s) € 0%, the second relation implies= xR. Further, agp,(s) € {1"0" : n > 0}, the first
relation impliesu = yxwherely| = |x|. Thus, we can verify the equality

shp(S ) = {yof : xe £t ye =¥, |x| = |y}
To see thashp: (S, ) is not a CFL, note that
shp:(S pu)Nctbatccab = {c?ba'ccdb : n> 0},
which is not a CFL by an application of the pumping lemma. 0J

Further, if we consideshp§(S, 0) for regularS and antimorphidd the result may not be
context-free. Considering Lemma 5.1, we may expect thidtiess the CFLs are not closed under
complement.

Theorem 5.4. Let 3 be an alphabet withZ| > 3. There exist a regular set of DNA trajectories
SC Vg and an antimorphic involutio® such that shpf(S, 6) is not a CFL.

Proof. LetS; = (?)*(E)Jr, S = (‘c)*(E)Jr andS= S, US. Note thatSis regular. We claim that

ship(Su) = {(WwwWx : weZt xe 2} U iR : we st xes*).

To see this equality, letc shp:(S ). Then eithez € shix (S, 1) or z€ shp (S, 4). Consider
the former case. For afi€ Sy, there exisi, j € N with j > 1 such thas = (8)’ (E)'. Note that
¢u(s) = 0 anddq(s)R = 0i1'". Thus, ag has arS;-hairpin, there existi,v,x € 3* such thak # &,
Z= UV, Xy U andx® = p(x) ayiqi v. This implies thak = u andv = x®y for somey € 5*. Thus,
z=uv=xxXy. If ze sh(S, 4), we similarly get thaz = xwwR for somex € =*,w € =+, The
reverse inclusion is proven similarly.

Thus, we have that

shpk(Su) ={x : Wye I" ze I* x¢ {yyz zyy'}}. (6)
From (6), we can easily see trettp (S ) is not context-free. In particular,
shp& (S u)Nbatcca bbac = {bdccabbdc : i,j,k>1,i+ jandj #Kk}.

By an application of the pumping lemma for CFLs, this languegnot context-free, establishing
the result. O

Thus, in generalhp (S 0) is not a CFL ifSis regular and is an antimorphism. However,
we can find conditions o8 such thashp (S, ) is a CFL for all antimorphic involution8. We
require some additional notions.

Forse Vg3, we define thegjield lengthof s, denoted |s||, by ||s|| = |pu(S)| + |Pa(S)|. Thus, if
x e sh({s}, 8) (for any choice oP) then|x| = ||g]|. ForSC V3, we let||S|| = {]||s|| : s€ S} CN.
The following technical lemma is easily established:
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Lemma 5.5. Let SC V3 be a regular set of DNA trajectories. Then the langudge Z* : |x| €
||S||} is a regular language for all alphabets

Proof. Consider the morphisrp : Vg — {b, f }* defined byp((?)) = xy for all (;) € Vp. Then
note that ift : {b, f}* — 2% is the finite substitution defined k(b) = 1(f) = =, thent(p(9)) =
{xeZ* : ¥ €|9]|}. The result follows by the closure of the regular languageteumorphisms
and finite substitutions. O

Recall the definition of the density functign of a languagé.. Definep, : N — N by p.(n) =
ILNZ"| for all n > 0. That is,p.(n) gives the number of words of lengthin L. Call a languagé
slenderif p_(n) € O(1) [19].

We can now demonstrate a nontrivial class of sets of DNA dtajees for which the set of
hairpin-free words will be guaranteed to be a CFL:

Theorem 5.6. Let SC V3 be a slender regular set of DNA trajectories. Then for allianatrphic
involutions®, shp§(S 0) is a CFL.

Proof. Since the CFLs are closed under union, itis enough to shavttteaesult holds for regular
sets of trajectories with density at most one.

Let Sbe a regular set of DNA trajectories with density at most am&Gs = (W, Vb, Ps, Ao)
be a left-linear grammar fd8 where all productions are of the forfn— tBor A—t fort € \p
andA, B € VW (again, we can assungez S). LetVy be a copy oy, andG = (W UWy, Z, P, A)
be the CFG defined as follows.

For all productions of the forrA — tB, whereA B € V andt € Vp, we perform the following

actions:
(@) Ift=(}), then add td® the production#\ — aBandA — aBfor all a € =.

(b) Ift = (%), then add t&® the productioné\ — BaandA — Bafor allac 3.

f

i)

, then add td the production®\ — aBbandA — aBbfor all pairsa,b € Z.

(
(
©) Ift=(
(

(d) Ift = (2), then add td® the productions

A — aBf(a) Vaez, )
A — aBb VabeZ, 0(a)+#b, (8)
A — aBb Vabes. (9)

For all productions of the forrh — t, whereA € Vy andt € Vp, we perform the following
actions:

(@ Ift=(}) ort = (€), then add t& the production® — afor all a € 3.

(b) Ift = (}), then add t&® the productions\ — abfor all pairsa,b € 5.

12



() Ift=(?), then add t&P the productions
A — ab VabeZX0(a)+#b (10)
A — ab Vabes. (11)

Note that the productions @ are separated into two types: those whose left-hand side has
nonterminal fromvy, and those fronVy. Those fromVy simulateS much in the same way as the
proof of Theorem 5.2, however, they are not allowed to be tied &tep of a derivation. To move
to those which involvé/ﬁ, we must introduce a mismatch at some point where the trn/}gsbes
(E) (e.g., productions of the type (8) and (10)). Productionssehleft-hand side is frondy are
permitted to terminate a production. Further, as seen iu#)(11), they are not constrained to
match when encountering(a) in the trajectory—their only concern is to guarantee thatiémgth
of the derived word is equal ti¢s|| for somese S

From this, we claim tha® generates the following language:

L(G) =shpk(SO)Nn{xe " : [x €|}

To see this, note thdt(G) is a subset of the left-hand side. For the reverse inclusfox,c
shpk(S0)N{xeZ* : |x| € |||}, then|x| = ||s|| wheresis the unique DNA trajectory iBwith
length|x|. Note that our grammar will generateby ensuring that a mismatch is made in some
position ofx where bonding is required to occur By

By Lemma 5.5, the languade € Z* : |x| € ||S||} is a regular language. Thus, its complement,
{xeZ* : |x| ¢ ||9|} is also a regular language, by the closure properties o&tipaar languages.
We conclude that

shp§(S6) =L(G)U{xeZ" : [X ¢S]}
is a CFL, by the closure properties of the context-free |laiggs. O

Theorem 5.6 shows the power of using DNA trajectories foratizrizing hairpins. By us-
ing a well-studied property of languages and applying ith® $et of DNA trajectories, we can
guarantee important properties of the associated haapiguage. However, in this case, we find
that in addition to the complexity of the set of DNA trajecésy, it is also another measure of the
complexity—the density of the language—that yields theltes

Considering their role in Theorem 5.6, we can ask about tesipte structure of slender regular
sets of DNA trajectories. The following important resulshaeen established independently by,
e.g., Paun and Salomaa [19], Shallit [24] and, more gelyelsl Szilardet al. [25]:

Theorem 5.7. A regular language R oveX is slender if and only if there existk 1, and X,y;,z €
>* for 1 <i < k such that R= UX_; xy/z.

Thus, slender sets of DNA trajectories include the famitiase of palindromes from Exam-
ple 2.5, but is not powerful enough, for example, to include set of6-k-hairpin-free words
studied by Kariet al.[14].

We now turn to the complexity a§hp (S 6) for morphic involutionsf. By Lemma 5.1,
we know thatshp (S, 8) can fail to be a CFL, even B is regular. However, the example given
(Example 2.6) yields a language whose complensaiptf (S, ) is a CFL. However, we can find
an example of a regular s8such thashp (S, 0) is not a CFL.

13



Theorem 5.8. Let X be an alphabet withZ| > 3. There exist a regular set of DNA trajectories
SC Vg3 and an morphic involutio® such that shpsf(S, ) is not a CFL.

Proof. LetS= (£)"())"u ()" (). Then note thashp:(S,1) = {xxw : x€ T, we Z*} U {wxx :
x€ Zt,we Z*}. Thus, we get thashp§(S;1) ={xe Z* : Ve Xt ze Z* x¢ {yyzzyy}}. By
intersecting with the regular languagea*c)3, we note

shp&(S,1)N(batc)® = {bachachdc : i £ jandj #Kk},
which is not a CFL by an application of the pumping lemma. O
We now consider the complexity shp: (S, 0) for unary alphabets (i.e2, with |X| = 1).

Lemma 5.9. Let|Z| = 1 and.Z be any class of languages closed under morphismscCI¥/§ with
Se %, then shp(S 6) € .Z for all morphic and antimorphic involution8.

Proof. Note that if|Z| = 1 and6f : £ — X is an involution, then whefl is extended to a morphism
or antimorphism, the result is equivalent to applying trentity morphism. Thus, we may assume
throughout tha® is the identity morphism.

Recallp andt from the proof of Lemma 5.5. First, in the case whgte= 1, T is a morphism.
Further, note thafx € Z* : |x| € ||]|} =shp(S 0) = 1(p(S)). Therefore, ifSec .Z, then so is
T(p(S)), by the assumed closure propertiesgfand the fact thap and (in this case only) is a
morphism. We conclude thahp: (S, 0) € . and the result holds. O

As a corollary, we note that for unary alphabetsSifs regular (resp., context-free) then
shp (S, 0) is regular (resp., context-free). For context-free lamgsathis contrasts Lemma 5.3.

5.1 Regularity of Hairpin Languages

In the previous section, we have seen that for some regulaf B8NA trajectoriesSand antimor-
phic involution 8, the associated hairpin languagiep (S, 6) is not context-free. If we restrict
Sto be slender, then we can guarantee ggif (S 0) is context-free for all antimorphic involu-
tions 8. In this section, we consider tools which will allow us toaddish thatshp (S, 6) (and
shp (S, 0)) is regular. Instead of further constrainifdyy beginning with slender sets of DNA
trajectories, we look at relations @that ensure regularity ahp§(S, 9).

We define a partial ordex on words ovely. Lets,s, € V3 with

du(sy) = ﬁ 1005, andgqy(sy) = ﬁ 160K,

that the following three conditions hold:
() $u(s2) = MLy Liai andga(sz) = MLy L

(i) |ai|=k forall1<i<n;and

for n> 0 andjj, ki, ¢ > 0 for all 1 <i <n. Thens, < g if there existay,...,an, € {0,1}* such

14



(ii)) g ¢ 1"
We note that< is also used to investigate bond-free properties betweegrae single strands of
DNA [4].
The situation is illustrated (in the case of an antimorphiolution) in Figure 7. The figure

illustrates that ifs, < s1, then we can get frorg to s, by replacing a bonding region of lengkh
in 51 with a region which is not completely bonded, but still hasgnk;, in s,.

1 e '
ﬁ
|_ki—| f \\&
— % —

Figure 7: A portion ofs; is shown on the left, and a portion gf is shown on the right.

Example 5.10.Considers;, s; € V3 given by

#= (o) (o) (o) ) () == () () () () () )

Note thatpy(s;) = 00101 ¢y(sz) = 01111 ¢4(s1) = 0001 anddy(sz) = 0111. Thussy < s holds
with a1 = 01 anda, = 1.

Note that Example 5.10 demonstrates that the relatias not simply defined by the idea
“possibly replace(';) with (;) This is due to the equivalence of trajectories seen in threnal
form of Lemma 4.2. However, the replacement intuition isrfatized in the following result.

Proposition 5.11.Let71: Vij — 26 be the substitution defined yx) = x if x# (£) andi((2)) =
{(®), (D)} Then for all SC V5,

[H(S)H(VS (E)VD*)} ={xeVj : Ise Sx=<s}.

We now define the minimal set of DNA trajectories with respectk. For all SC V3, let
min(S) ={se€ S: Vt(#s) e St £s}.

Example 5.12.Consider thé-hairpin languages (2):

{0 OO C) 0 =0

Note that if we put migS,) in normal form, we get

o= {() o)1) OO (- ()}
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We now show thaSand min(S) describe the same hairpin languages:

Theorem 5.13.Let SC V. For all = and all morphic or antimorphic involution§, we have
shp:(S 0) =shp(min(S), 0).

Proof. The inclusionshp:(S, 0) O shp:(min(S), 8) is immediate, by Lemma 4.1. Thus, et
shp:(S 8). Thus, there exist,v,w € X* with w # £ ands € S such thatx = uy, W Wy, (s U and
O(W) Wy, 9 V. Assumes ¢ min(S). Then there must exit € min(S) such thats' < s. Let
n, ai, ji, ki, 4 (with 1 < i < n) be defined so thapy(s) = M1, 1104, ¢q(s) = [N, 1605, ¢u(s) =
M, 1o andgg(s) = M, 1%a;. Leta =114 ai.

Consider thaiw| = 51 ; ki. Letm= 3, ki, w=[]" ;W wherew; € %.

Further, leta = )", B wheref; € {0,1}. Definel CN byl ={i : i =0}, i.e., exactly
those positions ofr which are zero. We want to consider those positions @fhich correspond
to indices inl, since these correspond to the portiorx@fhich will remain bonded when we pass
fromstos. Thus, letw = [, wi. From this definition, it is not hard to see that

w (Jl)¢u(s/) u and 9(V\/> Ol)¢d(s/)R V.
As a ¢ 1%, note thal # 0 and sav # €. Asx = uv, we havex € shp(min(S), 6). O

Example 5.14.Continuing with Example 5.12, we see tlsaty (min(), 6) (and thushp: (S, 0))
is regular for all morphic or antimorphic involutio®s This was first established by Kaat al.[14,
Prop. 3].

To see thashp:(min(S), 8) is regular, note that there are only finitely many occurrerufe
(E) in each trajectory in mif§), and further that the two blocks of nc(rﬁ)s in each trajectory
does not define a length restriction between distinct pastiaf the wordv € shp:(min(&), 0) —
in particular, ifw = uxv@(x)y € shp:(min(), 8), then there is no relationship betweeandy or
betweerju| and|y|. Thus, a finite automaton can verifwife shp:(min(S;), 6) by storing finitely
many symbols oW in its finite control (those that correspond to the bondedipo).

Example 5.15. Thek-scattered hairpin languages (see (3)) are given by
AN WA AN N A f
(1) () O 6) () =)
Note that if miS,) C S is put in normal form, we get

mosa=({() 5 (0 Q) () {= ()}

We can again establish thsttp-(min(&), 0) is regular for all morphic or antimorphic involutions
and allk > 1, with an argument similar to that in Example 5.14. Thusskag (min(S), 0) is
regular, so ishp (&, 0) (this was established by Kaet al.[12, Prop. 13(ii)]).
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5.2 Finiteness of Hairpin Classes

We continue our investigation of conditions 8and6 that ensure thathp: (S 8) andshp (S, 0)
lie within a certain class of languages by considering domu onSto ensure thashp (S, 0) is
finite. Kari et al. [14] have studied conditions which ensure finiteness ofpiraifree languages.
We summarize their results here:

Theorem 5.16.Let k> 1 and § C Vj be defined by

x x x >k x
=16 2() 1) 6 () 1)<
Then shpd(S 0) is finite if and only if
(i) 6=1,
(i) 6=pandk=1, or
(i) 6=p,|Z]=2and k< 4.

We note that Rampersad and Shallit [20] have independesitibkshed stronger results than
Theorem 5.16 (ii) and (iii): they show that the same langaage finite even if we allow the occur-
rence of a word and the occurrence of its reversal (i.e., bioifle-stranded portions of the stem)
to overlap. However, the constructions of Katial.and Rampersad and Shallit are essentially the
same.

As noted by Karket al.[14], problems concerning finiteness of hairpin language®acasion-
ally related to problems in combinatorics on words (see €hband Karhumaki [2] or Lothaire
[16] for an introduction to combinatorics on words). We ilesame notions of avoidability. Let
be a set of indeterminates. Then we say that a woe>* encountershe patterra € V* if there
exists a morphisrh: V* — ¥* with h(3) # € for all B € V (i.e., his non-erasingy such thah(a)
is a subword ofv. We say thatv avoidsa if w does not encounter.

We say that a pattera is avoidableif there exists arbitrarily long words which avoad We
say thata is k-avoidable if there exists arbitrarily long wordsc ~*, where|%| = k, such thaw
avoidsa. The terms unavoidable amkelinavoidable are defined in the natural way.

Using results from the study of combinatorics on words, weioatantly conclude the finite-
ness of some scattered-hairpin languages by virtue of to@irciding with known unavoidable
patterns. In particular, we use the results of Cassaignevid gives a list of avoidability of pat-
terns over 2- and 3-letter pattern alphabets, to deriveefiesss results. These results are limited to
the case wher@ = 1, due to the emphasis on repetition of subwords in the studpmibinatorics
on words.

As an example, every sufficiently long word over any alphatoettains two occurrences of
some letter. In terms of hairpins, we can phrase this eqeritigias follows: the languaghp (S 1)
is finite for all =, where

S f *U eN Y /TN /b T\ (/] .
1l \e f f) \b/\f e) "
Using the tools of avoidability, we can also conclude théofeing:
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Lemmab5.17.Let§ = ((;)* u($)") (]‘:)* (g)+ (;)Jr (g)+. The languages shp(S;, 1) are finite for
all = with 2] < 2.

Similarly, if S = (1) u (5)")()" (E)Jr (5" (g)+, the languages shpS, 1) are finite for all
> with |Z] < 2.

Figure 8: Hairpins described [§ in Lemma 5.17.

Proof. The set of trajectorieS; describes the hairpin structure given in Figure 8. In paldic if
zis shp(S,1)-free, therzis not of the formuvxyyvwfor somev,x,y € £ andu,w € X*. Thus,z
avoids the patterABCCA By Cassaigne [1, p. 157], this pattern is 2-avoidable. O

On the other hand, we can interpret the classic result ofrtg@ret al. [6] on avoidability of
long squares in terms of hairpins:

Theorem 5.18.Let SC V;; be defined by S { (Hu (f)*} (1" (%)7°. Then the language shp(S, 1)
is infinite if || > 2.

For related results, see Fraenkel and Simpson [7] or Ramwbetral.[21]. Of course, there are
both well-studied and novel problems in combinatorics omdsand avoidability which cannot
be expressed in terms of hairpins. For example, the avdigabf the patternX XX, which is
well-studied, cannot be expressed in terms of hairpins. é¥ew the interaction between classical

avoidability problems and hairpins is compelling, and tkpressive power of hairpins suggests
many problems, likely difficult, involving avoidability gfatterns.

6 Decidability

We can now investigate the decidability of hairpin propeesti

Theorem 6.1. Given an antimorphisnd, a regular set of DNA trajectories S and a regular lan-
guage L, it is decidable whether L is st{({, 0)-free.

Proof. Note thatL is shp:(S, 0)-free if and only ifLNshp(S6) = 0. AsL is regular and
shp:(S 0) is a CFL (by Theorem 5.2), it is decidable whethenshp: (S 6) = 0. O
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For undecidability, we show that there exists a regular sebgectoriesS such that determin-
ing whether context-free languages ahgy (S, 6)-free for morphic or antimorphic involutions is
impossible. The following results employ the undecid#@pitif Post’s Correspondence Problem
(PCP); we refer the reader to Harju and Karhumaki [8] forrroduction.

Theorem 6.2. There exists a fixed regular set of DNA trajectories S suctthigefollowing problem
is undecidable: “Given an alphabét, an antimorphic involutior® : ¥* — 2* (resp., a morphic
involution8 : 2* — ¥*)and a CFL LC ¥, isLC shp%(S 6)?”

Proof. We first consider the result for antimorphic involutiofis Let S = (g)*(L) and letl =
(ug,U2,...,Un;V1,Vo,...,Vy) be a PCP instance over an alphabet.et > be the alphabeX = AU
{0,1,#,#}. Let 6 : =* — 3 be the antimorphic involution defined I6fa) = aforallac = — {#,#}
andO(#) = #. From the PCP instandewe construct a context-free langudgeia the grammar
G = ({A0,A1, A2}, 2, P, Ag), given by the following set of productiori

Ay — AttAy

A — UuA01 V1<i<n
Ay — ¢

Ay — 10AW vVi<i<n
A — ¢

The result will follow by the claim below:
Claim 6.3. LNshp: (S 0) # 0if and only if | has a solution.

(=): Suppose a solution tbis given byx = uj, Ui, - - Ui, = Vi,Vi,---Vi,, Where 1<ij < n for
1< j <m. Consider the word

y = Ui, Ui, -+~ Ui, 0m10m-11. .. 021011#10:1021 - . O'm-110mB VR - R

imVim

Clearly,y € L. Furthery € shp:(S 6) via the DNA trajectory

b IX+m3 L f
=) ()

(«): Letxe LNshp: (S, 0). Thus, by the structure &f, we have
X = Ui, Ui, - Ui, 0m10m-21. .. 0210114101021 - 07210 VRVE -+,

1
with 1 <ij, ¢ <nforall1<j<mand 1<k <r. Consider that # appears in but# does
not. Thus, the occurrence of # must be unbonded @ashp:(S, 6), and eaclts € Sonly has
one occurrence of. Thus, we must have that X< shp:(S, 0) via the DNA trajectorys, then
s=(2)(f), wherea = |ui,ui, - -y, 0m10m11. .. 021011| = [1011021- - 07 110MVRWR vy

Note thaté(u;, - - - Uj,,0'm1---0'11) = 102---10muR uR  ---uR. As the alphabets and{0,1}
are disjoint, we must have

uilui2 . uim — Vg1ng -V

“r
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and 011021...0'm1 = 0110/21...0%-110"1. Thereforer = mandi; = ¢; forall 1 < j <m. Thus,
Ui, - - - Ui, = Vi, - - - Vi, represents a solution to the PCP instance.

The proof for the case morphic involutions is essentially same as the proof above. In par-
ticular, given a PCP instant¢eover an alphabek, the alphabek remains the same, the involution
6 remains the same, but is extended to an morphism, and tisdssalso the same.

The change is that we define context-free languagethe gramma6 = ({Ag, A1, A2}, 2, P, Ag),
given by the following set of productior&

Ay — AHA
A1 — UA01 Vi<i<n
AL — €
A, — VA0l V1<i<n
A — ¢

In this case, we leave it to the reader to establish the claatitnshp (S, 0) # 0 if and only ifl
has a solution. O

Note that the key concept in Theorem 6.2 is that we insertedsyimbol #, whose imagé
(under®) did not appear in the language. In this way, we ensured thadibhg did not occur at a
specified position in our words.

7 Conclusions

In this paper, we have given a technique for modelling haigoinditions on DNA words by using
DNA trajectories. We have investigated closure propeuied decidability questions relating to
these hairpin sets. In order to ensure positive closuregpti@s, restrictions must be placed on
the sets of DNA trajectories. In particular,Sfis a slender regular set of DNA trajectories, then
shp£(S 0) is a context-free language for antimorphic involutighsOn the other hand, for all
regular sets of DNA trajectori€and all antimorphic involution8, the sesh: (S, 0) is a context-
free language. In proving regularity of scattered hairgisswe have considered a partial order
and the minimal set of DNA trajectories with respectdo

With respect to decidability, we have shown that hairpeefress of a regular language is de-
cidable for regular set of trajectories and antimorphiolations. However, there exists a fixed
regular set of trajectorieS such that it is undecidable, given an antimorphic involutand a
context-free languade, whether or not. is shp: (S, 0)-free.

One restriction on using DNA trajectories is that the mode the potential to be too precise:
sets of DNA trajectories where bonds are enforced at patipositions are not realistic biological
model, and would likely not be useful in DNA computing sifoats. Thus, care has to be taken
in the choice of the set of DNA trajectories. The common cbeifor describing hairpin shapes
in previous research all do not enforce strong conditiongkvare unrealistic; viewed as DNA
trajectories, we note that the specifications are all irdifregular) languages whose broad structure
does not impose impossible conditions. A topic for futurekae an investigation of the limitations
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of the use of DNA trajectories in modelling hairpins. In pautar, we can impose a change to
the definition (for instance, a probabilistic or similar netydwhich essentially ignores unrealistic
conditions specified by a set of DNA trajectories, or use leg theory to consider classes of
sets of DNA trajectories which model realistic conditiomslanvestigate their language theoretic
properties.

Another topic for future research is the interplay betwesguired formations and forbidden
formations. Currently, given two sets of DNA trajectori&sand S, the setsshp: (S, 0) and
shp($0) are independent entities. It might be a worthwhile extems@consider conditions
which model statements such dmfrpins from $ if necessary, but never from’S

We feel that DNA trajectories are an appropriate and comvdrtool for modelling hairpin
conditions on words. The use of DNA trajectories also suggeseresting problems for further
study, including further research on avoidability of pattedefined by scattered hairpin conditions.
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