
Hairpin Structures Defined by DNA Trajectories∗

Michael Domaratzki
Department of Computer Science,

University of Manitoba,
Winipeg, MB R3T 2T2 Canada

mdomarat@cs.umanitoba.ca

Abstract

We examine scattered hairpins, which are structures formedwhen a single strand of nu-
cleotides folds into a partially hybridized stem and a loop.To specify different classes of
hairpins, we use the concept of DNA trajectories, which allows precise descriptions of valid
bonding patterns on the stem of the hairpin. DNA trajectories have previously been used to
describe bonding between separate strands.

We are interested in the mathematical properties of scattered hairpins described by DNA
trajectories. We examine the complexity of the set of hairpin-free words described by a set
of DNA trajectories. In particular, we consider the closureproperties of language classes
under sets of DNA trajectories of differing complexity. We address decidability of recognition
problems for hairpin structures.

1 Introduction

A hairpin in a single strand of nucleotides is a structure formed by the bonding of two comple-
mentary regions, which form thestem, joined on one end by an intermediate, unbonded region.
Together, the stem and the unbonded region (theloop) are known as a hairpin. We illustrate this
concept in Figure 1.

ACAGGTACAAGTAC
TGTCCATGTTCATG

C
A A G T

G

CA
GT

G A
C

A

Figure 1: A hairpin in a strand of nucleotides.

∗An earlier version of this paper without proofs appeared at DNA 12 [5]. Research conducted at the Jodrey School
of Computer Science, Acadia University, and supported in part by a grant from NSERC.
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As research into DNA computing applications and nanotechnology continues, the formal study
of hairpins gains increasing significance. Kariet al. [12, 14, 15] survey the use of hairpins in
various contexts. We also note the use of hairpins for visualcontrast in evaluating successful
nanotechnological constructions, as described in, e.g., the work of Rothemundet al. [22]. In some
of these applications, hairpins are desirable, while in other applications, they are problematic and
are to be avoided in sets of DNA strands. Further, hairpins serve as the basis for more complicated
secondary structures such as pseudoknots.

Recently, Kariet al. [12, 14, 15] have studied hairpins using the tools of theoretical computer
science. In particular, a single strand of nucleotides is viewed as a word over the alphabet∆ =
{A,C,G,T}. In this framework, a hairpin in a wordz is a decompositionz = uvwxywherev
andx are complementary to each other, and form the stem of the hairpin. We characterize the
complementarity ofv and x using an antimorphismθ (for definitions, see Section 2). Among
other results, Kariet al. characterize the complexity and decidability results for hairpin sets [14].
Further, Kariet al. [12] have also studiedscatteredhairpins, which represent hairpins in which
the stem is not completely hybridized, i.e., where an arbitrary number of unbonded regions occur
within the stem.

In this paper, we examine refinements of hairpins and scattered hairpins by incorporating a
parameter—a set ofDNA trajectories—to add increased capability in describing the set of hairpins
which are of potential interest. The use of DNA trajectorieshas recently been employed to model
bonding regions in separate strands, calledbond-free properties[13].

The introduction of DNA trajectories in this paper as a refinement of the results of Kariet
al. has several advantages. One main benefit of DNA trajectoriesis that they enable constraints
to be expressed as a formal language, rather than graphically or otherwise. DNA trajectories also
allow more precise specifications of the form of DNA hairpinswe are interested in than previous
work, which allows the tools developed in this paper to be applied to more complex DNA com-
puting models. Further, DNA trajectories are capable of adapting to minor structural changes:
modifications such as enforcing a minimum length of a bond areeasily introduced in DNA trajec-
tories, instead of as a separate specification (the technique adopted by Kariet al.). Beyond the use
of DNA trajectories to aid in modelling situations of practical importance, we follow the work of
Kari et al. and examine not only sets which allow the presence of certainhairpin formations, but
hairpin-free sets, where we stipulate that hairpins from a given specification set cannot occur.

In our study of DNA trajectories and hairpins, we focus on closure properties, decidability and
relations to problems from combinatorics on words. With respect to closure properties, we find
that the addition of DNA trajectories gives a more complex situation than the case of hairpins and
scattered hairpins studied by Kariet al., and many results have been obtained. In particular, we
find that by allowing a set of DNA trajectories, we cannot guarantee that the set of all hairpins
will still form a regular language, and several conditions are investigated which yield interesting
theoretical insights. Decidability problems are also moreinteresting, due to the fact that regularity
of a set of DNA trajectories does not imply the regularity of the associated set of hairpins or the
set of hairpin-free DNA words.
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2 Definitions

For additional background in formal languages and automatatheory, please see Rozenberg and
Salomaa [23]. For an introduction to DNA computing, see Păun et al. [18]. Let Σ be a finite set of
symbols, calledletters; we callΣ an alphabet. ThenΣ∗ is the set of all finite sequences of letters
from Σ, which are calledwords. The empty wordε is the empty sequence of letters. Thelengthof a
wordw= w1w2 · · ·wn ∈ Σ∗, wherewi ∈ Σ, is n, and is denoted|w|. Given a wordw∈ Σ∗ anda∈ Σ,
|w|a is the number of occurrences ofa in w. Given two wordsx = x1x2 · · ·xn andy = y1y2 · · ·ym

wherexi ,y j ∈ Σ for 1≤ i ≤ n and 1≤ j ≤m, theconcatenationof x andy is denoted byxy and is
given byxy= x1x2 · · ·xny1y2 · · ·ym.

A language Lis any subset ofΣ∗. Given languagesL1,L2⊆ Σ∗, their concatenation is defined
by L1L2 = {xy : x∈ L1,y∈ L2}. We define powers of languages byL0 = {ε} andLi = Li−1L for
all languagesL and alli ≥ 1. By L∗ we mean∪i≥0Li .

We use the notation∏n
i=1Li to denoteL1L2 · · ·Ln, and the notationL≥k to denoteLkL∗. The

reversal of a wordw= x1x2 · · ·xn (xi ∈ Σ), denotedwR, is defined bywR = xn · · ·x2x1. By extension,
LR = {xR : x∈ L}.

Let Σ,∆ be alphabets andh : Σ→ ∆∗ be any function. Thenh can be extended to a morphism
h : Σ∗→ ∆∗ via the condition thath(uv) = h(u)h(v) for all u,v∈ Σ∗. Similarly, h can be extended
to an antimorphism via the condition that condition thath(uv) = h(v)h(u) for all u,v ∈ Σ∗. An
involution θ is any functionθ : Σ→ Σ such thatθ2 is the identity function onΣ. Let µ denote
the mirror involution (i.e., the identity function extended to an antimorphism). Letι denote the
identity morphism.

Given alphabetsΣ,∆, a substitution is any functionh : Σ→ 2∆∗. It is extended toh : Σ∗→ 2∆∗

by the condition thath(uv) = h(u)h(v) for all u,v∈ Σ∗. A substitution is finite ifh(a) is a finite
language over∆ for all a∈ Σ.

A deterministic finite automaton(DFA) is a five-tupleM = (Q,Σ,δ ,q0,F) whereQ is the finite
set of states,Σ is the alphabet,δ : Q×Σ→Q is the (partial) transition function,q0 ∈Q is the start
state, andF ⊆Q is the set of final states. We extendδ to Q×Σ∗ in the usual way. A wordw∈ Σ∗
is accepted byM if δ (q0,w) ∈ F. The language acceptedby M, denotedL(M), is the set of all
words accepted byM. A language is calledregular if it is accepted by some DFA.

A context-free grammar(CFG) is a four-tupleG = (V,Σ,P,S), whereV is a finite set of non-
terminals,Σ is a finite alphabet,P⊆ V × (V ∪Σ)∗ is a finite set of productions andS∈ V is the
start non-terminal. If(α,β ) ∈ P, we usually denote this byα → β . A CFG is linear (an LCFG)
if P⊆V× (Σ∗(V ∪{ε})Σ∗). A CFG is left-linear if P⊆V× (Σ∗(V ∪{ε})). It is known that we
can assume without loss of generality that the productions in a left-linear grammarG are of form
P⊆V× (Σ(V ∪{ε})) if ε /∈ L(G).

If G = (V,Σ,P,S) is a CFG, then given two wordsα,β ∈ (V ∪ Σ)∗, we denoteα ⇒G β if
α = α1α2α3, β = α1β2α3 for α1,α2,α3,β2 ∈ (V ∪Σ)∗ andα2→ β2 ∈ P. Let⇒∗G denote the
reflexive, transitive closure of⇒G. Then the language generated by a grammarG = (V,Σ,P,S) is
given byL(G) = {x∈ Σ∗ : S⇒∗G x}. If a language is generated by a CFG (resp., LCFG), then it is
a context-free language (CFL) (resp., linear context-freelanguage (LCFL)). The class of languages
accepted by left-linear grammars are known to be exactly theregular languages.
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2.1 Trajectory-based Operations

The shuffle on trajectories operation is a method for specifying the ways in which two input words
may be interleaved to form a result. Each trajectoryt ∈ {0,1}∗ with |t|0 = n and|t|1 = m (i.e., with
n occurrences of 0 andm occurrences of 1) specifies one particular way in which we canshuffle
two words of lengthn (as the left input word) andm (as the right input word). The word of length
n+m resulting from the shuffle alongt will have a letter from the left input word in positioni if
the i-th symbol oft is 0, and a letter from the right input word in positioni if the i-th symbol oft
is 1.

The formal definition is given as follows [17]:

Definition 2.1. Let x andy be words over an alphabetΣ andt, thetrajectory, be a word over{0,1}.
The shuffle ofx andy on trajectoryt is denoted byx t y. If t = ∏n

i=10 j i 1ki for somen≥ 0 and
j i ,ki ≥ 0 for all 1≤ i ≤ n, then

x t y = {
n

∏
i=1

xiyi : x =
n

∏
i=1

xi ,y =
n

∏
i=1

yi , with |xi |= j i, |yi |= ki for all 1≤ i ≤ n}

if |x|= |t|0 and|y|= |t|1, andx t y= /0 if |x| 6= |t|0 or |y| 6= |t|1. We extend the operation of shuffle
on trajectories to sets of trajectoriesT ⊆ {0,1}∗ as follows:

x T y =
⋃

t∈T

x t y.

Further, ifL1,L2⊆ Σ∗ are languages, then

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

As an example, note that ifT = 0∗1∗, then T is the concatenation operation:L1 T L2 = L1L2.
If T = 0∗1∗0∗, then T is the insertion operation←, defined byL1← L2 = {x1yx2 : x1x2∈ L1,y∈
L2}.

We will also require the notion of the natural binary relation defined by shuffle on trajectories
[3]. For T ⊆ {0,1}∗, defineωT as follows: for allx,y∈ Σ∗, xωT y ⇐⇒ y∈ x T Σ∗.

For example, ifT = 0∗1∗, thenωT is the prefix order, defined byxωT y if and only if y∈ xΣ∗.
If T = {0,1}∗, thenxωT y is the embedding order, defined byxωT y if and only if y∈ x Σ∗ (i.e.,
x can be obtained fromy by deleting zero or more letters). We denote the embedding order by≤e;
note that ifx≤e y thenx is ascattered subwordof y.

2.2 DNA Trajectories and Hairpins

We now consider DNA trajectories, defined by Kariet al. [13]. A DNA trajectory is a word over

the alphabetVD =
{(b

b

)
,
( f

f

)
,
( f

ε
)
,
(ε

f

)}
. The original use of a set of DNA trajectories was to define

bonding between two separate single strands of DNA. The occurrence of
(b

b

)
implies a bond at

4



a certain position, while
( f

f

)
(resp.,

( f
ε
)
,
(ε

f

)
) denotes two bases which are free (resp., an extra

unbonded nucleotide on the top strand, an extra unbonded nucleotide on the bottom strand). DNA
trajectories are used to define so-calledbond-free propertiesin DNA code word design [13], and
we adopt them here for modelling the bonding of hairpins.

For hairpins, we can view words overV∗D as designating where bonds can occur and cannot
occur when viewing the strands with the loop at the right end.For instance, the DNA trajectory

t =
( f

ε
)( f

f

)2(b
b

)3( f
f

)3( f
ε
)

represents the bonding depicted in Figure 2. Note that the pairs x4 andx16,
x5 andx15, as well asx6 andx14 must be bonded together (this assumes an antimorphic bonding
pattern–see Definition 2.2 below).

x3

x14x15x16x17x18

x1

x2 x4 x5 x6

x7

x8
x9

x10

x11x12
x13

Figure 2: A DNA bond specified byt. The lettersxi represent arbitrary letters from the alphabet.

Let ϕu,ϕd : V∗D→{0,1}∗ be morphisms defined by

ϕu(
(b

b

)
) = 0, ϕu(

( f
y

)
) = 1, for y∈ { f ,ε}, ϕu(

(ε
f

)
) = ε,

ϕd(
(b

b

)
) = 0, ϕd(

(y
f

)
) = 1, for y∈ { f ,ε}, ϕd(

( f
ε
)
) = ε.

We now give our main definition.

Definition 2.2. Let Σ be an alphabet,θ : Σ→ Σ be an arbitrary involution, extended to a morphism
or antimorphism, andS⊆V∗D. Then a wordw is said to beS-θ -hairpin-free, or simplyshpΣ(S,θ)-
free, if the following condition holds

∀u,v,x,∈ Σ∗,s∈ S,(w = uv,xωϕu(s) u, andθ(x)ωϕd(s)R v)⇒ x = ε. (1)

That is,w is S-θ -hairpin free if we can writew asw = uv and there exists a wordx—which
represents the portions ofu andv which are bonded together—such that

(1) x appears inu according to the bonding prescribed byϕu(s) and

(2) θ(x) appears inv according to the bonding prescribed byϕd(s)R.

thenx= ε. Note thatϕd(s) is reversed sincev runs backwards from the right-to-left in our hairpin.

Example 2.3.Let Σ = {a,b,c}, andt =
( f

ε
)( f

f

)2(b
b

)3( f
f

)3( f
ε
)

be the DNA trajectory from Figure 2.

Note thatϕu(t) = 1110001111 andϕd(t)R = 11100011.
In this case,w = a3baca7cabb2 is notshpΣ({t},µ)-free (recall thatµ is the identity antimor-

phism) since the conditions of (1) are violated withu = a3baca4, v = a3cabb2 andx = bac. How-
ever, we can verify thatw = a3baca7baac2 is shpΣ({t},µ)-free.
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Definition 2.4. We say that a languageL is shpΣ(S,θ)-free if w is shpΣ(S,θ)-free for allw∈ L.

Let shp fΣ(S,θ) denote the set ofshpΣ(S,θ)-free words. LetshpΣ(S,θ) = Σ∗− shp fΣ(S,θ).
Clearly,L is shpΣ(S,θ)-free if and only ifL⊆ shp fΣ(S,θ).

The definition ofshpΣ(S,θ)-freeness is an extension of the notions of hairpin-freeness and
scattered-hairpin-freeness, investigated by Kariet al. [12, 14].

Note that in the above definitionθ can be an arbitrary involution, extended to either a morphism
or antimorphism. This is similar to the work on bond-free properties [13] and hairpin-freeness
[12, 14]. In practice, an antimorphic involution yields results applicable to hairpin and scattered-
hairpin structures, while morphic involutions yield structures where the scattered stem is bonded in
a parallel, rather than an anti-parallel, orientation. Of course, the antimorphic involutionτ over the
alphabet∆ = {A,C,G,T} defined byτ(A) = T,τ(T) = A,τ(C) = G andτ(G) = C is of particular
interest in practice. This involution is called the Watson-Crick involution. In biological settings,
only anti-parallel orientations arise, so the case where the involutionθ is extended to an antimor-
phism models this situation; the case of morphic involutions giving rise to parallel orientations is
investigated as a complementary language-theoretic concept.

2.3 Examples of Hairpin Languages

Consider the following examples of hairpin languages:

(a) Letk≥ 1 and

Sk =

{(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

)≥k( f
f

)∗{
ε,

(
f
ε

)}
. (2)

The general form of the DNA bonds specified bySk (whenθ is an antimorphism) is repre-
sented by Figure 3. That is, whenθ is an antimorphism, only one bonded region (thestem)
is formed in this simple hairpin structure, and the length ofthis stem is at leastk. The set
shp fΣ(Sk,θ) is the set of allθ -k-hairpin-free words, studied by Kariet al. [14].

Figure 3: A simple hairpin structure.

(b) Let k,m1,m2≥ 1. Jonoskaet al. [10, 11] defineθ(k,m1,m2)-subword compliant languages,
which are characterized by the following set of trajectories Sk,m1,m2:

Sk,m1,m2 =

((
f
ε

)∗
∪

(
ε
f

)∗)( f
f

)∗(b
b

)≥k
(

m2⋃

m=m1

(
f
ε

)m
)

.

In particular, a languageL ⊆ Σ∗ is θ(k,m1,m2)-subword compliant for a morphic or anti-
morphic involutionθ if L⊆ shp fΣ(Sk,m1,m2,θ).
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(c) Let k≥ 1 andSk be defined by

Sk =

(((
f
ε

)∗
∪

(
ε
f

)∗)( f
f

)∗(b
b

))≥k( f
f

)∗{
ε,

(
f
ε

)}
. (3)

The shape described by this set of trajectories is calledscattered hairpinsby Kari et al. [12].
In particular, the condition is equivalent to the following: x≤e u andθ(x)≤e v imply |x|< k.
An example of the shape of scattered hairpins described bySk whenθ is an antimorphism is
given in Figure 4. The setshp fΣ(Sk,θ) is denoted byshp f(θ ,k) by Kari et al. [12].

Figure 4: A scattered hairpin structure.

By adding DNA trajectories to scattered hairpins, we can also define familiar languages which
have been studied by researchers in formal language theory.We begin by demonstrating that the
classical languages of palindromes (modulo short palindromes) and squares are definable by a
trajectory-based hairpin condition:

Example 2.5.Let Sp =
(b

b

)∗
{ε,
( f

ε
)
}. ThenshpΣ(Sp,µ) = {x∈ Σ∗ : |x| ≥ 2,x = xR}.

To see this, note that the scattered hairpin conditions states that ifw∈ shpΣ(S,µ), then there
exists a factorizationw = uv, s∈

(b
b

)∗
{ε,
( f

ε
)
}, and a wordx, with |x| ≥ 1 such that

xωϕu(s) u, andxRωϕd(s)R v.

Note thatϕu(s) ∈ 0∗∪0∗1 andϕd(s)R∈ 0∗. Thus, we have thatw∈ x({ε}∪Σ)xR. Therefore,w is
a palindrome. The reverse inclusion is easily established.

The following example is established in the same way:

Example 2.6.Let Ss =
(b

b

)∗
. ThenshpΣ(Ss, ι) = {xx : x∈ Σ+}.

3 Preliminary Results

We first consider the implications of choosing alternate definitions for hairpin-freeness using DNA
trajectories. In the first case, we show that, with DNA trajectories, there is no increase in power by
adding a parameterk≥ 1 which enforces a minimum length of the (scattered) stem of the hairpin.
In the second case, we show that if separate DNA trajectoriesare allowed to be chosen for the
bonding on both sides of the stem, the result can destroy the structure described by the set of DNA
trajectories.

In particular, consider the following definition:
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Definition 3.1. Let k≥ 1 andS⊆V∗D. Say a wordw is θ -k-S-hairpin-free (orshpΣ(S,θ ,k)-free) if
the following condition holds:

∀u,v,x,∈ Σ∗,s∈ S,(w= uv,xωϕu(s) u,θ(x)ωϕd(s)R v)⇒ (|x|< k).

This definition more closely mirrors the definitions provided by Kari et al. [12, 14]. Let
shp fΣ(S,θ ,k) denote the set ofshpΣ(S,θ ,k)-free words. We now show that sets of DNA tra-
jectories are sufficiently powerful to eliminate the need for consideringS-θ -k-hairpin-free words.

Lemma 3.2. Let k≥ 1 and S⊆ V∗D be a set of DNA trajectories. There exists a set of DNA
trajectories S′ ⊆V∗D such that shp fΣ(S,θ ,k) = shp fΣ(S′,θ).

Proof. Let S′ be defined byS′ = S−{s∈V∗D : |s|(b
b)

< k}. Let z /∈ shp fΣ(S,θ ,k). Then there exist

u,v,x∈ Σ∗,s∈ Swith z= uvand|x| ≥ k such that

xωϕu(s) u andθ(x)ωϕd(s)R v.

Note that|x|= |ϕu(s)|0 = |s|(b
b)

. Thus,|s|(b
b)
≥ k ands∈ S′. Therefore,z /∈ shp fΣ(S′,θ).

Similarly, if z /∈ shp fΣ(S′,θ) then there existu,v,w ∈ Σ∗, s∈ S′ with z= uv andw 6= ε such
that

wωϕu(s) u andθ(w)ωϕd(s)R v.

Note that|s|(b
b)

= |ϕu(s)|0≥ k ass∈ S′. Thus,|w| ≥ k andz /∈ shp fΣ(S,θ ,k).

For fixedk, the construction in Lemma 3.2 does not alter the complexityof S if S lies in a
language class which is closed under finite modification1.

We also consider the implications of choosing a single DNA trajectory in the definition of
hairpin-freeness. In particular, note that a single DNA trajectorys is used in bothωϕu(s) andωϕd(s)R

in the definition (1). This reflects that a single DNA trajectory defines the bonding on both sides
of the (perhaps scattered) stem of the hairpin. If separates1,s2 ∈ Sare allowed to be chosen, i.e.,
usingωϕu(s1) andωϕd(s2)R, then the structure of the setScan be destroyed. For example, consider
the set

S=

(
f
ε

)∗(b
b

)+( f
f

)∗{
ε,

(
f
ε

)}
∪

(
ε
f

)∗(b
b

)+( f
f

)∗{
ε,

(
f
ε

)}
. (4)

In the case of an antimorphic involution,S is represented graphically in Figure 5. Note that
ϕu(S) = 1∗0+1∗ while ϕd(S) = 1∗0+1∗. Thus, if separates1,s2 ∈ Sare chosen, the possibility of
choosings1,s2 with ϕu(s1) = 1ℓ10i1 j andϕd(s2) = 1ℓ20i1k destroys the bonding described in (4)
and depicted in Figure 5, as these choices ofs1,s2 also forbid hairpins of the form

{(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

)+( f
f

)∗{
ε,

(
f
ε

)}
, (5)

depicted (in the case of an antimorphic involution) in Figure 6. The analogous observation for
bond-free properties—that a single DNA trajectory should be used to define both the upper and
lower bonding—is examined by the author [4].

1A language classC is closed under finite modification if for allL ∈ C and all wordsx, L∪{x},L−{x} ∈ C .
Most common language classes are closed under finite modification; an example of a class that is not is the class of
0L languages.
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Figure 5: Graphical representation of (4).

Figure 6: Graphical representation of (5).

4 Containment and Equivalence

We begin with some preliminary results on containment and equivalence between sets of DNA
trajectories defining hairpin languages. These results areeasily established, but are required in
what follows.

Proposition 4.1. Let S1,S2⊆V∗D with S1⊆ S2, Σ be an alphabet andθ : Σ∗→ Σ∗ be a morphic or
antimorphic involution. Then the following inclusion holds shpΣ(S1,θ)⊆ shpΣ(S2,θ).

We also note that distinct trajectories may represent the same bonding pattern. For instance,
note that an occurrence of

( f
f

)
is equivalent to an occurrence of

( f
ε
)(ε

f

)
. Due to this equivalence,

we show the existence of a normal form for sets of DNA trajectories which is sometimes useful.

Lemma 4.2. For all sets of DNA trajectories S⊆ V∗D there exists a set of DNA trajectories S′ ⊆((( f
ε
)∗
∪
(ε

f

)∗)( f
f

)∗(b
b

)∗)∗ ( f
f

)∗{( f
ε
)
,ε
}

such that shpΣ(S,θ) = shpΣ(S′,θ).

Proof. Consider the following rewriting rules:

( f
ε
)( f

f

)
←→

( f
f

)( f
ε
) (ε

f

)( f
f

)
←→

( f
f

)(ε
f

)
( f

ε
)(ε

f

)
←→

( f
f

) (ε
f

)( f
ε
)
←→

( f
f

)
.

Clearly, none of the above rules alter the words which areshpΣ(S,θ)-free. Thus, to putS in the
required form, we simply migrate extra occurrences of

( f
ε
)

or
(ε

f

)
to the left-hand side of non-

(b
b

)

blocks. The loop section of the hairpin is the exception. We deal with this by observing that, for

example, the block
( f

ε
)3

interpreted as a loop is equivalent to
( f

f

)( f
ε
)
.

If S is in the form specified by Lemma 4.2, we say thatS is in normal form. Further, ifS⊆V∗D,
then by[S] we mean the set of all DNA trajectories which can be rewrittento a DNA trajectory
s∈ Sby using the above rules.
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5 Closure Properties

In this section we examine the closure properties of hairpinlanguages based on the complexity of
S. Examples 2.5 and 2.6 immediately yield the following lemma:

Lemma 5.1.There exist a regular set of DNA trajectories S and an antimorphic involutionθ (resp.,
morphic involutionσ ) such that shpΣ(S,θ) is not a regular language (resp., shpΣ(S,σ) is not a
CFL).

Note that Lemma 5.1 is in contrast to the case of hairpin languages and scattered hairpin lan-
guages, studied by Kariet al.[12], where the associated languages are regular. Despite the fact that
regularity is not preserved when using a set of DNA trajectories to describe hairpin trajectories, we
can show that for all regular sets of trajectoriesSand all antimorphic involutionsθ , the language
shpΣ(S,θ) is always context-free:

Theorem 5.2. If θ is an antimorphic involution and S is a regular set of DNA trajectories, then
shpΣ(S,θ) is a linear context-free language.

Proof. Let Sbe a regular set of DNA trajectories andGS= (VN,VD,PS,A0) be a left-linear grammar
for S, where all productions inPS are of the formA→ aBor A→ a for a∈VD andA,B∈VN (since
we can assume without loss of generality thatε /∈ S). Let G = (VN,Σ,P,A0) be the CFG defined as
follows: for all A→ tα in PS, with t ∈VD andα ∈VN∪{ε}, we add the following productions to
P:

(a) if t =
( f

ε
)
, the productionsA→ aα are added for alla∈ Σ.

(b) if t =
(ε

f

)
, the productionsA→ αa are added for alla∈ Σ.

(c) if t =
( f

f

)
, the productionsA→ aαb are added for alla,b∈ Σ.

(d) if t =
(b

b

)
, the productionsA→ aαθ(a) are added for alla∈ Σ.

To verify that this works, note that ifA0⇒
∗
GS

s, then inG we can build any wordw which bonds
according tos from both the left and right ends ofw. Sinceθ is an antimorphic involution, this
process builds bonded regions which are oriented in the proper fashion. Thus,L(G) = shpΣ(S,θ).

We note that if we relax the condition thatS is regular, Theorem 5.2 does not hold.

Lemma 5.3. Let Σ be an alphabet with|Σ| ≥ 3. There exists a (linear) context-free set of DNA
trajectories S⊆V∗D such that shpΣ(S,µ) is not a CFL.

Proof. Let S=
{( f

ε
)n(b

b

)n
: n≥ 0

}
. Then we note that ifw∈ shpΣ(S,µ), then there exist a fac-

torizationw = uv, s∈ Sand a wordx such that

x ωϕu(s) u

xR = θ(x) ωϕd(s)R v.

10



As ϕd(s) ∈ 0∗, the second relation impliesv = xR. Further, asϕu(s) ∈ {1n0n : n≥ 0}, the first
relation impliesu = yx where|y|= |x|. Thus, we can verify the equality

shpΣ(S,µ) = {yxxR : x∈ Σ+,y∈ Σ∗, |x|= |y|}.

To see thatshpΣ(S,µ) is not a CFL, note that

shpΣ(S,µ)∩c+ba+cca+b = {cn+2banccanb : n≥ 0},

which is not a CFL by an application of the pumping lemma.

Further, if we considershp fΣ(S,θ) for regularS and antimorphicθ the result may not be
context-free. Considering Lemma 5.1, we may expect this result, as the CFLs are not closed under
complement.

Theorem 5.4. Let Σ be an alphabet with|Σ| ≥ 3. There exist a regular set of DNA trajectories
S⊆V∗D and an antimorphic involutionθ such that shp fΣ(S,θ) is not a CFL.

Proof. Let S1 =
(ε

f

)∗(b
b

)+
, S2 =

( f
ε
)∗(b

b

)+
andS= S1∪S2. Note thatS is regular. We claim that

shpΣ(S,µ) = {wwRx : w∈ Σ+,x∈ Σ∗} ∪ {xwwR : w∈ Σ+,x∈ Σ∗}.

To see this equality, letz∈ shpΣ(S,µ). Then eitherz∈ shpΣ(S1,µ) or z∈ shpΣ(S2,µ). Consider

the former case. For alls∈ S1, there existi, j ∈ N with j ≥ 1 such thats=
(ε

f

)i(b
b

) j
. Note that

ϕu(s) = 0 j andϕd(s)R = 0 j1i . Thus, asz has anS1-hairpin, there existu,v,x∈ Σ∗ such thatx 6= ε,
z= uv, xω0 j u andxR = µ(x) ω0 j 1i v. This implies thatx = u andv = xRy for somey∈ Σ∗. Thus,
z= uv= xxRy. If z∈ shpΣ(S2,µ), we similarly get thatz= xwwR for somex∈ Σ∗,w∈ Σ+. The
reverse inclusion is proven similarly.

Thus, we have that

shp fΣ(S,µ) = {x : ∀y∈ Σ+,z∈ Σ∗,x /∈ {yyRz,zyyR}}. (6)

From (6), we can easily see thatshp fΣ(S,µ) is not context-free. In particular,

shp fΣ(S,µ)∩ba+cca+bba+c = {baiccajbbakc : i, j,k≥ 1, i 6= j and j 6= k}.

By an application of the pumping lemma for CFLs, this language is not context-free, establishing
the result.

Thus, in general,shp fΣ(S,θ) is not a CFL ifS is regular andθ is an antimorphism. However,
we can find conditions onSsuch thatshp fΣ(S,θ) is a CFL for all antimorphic involutionsθ . We
require some additional notions.

For s∈V∗D, we define theyield lengthof s, denoted||s||, by ||s||= |ϕu(s)|+ |ϕd(s)|. Thus, if
x∈ shpΣ({s},θ) (for any choice ofθ ) then|x|= ||s||. ForS⊆V∗D, we let||S||= {||s|| : s∈S}⊆N.
The following technical lemma is easily established:

11



Lemma 5.5. Let S⊆V∗D be a regular set of DNA trajectories. Then the language{x∈ Σ∗ : |x| ∈
||S||} is a regular language for all alphabetsΣ.

Proof. Consider the morphismρ : V∗D → {b, f}∗ defined byρ(
(x

y

)
) = xy for all

(x
y

)
∈ VD. Then

note that ifτ : {b, f}∗→ 2Σ∗ is the finite substitution defined byτ(b) = τ( f ) = Σ, thenτ(ρ(S)) =
{x∈ Σ∗ : |x| ∈ ||S||}. The result follows by the closure of the regular languages under morphisms
and finite substitutions.

Recall the definition of the density functionpL of a languageL. DefinepL : N→N by pL(n) =
|L∩Σn| for all n≥ 0. That is,pL(n) gives the number of words of lengthn in L. Call a languageL
slenderif pL(n) ∈O(1) [19].

We can now demonstrate a nontrivial class of sets of DNA trajectories for which the set of
hairpin-free words will be guaranteed to be a CFL:

Theorem 5.6. Let S⊆V∗D be a slender regular set of DNA trajectories. Then for all antimorphic
involutionsθ , shp fΣ(S,θ) is a CFL.

Proof. Since the CFLs are closed under union, it is enough to show that the result holds for regular
sets of trajectories with density at most one.

Let Sbe a regular set of DNA trajectories with density at most one and GS = (VN,VD,PS,A0)
be a left-linear grammar forS, where all productions are of the formA→ tB or A→ t for t ∈VD

andA,B∈VN (again, we can assumeε /∈ S). Let V̂N be a copy ofVN, andG = (VN∪V̂N,Σ,P,A0)
be the CFG defined as follows.

For all productions of the formA→ tB, whereA,B∈VN andt ∈VD, we perform the following
actions:

(a) If t =
( f

ε
)
, then add toP the productionsA→ aB andÂ→ aB̂ for all a∈ Σ.

(b) If t =
(ε

f

)
, then add toP the productionsA→ Ba andÂ→ B̂a for all a∈ Σ.

(c) If t =
( f

f

)
, then add toP the productionsA→ aBbandÂ→ aB̂b for all pairsa,b∈ Σ.

(d) If t =
(b

b

)
, then add toP the productions

A → aBθ(a) ∀a∈ Σ, (7)

A → aB̂b ∀a,b∈ Σ,θ(a) 6= b, (8)

Â → aB̂b ∀a,b∈ Σ. (9)

For all productions of the formA→ t, whereA ∈ VN and t ∈ VD, we perform the following
actions:

(a) If t =
( f

ε
)

or t =
(ε

f

)
, then add toP the productionŝA→ a for all a∈ Σ.

(b) If t =
( f

f

)
, then add toP the productionŝA→ ab for all pairsa,b∈ Σ.

12



(c) If t =
(b

b

)
, then add toP the productions

A → ab ∀a,b∈ Σ,θ(a) 6= b (10)

Â → ab ∀a,b∈ Σ. (11)

Note that the productions ofG are separated into two types: those whose left-hand side hasa
nonterminal fromVN, and those from̂VN. Those fromVN simulateSmuch in the same way as the
proof of Theorem 5.2, however, they are not allowed to be the final step of a derivation. To move
to those which involvêVN, we must introduce a mismatch at some point where the trajectory sees(b

b

)
(e.g., productions of the type (8) and (10)). Productions whose left-hand side is from̂VN are

permitted to terminate a production. Further, as seen in (9)and (11), they are not constrained to
match when encountering a

(b
b

)
in the trajectory—their only concern is to guarantee that the length

of the derived word is equal to||s|| for somes∈ S.
From this, we claim thatG generates the following language:

L(G) = shp fΣ(S,θ)∩{x∈ Σ∗ : |x| ∈ ||S||}.

To see this, note thatL(G) is a subset of the left-hand side. For the reverse inclusion,if x ∈
shp fΣ(S,θ)∩{x∈ Σ∗ : |x| ∈ ||S||}, then|x|= ||s|| wheres is the unique DNA trajectory inSwith
length |x|. Note that our grammar will generatex by ensuring that a mismatch is made in some
position ofx where bonding is required to occur byS.

By Lemma 5.5, the language{x∈ Σ∗ : |x| ∈ ||S||} is a regular language. Thus, its complement,
{x∈ Σ∗ : |x| /∈ ||S||} is also a regular language, by the closure properties of the regular languages.
We conclude that

shp fΣ(S,θ) = L(G)∪{x∈ Σ∗ : |x| /∈ ||S||}

is a CFL, by the closure properties of the context-free languages.

Theorem 5.6 shows the power of using DNA trajectories for characterizing hairpins. By us-
ing a well-studied property of languages and applying it to the set of DNA trajectories, we can
guarantee important properties of the associated hairpin language. However, in this case, we find
that in addition to the complexity of the set of DNA trajectories, it is also another measure of the
complexity—the density of the language—that yields the result.

Considering their role in Theorem 5.6, we can ask about the possible structure of slender regular
sets of DNA trajectories. The following important result has been established independently by,
e.g., Pǎun and Salomaa [19], Shallit [24] and, more generally, by Szilardet al. [25]:

Theorem 5.7.A regular language R overΣ is slender if and only if there exist k≥ 1, and xi ,yi,zi ∈
Σ∗ for 1≤ i ≤ k such that R=

⋃k
i=1xiy∗i zi.

Thus, slender sets of DNA trajectories include the familiarcase of palindromes from Exam-
ple 2.5, but is not powerful enough, for example, to include the set ofθ -k-hairpin-free words
studied by Kariet al. [14].

We now turn to the complexity ofshp fΣ(S,θ) for morphic involutionsθ . By Lemma 5.1,
we know thatshpΣ(S,θ) can fail to be a CFL, even ifS is regular. However, the example given
(Example 2.6) yields a language whose complementshp fΣ(S,θ) is a CFL. However, we can find
an example of a regular setSsuch thatshp fΣ(S,θ) is not a CFL.
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Theorem 5.8. Let Σ be an alphabet with|Σ| ≥ 3. There exist a regular set of DNA trajectories
S⊆V∗D and an morphic involutionθ such that shp fΣ(S,θ) is not a CFL.

Proof. Let S=
(ε

f

)∗(b
b

)∗
∪
( f

ε
)∗(b

b

)∗
. Then note thatshpΣ(S, ι) = {xxw : x∈ Σ+,w∈ Σ∗}∪{wxx :

x∈ Σ+,w∈ Σ∗}. Thus, we get thatshp fΣ(S, ι) = {x∈ Σ∗ : ∀y∈ Σ+,z∈ Σ∗,x /∈ {yyz,zyy}}. By
intersecting with the regular language(ba+c)3, we note

shp fΣ(S, ι)∩ (ba+c)3 = {baicbajcbakc : i 6= j and j 6= k},

which is not a CFL by an application of the pumping lemma.

We now consider the complexity ofshpΣ(S,θ) for unary alphabets (i.e.,Σ with |Σ|= 1).

Lemma 5.9. Let |Σ|= 1 andL be any class of languages closed under morphisms. If S⊆V∗D with
S∈L , then shpΣ(S,θ) ∈L for all morphic and antimorphic involutionsθ .

Proof. Note that if|Σ|= 1 andθ : Σ→ Σ is an involution, then whenθ is extended to a morphism
or antimorphism, the result is equivalent to applying the identity morphism. Thus, we may assume
throughout thatθ is the identity morphism.

Recallρ andτ from the proof of Lemma 5.5. First, in the case where|Σ|= 1, τ is a morphism.
Further, note that{x∈ Σ∗ : |x| ∈ ||S||}= shpΣ(S,θ) = τ(ρ(S)). Therefore, ifS∈L , then so is
τ(ρ(S)), by the assumed closure properties ofL and the fact thatρ and (in this case only)τ is a
morphism. We conclude thatshpΣ(S,θ) ∈L and the result holds.

As a corollary, we note that for unary alphabets, ifS is regular (resp., context-free) then
shpΣ(S,θ) is regular (resp., context-free). For context-free languages, this contrasts Lemma 5.3.

5.1 Regularity of Hairpin Languages

In the previous section, we have seen that for some regular set of DNA trajectoriesSand antimor-
phic involutionθ , the associated hairpin languageshp fΣ(S,θ) is not context-free. If we restrict
S to be slender, then we can guarantee thatshp fΣ(S,θ) is context-free for all antimorphic involu-
tionsθ . In this section, we consider tools which will allow us to establish thatshp fΣ(S,θ) (and
shpΣ(S,θ)) is regular. Instead of further constrainingS by beginning with slender sets of DNA
trajectories, we look at relations onS that ensure regularity ofshp fΣ(S,θ).

We define a partial order≺ on words overV∗D. Let s1,s2 ∈V∗D with

ϕu(s1) =
n

∏
i=1

1 j i 0ki , andϕd(s1) =
n

∏
i=1

1ℓi 0ki ,

for n≥ 0 and j i ,ki , ℓi ≥ 0 for all 1≤ i ≤ n. Thens2 ≺ s1 if there existα1, . . . ,αn ∈ {0,1}∗ such
that the following three conditions hold:

(i) ϕu(s2) = ∏n
i=11 j i αi andϕd(s2) = ∏n

i=11ℓi αi ;

(ii) |αi|= ki for all 1≤ i ≤ n; and
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(iii) ∏n
i=1αi /∈ 1∗.

We note that≺ is also used to investigate bond-free properties between separate single strands of
DNA [4].

The situation is illustrated (in the case of an antimorphic involution) in Figure 7. The figure
illustrates that ifs2 ≺ s1, then we can get froms1 to s2 by replacing a bonding region of lengthki

in s1 with a region which is not completely bonded, but still has lengthki , in s2.

ik

ik

Figure 7: A portion ofs1 is shown on the left, and a portion ofs2 is shown on the right.

Example 5.10.Considers1,s2 ∈V∗D given by

s1 =

(
b
b

)(
b
b

)(
f
ε

)(
b
b

)(
f
f

)
, s2 =

(
b
b

)(
f
f

)(
f
ε

)(
f
ε

)(
f
f

)(
ε
f

)
.

Note thatϕu(s1) = 00101,ϕu(s2) = 01111,ϕd(s1) = 0001, andϕd(s2) = 0111. Thus,s2≺ s1 holds
with α1 = 01 andα2 = 1.

Note that Example 5.10 demonstrates that the relation≺ is not simply defined by the idea
“possibly replace

(b
b

)
with

( f
f

)
”. This is due to the equivalence of trajectories seen in the normal

form of Lemma 4.2. However, the replacement intuition is formalized in the following result.

Proposition 5.11.Letπ : V∗D→ 2V∗D be the substitution defined byπ(x) = x if x 6=
(b

b

)
andπ(

(b
b

)
) =

{
(b

b

)
,
( f

f

)
}. Then for all S⊆V∗D,

[
π(S)∩ (V∗D

(
b
b

)
V∗D)

]
= {x∈V∗D : ∃s∈ S,x≺ s}.

We now define the minimal set of DNA trajectories with respectto ≺. For all S⊆ V∗D, let
min(S) = {s∈ S : ∀t( 6= s) ∈ S, t 6≺ s}.

Example 5.12.Consider thek-hairpin languages (2):

Sk =

{(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

)≥k( f
f

)∗{
ε,

(
f
ε

)}
.

Note that if we put min(Sk) in normal form, we get

min(Sk) =

{(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

)k( f
f

)∗{
ε,

(
f
ε

)}
.
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We now show thatSand min(S) describe the same hairpin languages:

Theorem 5.13.Let S⊆ V∗D. For all Σ and all morphic or antimorphic involutionsθ , we have
shpΣ(S,θ) = shpΣ(min(S),θ).

Proof. The inclusionshpΣ(S,θ) ⊇ shpΣ(min(S),θ) is immediate, by Lemma 4.1. Thus, letx ∈
shpΣ(S,θ). Thus, there existu,v,w ∈ Σ∗ with w 6= ε ands∈ S such thatx = uv, wωϕu(s) u and
θ(w) ωϕd(s)R v. Assumes /∈ min(S). Then there must exists′ ∈ min(S) such thats′ ≺ s. Let

n,αi, j i,ki , ℓi (with 1≤ i ≤ n) be defined so thatϕu(s) = ∏n
i=11 j10ki ,ϕd(s) = ∏n

i=11ℓi 0ki ,ϕu(s′) =

∏n
i=11 j1αi andϕd(s′) = ∏n

i=11ℓi αi. Let α = ∏n
i=1 αi .

Consider that|w|= ∑n
i=1ki . Let m= ∑n

i=1ki , w = ∏m
i=1wi wherewi ∈ Σ.

Further, letα = ∏m
i=1 βi whereβi ∈ {0,1}. Define I ⊆ N by I = {i : βi = 0}, i.e., exactly

those positions ofα which are zero. We want to consider those positions ofw which correspond
to indices inI , since these correspond to the portion ofx which will remain bonded when we pass
from s to s′. Thus, letw′ = ∏i∈I wi . From this definition, it is not hard to see that

w′ωϕu(s′) u andθ(w′)ωϕd(s′)R v.

As α /∈ 1∗, note thatI 6= /0 and sow′ 6= ε. As x = uv, we havex∈ shpΣ(min(S),θ).

Example 5.14.Continuing with Example 5.12, we see thatshpΣ(min(Sk),θ) (and thusshpΣ(Sk,θ))
is regular for all morphic or antimorphic involutionsθ . This was first established by Kariet al.[14,
Prop. 3].

To see thatshpΣ(min(Sk),θ) is regular, note that there are only finitely many occurrences of(b
b

)
in each trajectory in min(Sk), and further that the two blocks of non-

(b
b

)
s in each trajectory

does not define a length restriction between distinct portions of the wordw∈ shpΣ(min(Sk),θ) –
in particular, ifw = uxvθ(x)y∈ shpΣ(min(Sk),θ), then there is no relationship betweenu andy or
between|u| and|y|. Thus, a finite automaton can verify ifw∈ shpΣ(min(Sk),θ) by storing finitely
many symbols ofw in its finite control (those that correspond to the bonded portion x).

Example 5.15.Thek-scattered hairpin languages (see (3)) are given by

Sk =

({(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

))≥k( f
f

)∗{
ε,

(
f
ε

)}
.

Note that if min(Sk)⊆ Sk is put in normal form, we get

min(Sk) =

({(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

))k( f
f

)∗{
ε,

(
f
ε

)}
.

We can again establish thatshpΣ(min(Sk),θ) is regular for all morphic or antimorphic involutions
and allk ≥ 1, with an argument similar to that in Example 5.14. Thus, asshpΣ(min(Sk),θ) is
regular, so isshpΣ(Sk,θ) (this was established by Kariet al. [12, Prop. 13(ii)]).
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5.2 Finiteness of Hairpin Classes

We continue our investigation of conditions onSandθ that ensure thatshpΣ(S,θ) andshp fΣ(S,θ)
lie within a certain class of languages by considering conditions onS to ensure thatshp fΣ(S,θ) is
finite. Kari et al. [14] have studied conditions which ensure finiteness of hairpin-free languages.
We summarize their results here:

Theorem 5.16.Let k≥ 1 and Sk ⊆V∗D be defined by

Sk =

{(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

)≥k( f
f

)∗{( f
ε

)
,ε
}

.

Then shp fΣ(S,θ) is finite if and only if

(i) θ = ι,

(ii) θ = µ and k= 1, or

(iii) θ = µ, |Σ|= 2 and k≤ 4.

We note that Rampersad and Shallit [20] have independently established stronger results than
Theorem 5.16 (ii) and (iii): they show that the same languages are finite even if we allow the occur-
rence of a word and the occurrence of its reversal (i.e., bothsingle-stranded portions of the stem)
to overlap. However, the constructions of Kariet al.and Rampersad and Shallit are essentially the
same.

As noted by Kariet al. [14], problems concerning finiteness of hairpin languages are occasion-
ally related to problems in combinatorics on words (see Choffrut and Karhumäki [2] or Lothaire
[16] for an introduction to combinatorics on words). We recall some notions of avoidability. LetV
be a set of indeterminates. Then we say that a wordw∈ Σ∗ encountersthe patternα ∈V∗ if there
exists a morphismh : V∗→ Σ∗ with h(β ) 6= ε for all β ∈V (i.e.,h is non-erasing) such thath(α)
is a subword ofw. We say thatw avoidsα if w does not encounterα.

We say that a patternα is avoidableif there exists arbitrarily long words which avoidα. We
say thatα is k-avoidable if there exists arbitrarily long wordsw∈ Σ∗, where|Σ| = k, such thatw
avoidsα. The terms unavoidable andk-unavoidable are defined in the natural way.

Using results from the study of combinatorics on words, we can instantly conclude the finite-
ness of some scattered-hairpin languages by virtue of theircoinciding with known unavoidable
patterns. In particular, we use the results of Cassaigne [1], who gives a list of avoidability of pat-
terns over 2- and 3-letter pattern alphabets, to derive finiteness results. These results are limited to
the case whereθ = ι, due to the emphasis on repetition of subwords in the study ofcombinatorics
on words.

As an example, every sufficiently long word over any alphabetcontains two occurrences of
some letter. In terms of hairpins, we can phrase this equivalently as follows: the languageshp fΣ(S, ι)
is finite for all Σ, where

S=

{(
f
ε

)∗
∪

(
ε
f

)∗}( f
f

)∗(b
b

)(
f
f

)∗{( f
ε

)
,ε
}

.

Using the tools of avoidability, we can also conclude the following:
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Lemma 5.17.Let S1 = (
( f

ε
)∗
∪
(ε

f

)∗
)
( f

f

)∗(b
b

)+( f
ε
)+(b

b

)+
. The languages shp fΣ(S1, ι) are finite for

all Σ with |Σ| ≤ 2.

Similarly, if S2 = (
( f

ε
)∗
∪
(ε

f

)∗
)
( f

f

)∗(b
b

)+(ε
f

)+(b
b

)+
, the languages shp fΣ(S2, ι) are finite for all

Σ with |Σ| ≤ 2.

Figure 8: Hairpins described byS1 in Lemma 5.17.

Proof. The set of trajectoriesS1 describes the hairpin structure given in Figure 8. In particular, if
z is shpΣ(S1, ι)-free, thenz is not of the formuvxyyvwfor somev,x,y∈ Σ+ andu,w∈ Σ∗. Thus,z
avoids the patternABCCA. By Cassaigne [1, p. 157], this pattern is 2-avoidable.

On the other hand, we can interpret the classic result of Entringeret al. [6] on avoidability of
long squares in terms of hairpins:

Theorem 5.18.Let S⊆V∗D be defined by S=
{( f

ε
)∗
∪
(ε

f

)∗}( f
f

)∗(b
b

)≥3
. Then the language shp fΣ(S, ι)

is infinite if |Σ| ≥ 2.

For related results, see Fraenkel and Simpson [7] or Rampersadet al.[21]. Of course, there are
both well-studied and novel problems in combinatorics on words and avoidability which cannot
be expressed in terms of hairpins. For example, the avoidability of the patternXXX, which is
well-studied, cannot be expressed in terms of hairpins. However, the interaction between classical
avoidability problems and hairpins is compelling, and the expressive power of hairpins suggests
many problems, likely difficult, involving avoidability ofpatterns.

6 Decidability

We can now investigate the decidability of hairpin properties.

Theorem 6.1. Given an antimorphismθ , a regular set of DNA trajectories S and a regular lan-
guage L, it is decidable whether L is shpΣ(S,θ)-free.

Proof. Note thatL is shpΣ(S,θ)-free if and only if L ∩ shpΣ(S,θ) = /0. As L is regular and
shpΣ(S,θ) is a CFL (by Theorem 5.2), it is decidable whetherL∩shpΣ(S,θ) = /0.
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For undecidability, we show that there exists a regular set of trajectoriesSsuch that determin-
ing whether context-free languages areshpΣ(S,θ)-free for morphic or antimorphic involutions is
impossible. The following results employ the undecidability of Post’s Correspondence Problem
(PCP); we refer the reader to Harju and Karhumäki [8] for an introduction.

Theorem 6.2.There exists a fixed regular set of DNA trajectories S such that the following problem
is undecidable: “Given an alphabetΣ, an antimorphic involutionθ : Σ∗→ Σ∗ (resp., a morphic
involutionθ : Σ∗→ Σ∗) and a CFL L⊆ Σ∗, is L⊆ shp fΣ(S,θ)?”

Proof. We first consider the result for antimorphic involutionsθ . Let S=
(b

b

)∗( f
ε
)

and let I =
(u1,u2, . . . ,un;v1,v2, . . . ,vn) be a PCP instance over an alphabet∆. Let Σ be the alphabetΣ = ∆∪
{0,1,#,#}. Let θ : Σ∗→ Σ be the antimorphic involution defined byθ(a) = a for all a∈ Σ−{#,#}
andθ(#) = #. From the PCP instanceI , we construct a context-free languageL via the grammar
G = ({A0,A1,A2},Σ,P,A0), given by the following set of productionsP:

A0 → A1#A2

A1 → uiA10i1 ∀1≤ i ≤ n

A1 → ε
A2 → 10iA2vR

i ∀1≤ i ≤ n

A2 → ε

The result will follow by the claim below:

Claim 6.3. L∩shpΣ(S,θ) 6= /0 if and only if I has a solution.

(⇒): Suppose a solution toI is given byx = ui1ui2 · · ·uim = vi1vi2 · · ·vim where 1≤ i j ≤ n for
1≤ j ≤m. Consider the word

y = ui1ui2 · · ·uim0im10im−11· · ·0i210i11#10i110i21· · ·0im−110imvR
imvR

im−1
· · ·vR

i1

Clearly,y∈ L. Further,y∈ shpΣ(S,θ) via the DNA trajectory

s=

(
b
b

)|x|+m+∑m
j=1 i j

(
f
ε

)
.

(⇐): Let x∈ L∩shpΣ(S,θ). Thus, by the structure ofL, we have

x = ui1ui2 · · ·uim0im10im−11· · ·0i210i11#10ℓ110ℓ21· · ·0ℓr−110ℓr vR
ℓr

vR
ℓr−1
· · ·vℓ1

with 1 ≤ i j , ℓk ≤ n for all 1≤ j ≤ m and 1≤ k ≤ r. Consider that # appears inx, but # does
not. Thus, the occurrence of # must be unbonded, asx ∈ shpΣ(S,θ), and eachs∈ S only has
one occurrence off . Thus, we must have that ifx ∈ shpΣ(S,θ) via the DNA trajectorys, then
s=
(b

b

)α( f
ε
)
, whereα = |ui1ui2 · · ·uim0im10im−11· · ·0i210i11|= |10ℓ110ℓ21· · ·0ℓr−110ℓr vR

ℓr
vR
ℓr−1
· · ·vℓ1|

Note thatθ(ui1 · · ·uim0im1· · ·0i11) = 10i1 · · ·10imuR
imuR

im−1
· · ·uR

i1. As the alphabetsΣ and{0,1}
are disjoint, we must have

ui1ui2 · · ·uim = vℓ1vℓ2 · · ·vℓr
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and 0i110i21· · ·0im1= 0ℓ110ℓ21· · ·0ℓr−110ℓr 1. Therefore,r = mandi j = ℓ j for all 1≤ j ≤m. Thus,
ui1 · · ·uim = vi1 · · ·vim represents a solution to the PCP instance.

The proof for the case morphic involutions is essentially the same as the proof above. In par-
ticular, given a PCP instanceI over an alphabet∆, the alphabetΣ remains the same, the involution
θ remains the same, but is extended to an morphism, and the setS is also the same.

The change is that we define context-free languageL by the grammarG=({A0,A1,A2},Σ,P,A0),
given by the following set of productionsP:

A0 → A1#A2

A1 → uiA10i1 ∀1≤ i ≤ n

A1 → ε
A2 → viA20i1 ∀1≤ i ≤ n

A2 → ε

In this case, we leave it to the reader to establish the claim thatL∩shpΣ(S,θ) 6= /0 if and only if I
has a solution.

Note that the key concept in Theorem 6.2 is that we inserted the symbol #, whose image#
(underθ ) did not appear in the language. In this way, we ensured that bonding did not occur at a
specified position in our words.

7 Conclusions

In this paper, we have given a technique for modelling hairpin conditions on DNA words by using
DNA trajectories. We have investigated closure propertiesand decidability questions relating to
these hairpin sets. In order to ensure positive closure properties, restrictions must be placed on
the sets of DNA trajectories. In particular, ifS is a slender regular set of DNA trajectories, then
shp fΣ(S,θ) is a context-free language for antimorphic involutionsθ . On the other hand, for all
regular sets of DNA trajectoriesSand all antimorphic involutionsθ , the setshpΣ(S,θ) is a context-
free language. In proving regularity of scattered hairpin sets, we have considered a partial order≺
and the minimal set of DNA trajectories with respect to≺.

With respect to decidability, we have shown that hairpin-freeness of a regular language is de-
cidable for regular set of trajectories and antimorphic involutions. However, there exists a fixed
regular set of trajectoriesS such that it is undecidable, given an antimorphic involution and a
context-free languageL, whether or notL is shpΣ(S,θ)-free.

One restriction on using DNA trajectories is that the model has the potential to be too precise:
sets of DNA trajectories where bonds are enforced at particular positions are not realistic biological
model, and would likely not be useful in DNA computing situations. Thus, care has to be taken
in the choice of the set of DNA trajectories. The common choices for describing hairpin shapes
in previous research all do not enforce strong conditions which are unrealistic; viewed as DNA
trajectories, we note that the specifications are all infinite (regular) languages whose broad structure
does not impose impossible conditions. A topic for future work is an investigation of the limitations
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of the use of DNA trajectories in modelling hairpins. In particular, we can impose a change to
the definition (for instance, a probabilistic or similar model) which essentially ignores unrealistic
conditions specified by a set of DNA trajectories, or use language theory to consider classes of
sets of DNA trajectories which model realistic conditions and investigate their language theoretic
properties.

Another topic for future research is the interplay between required formations and forbidden
formations. Currently, given two sets of DNA trajectoriesS1 and S2, the setsshpΣ(S1,θ) and
shp fΣ(S2θ) are independent entities. It might be a worthwhile extension to consider conditions
which model statements such as “hairpins from S1 if necessary, but never from S2”.

We feel that DNA trajectories are an appropriate and convenient tool for modelling hairpin
conditions on words. The use of DNA trajectories also suggests interesting problems for further
study, including further research on avoidability of patterns defined by scattered hairpin conditions.
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[19] PǍUN , G., AND SALOMAA , A. Thin and slender languages.Disc. Appl. Math. 61(1995),
257–270.

[20] RAMPERSAD, N., AND SHALLIT , J. Words avoiding reversed subwords.J. Combin. Math.
and Combin. Comput. 54(2005), 157–164.

[21] RAMPERSAD, N., SHALLIT , J., AND WANG, M.-W. Avoiding large squares in infinite
binary words.Theor. Comp. Sci. 339(2005), 19–34.

[22] ROTHEMUND, P., PAPADAKIS , N., AND WINFREE, E. Algorithmic self-assembly of DNA
Sierpinski triangles.PLoS Biol. 2, 12 (2004), e424.

[23] ROZENBERG, G., AND SALOMAA , A., Eds. Handbook of Formal Languages. Springer,
1997.

[24] SHALLIT , J. Numeration systems, linear recurrences, and regular sets. Inf. and Comp. 113,
2 (1994), 331–347.

22



[25] SZILARD , A., YU, S., ZHANG, K., AND SHALLIT , J. Characterizing regular languages
with polynomial densities. InMathematical Foundations of Computer Science 1992(1992),
I. Havel and V. Koubek, Eds., vol. 629 ofLecture Notes in Computer Science, Springer,
pp. 494–503.

23


