On Iterated Scattered Deletion

Michael Domaratzki*
School of Computing Queen's University,
Kingston, ON K7L 3N6 Canada
email: domaratz@cs.queensu.ca

In this note, we solve an open problem of Ito et al. [2] on iterated scattered deletion.

Note: Since this note has appeared in Bull. EATCS, I have been informed that this problem has been previously solved; see Ito and Silva [1], where the authors show that there exists a regular language R such that $(\sim)^{+}(R)$ is not a CFL. I am grateful to Masami Ito for pointing me to this reference.

Let Σ be an alphabet. The scattered deletion $[3,5]$ of two words $x, y \in \Sigma^{*}$, denoted by $x \sim y$, is defined as
$x \leadsto y=\left\{x_{1} x_{2} \cdots x_{k} \quad: y=y_{1} \cdots y_{k-1} ; x=x_{1} y_{1} x_{2} y_{2} \cdots x_{k-1} y_{k-1} x_{k} ; x_{i}, y_{i} \in \Sigma^{*}\right\}$.
Thus, $x \leadsto y$ is the set of words which result from deleting y as a scattered subword from x. We extend this operation to languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ as follows:

$$
L_{1} \leadsto L_{2}=\bigcup_{x \in L_{1}} \bigcup_{y \in L_{2}} x \leadsto y
$$

For unexplained notions in formal language and automata theory, please see Yu [6]. For languages L_{1}, \cdots, L_{k}, we use the notation $\prod_{i=1}^{k} L_{i}=L_{1} L_{2} \cdots L_{k}$.

We now define an iterated scattered deletion operation [2]. Let $i \geq 1, L \subseteq \Sigma^{*}$. Then $(\leadsto)^{i}(L)$ is defined recursively as follows:

$$
\begin{aligned}
(\sim)^{1}(L) & =L ; \\
(\sim)^{i+1}(L) & =(\leadsto)^{i}(L) \leadsto\left((\leadsto)^{i}(L) \cup\{\epsilon\}\right) \quad \forall i \geq 1 .
\end{aligned}
$$

Then the iterated scattered deletion operator $(\sim)^{+}(L)$ is given by

$$
(\leadsto)^{+}(L)=\bigcup_{i \geq 1}(\leadsto)^{i}(L)
$$

[^0]We also define an auxiliary operation $L_{1}[\leadsto]^{i} L_{2}$ which is defined recursively for all $i \geq 0$ as follows:

$$
\begin{aligned}
L_{1}[\leadsto]^{0} L_{2} & =L_{1} ; \\
L_{2}[\sim]^{i+1} L_{2} & =\left(L_{1}[\leadsto]^{i} L_{2}\right) \leadsto L_{2} \quad \forall i \geq 1 .
\end{aligned}
$$

We then set

$$
L_{1}[\leadsto]^{*} L_{2}=\bigcup_{i \geq 0} L_{1}[\leadsto]^{i} L_{2}
$$

Ito et al. [2] asked whether the regular languages are closed under $(\sim)^{+}$. We show that they are not.

Let $k \geq 2$ be arbitrary, and let $\Sigma_{k}=\left\{\alpha_{i}, \beta_{i}, \gamma_{i}, \eta_{i}\right\}_{i=1}^{k}$. Then we define $L_{k} \subseteq \Sigma_{k}^{*}$ as

$$
L_{k}=\prod_{i=1}^{k}\left(\alpha_{i} \beta_{i}\right)^{*} \prod_{i=1}^{k}\left(\gamma_{i} \eta_{i}\right)^{*}+\bigcup_{i=1}^{k} \beta_{i} \eta_{i} .
$$

We claim that

$$
\begin{equation*}
(\sim)^{+}\left(L_{k}\right) \cap \prod_{i=1}^{k} \alpha_{i}^{+} \prod_{i=1}^{k} \gamma_{i}^{+}=\left\{\alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{k}^{i_{k}} \gamma_{1}^{i_{1}} \gamma_{2}^{i_{2}} \cdots \gamma_{k}^{i_{k}}: i_{j} \geq 1\right\} \tag{1}
\end{equation*}
$$

and that $(\sim)^{+}\left(L_{k}\right)$ cannot be expressed as the intersection of $k-1$ context-free languages.

We first establish (1). Let $\left(i_{1}, i_{2}, \cdots, i_{k}\right) \in \mathbb{N}^{k}$. Then note that

$$
\left.\prod_{j=1}^{k} \alpha_{j}^{i_{j}} \prod_{j=1}^{k} \gamma_{j}^{i_{j}} \in\left(\cdots\left(\prod_{j=1}^{k}\left(\alpha_{j} \beta_{j}\right)^{i_{j}} \prod_{j=1}^{k}\left(\gamma_{j} \eta_{j}\right)^{i_{j}}\right)[\sim]^{i_{1}} \beta_{1} \eta_{1}\right) \cdots\right)[\sim]^{i_{k}} \beta_{k} \eta_{k}
$$

This establishes the right-to-left inclusion of (1). We now show the reverse inclusion. First, note that if $\alpha \in(\sim)^{+}\left(L_{k}\right)$, then we can write $\alpha=x_{1} x_{2} \cdots x_{k} y_{1} y_{2} \cdots y_{k}$ where $x_{i} \in\left\{\alpha_{i}, \beta_{i}\right\}^{*}$ and $y_{i} \in\left\{\gamma_{i}, \eta_{i}\right\}^{*}$. To prove the left-to-right inclusion of (1), we will require the following stronger claim:

Claim 1 Let $x_{1} x_{2} \cdots x_{k} y_{1} y_{2} \cdots y_{k} \in(\sim)^{+}\left(L_{k}\right)$ where $x_{i} \in\left\{\alpha_{i}, \beta_{i}\right\}^{*}$ and $y_{i} \in$ $\left\{\gamma_{i}, \eta_{i}\right\}^{*}$ for all $1 \leq i \leq k$. Then for all $1 \leq i \leq k$, the following equalities hold:

$$
\begin{equation*}
\left|x_{i}\right|_{\alpha_{i}}-\left|x_{i}\right|_{\beta_{i}}=\left|y_{i}\right|_{\gamma_{i}}-\left|y_{i}\right|_{\eta_{i}} . \tag{2}
\end{equation*}
$$

Proof. Let $z=x_{1} x_{2} \cdots x_{k} y_{1} y_{2} \cdots y_{k} \in(\leadsto)^{+}\left(L_{k}\right)$. Then there exists some $i \geq 1$ such that $z \in(\sim)^{i}\left(L_{k}\right)$. The proof is by induction on i. For $i=1, z \in L_{k}$. Thus, we see that either
(a) for all $1 \leq \ell \leq k, x_{\ell}=\left(\alpha_{\ell} \beta_{\ell}\right)^{j_{\ell}}$ for some $j_{\ell} \geq 0$ and $y_{\ell}=\left(\gamma_{\ell} \eta_{\ell}\right)^{j_{\ell}^{\prime}}$ for some $j_{\ell}^{\prime} \geq 0$, in which case $\left|x_{\ell}\right|_{\alpha_{\ell}}-\left|x_{\ell}\right|_{\beta_{\ell}}=0=\left|y_{\ell}\right|_{\gamma_{\ell}}-\left|y_{\ell}\right|_{\eta_{\ell}}$; or
(b) $z=\beta_{\ell} \eta_{\ell}$ for some $1 \leq \ell \leq k$. Thus, $\left|x_{\ell}\right|_{\alpha_{\ell}}-\left|x_{\ell}\right|_{\beta_{\ell}}=-1=\left|y_{\ell}\right|_{\gamma_{\ell}}-\left|y_{\ell}\right|_{\eta_{\ell}}$ and $x_{j}=y_{j}=\epsilon$ for all $j \neq \ell$ with $1 \leq j \leq k$.

Thus, the result holds for $i=1$.
Assume the claim holds for all natural numbers less than i. Let $z \in(\sim)^{i}\left(L_{k}\right)$. Then there exists some $\theta \in(\sim)^{i-1}\left(L_{k}\right)$ and $\zeta \in(\sim)^{i-1}\left(L_{k}\right)+\epsilon$ such that $z \in$ $\theta \leadsto \zeta$. If $\zeta=\epsilon$, then $z=\theta$ and the result holds by induction. Thus, let

$$
\begin{aligned}
\theta & =u_{1} u_{2} \cdots u_{k} v_{1} v_{2} \cdots v_{k} \\
\zeta & =s_{1} s_{2} \cdots s_{k} t_{1} t_{2} \cdots t_{k}
\end{aligned}
$$

so that $u_{\ell}, s_{\ell} \in\left\{\alpha_{\ell}, \beta_{\ell}\right\}^{*}$ and $v_{\ell}, t_{\ell} \in\left\{\gamma_{\ell}, \eta_{\ell}\right\}^{*}$ for all $1 \leq \ell \leq k$. Then note that for all $1 \leq \ell \leq k$,

$$
\begin{aligned}
\left|x_{\ell}\right|_{\alpha_{\ell}} & =\left|u_{\ell}\right|_{\alpha_{\ell}}-\left|s_{\ell}\right|_{\alpha_{\ell}} ; \\
\left|x_{\ell}\right|_{\beta_{\ell}} & =\left|u_{\ell}\right|_{\beta_{\ell}}-\left|s_{\ell}\right|_{\beta_{\ell}} ; \\
\left|y_{\ell}\right|_{\gamma_{\ell}} & =\left|v_{\ell}\right|_{\gamma_{\ell}}-\left|t_{\ell}\right|_{\gamma_{\ell}} ; \\
\left|y_{\ell}\right|_{\eta_{\ell}} & =\left|v_{\ell}\right|_{\eta_{\ell}}-\left|t_{\ell}\right|_{\eta_{\ell}} .
\end{aligned}
$$

Thus, by induction, we can easily establish that the desired equalities hold.
We now show that $(\sim)^{+}\left(L_{k}\right)$ cannot be expressed as the intersection of $k-1$ context-free languages. Let $C F L_{k}$ be the class of languages which are expressible as the intersection of k CFLs. The following lemma is obvious, since the CFLs are closed under intersection with regular languages.

Lemma $2 C F L_{k}$ is closed under intersection with regular languages.
We will also require the following lemma:
Lemma 3 Let $L_{1}, L_{2} \in C F L_{k}$ be such that there exist disjoint regular languages R_{1}, R_{2} such that $L_{i} \subseteq R_{i}$ for $i=1,2$. Then $L_{1} \cup L_{2} \in C F L_{k}$.

Proof. Let $L_{1}=X_{1} \cap \cdots \cap X_{k}$ and $L_{2}=Y_{1} \cap \cdots \cap Y_{k}$. Then without loss of generality, we may assume that $X_{j} \subseteq R_{1}$ and $Y_{j} \subseteq R_{2}$ for $1 \leq j \leq k$; if not, we may replace X_{i} with $X_{i} \cap R_{1}$ and Y_{i} with $Y_{i} \cap R_{2}$ as necessary. Both intersections are still CFLs.

Thus, note that $L_{1} \cup L_{2}=\left(X_{1} \cup Y_{1}\right) \cap \cdots \cap\left(X_{k} \cup Y_{k}\right)$. As $X_{i} \cup Y_{i} \in C F L$, the result immediately follows.

The following result is due to Liu and Weiner [4, Thm. 8]:
Theorem 4 Let $k \geq 2$. Let $L_{k}^{\prime \prime}=\left\{\alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{k}^{i_{k}} \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{k}^{i_{k}}: i_{j} \geq 0\right\}$. Then $L_{k}^{\prime} \in C F L_{k}-C F L_{k-1}$.

However, we prove the following corollary, which will be more useful to us:

Corollary 5 Let $L_{k}^{\prime}=\left\{\alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{k}^{i_{k}} \alpha_{1}^{i_{1}} \alpha_{2}^{i_{2}} \cdots \alpha_{k}^{i_{k}} \quad: \quad i_{j} \geq 1\right\}$. Then $L_{k}^{\prime} \in$ $C F L_{k}-C F L_{k-1}$.

Proof. The sufficiency of k intersections is obvious, by Lemma 2. We prove only the necessity of k intersections. The proof is by induction. For $k=2$, the result can be established by the pumping lemma. Let $S \subset[k]$. Denote by $L_{k}^{(S)}$ the language

$$
L_{k}^{(S)}=\left\{\prod_{j \in S} \alpha_{j}^{i_{j}} \prod_{j \in S} \alpha_{j}^{i_{j}}: i_{j} \geq 1\right\}
$$

Further, note that

$$
L_{k}^{(S)} \subseteq\left(\prod_{j \in S} \alpha_{j}^{+}\right)^{2}
$$

Let $R_{S}=\left(\prod_{j \in S} \alpha_{j}^{+}\right)^{2}$. Then note that $R_{S} \cap R_{S^{\prime}}=\emptyset$ for $S, S^{\prime} \subseteq[k]$ (including the possibility that $S=[k]$) with $S \neq S^{\prime}$.

By induction, if $S \subset[k]$, where the inclusion is proper, then $L_{k}^{(S)} \in C F L_{k-1}$.
Assume that L_{k}^{\prime} can be expressed as the intersection of $k-1$ CFLs. We then note that

$$
L_{k}^{\prime \prime}=L_{k}^{\prime} \cup \bigcup_{S \subsetneq[k]} L_{k}^{(S)}
$$

By Lemma $3, L_{k}^{\prime \prime} \in C F L_{k-1}$, a contradiction. This completes the proof.
Thus, we may state our main result:
Theorem 6 For all $k \geq 2$, there exists an $O\left(n^{2 k-1}\right)$-density bounded regular language L_{k} such that $(\sim)^{+}\left(L_{k}\right)$ cannot be expressed as the intersection of $k-1$ context-free languages.

Proof. Let $\Delta_{k}=\left\{\gamma_{i}, \alpha_{i}\right\}_{i=1}^{k}$. Let $h_{k}: \Delta_{k}^{*} \rightarrow \Delta_{k}^{*}$ be given by $h_{k}\left(\alpha_{i}\right)=h_{k}\left(\gamma_{i}\right)=$ α_{i} for all $1 \leq i \leq k$. Let $D_{k}=(\sim)^{+}\left(L_{k}\right)$. Let $R_{k}=\prod_{i=1}^{k} \alpha_{i}^{+} \prod_{i=1}^{k} \gamma_{i}^{+}$. If $D_{k} \in C F L_{k-1}$, then $D_{k} \cap R_{k} \in C F L_{k-1}$ as well, by Lemma 2. We now claim that this implies that $h_{k}\left(D_{k} \cap R_{k}\right)$ is in $C F L_{k-1}$.

Let $X_{1}, X_{2}, \ldots, X_{k-1} \in C F L$ be chosen so that

$$
D_{k} \cap R_{k}=\cap_{i=1}^{k-1} X_{i} .
$$

The inclusion $h_{k}\left(D_{k} \cap R_{k}\right) \subseteq \cap_{i=1}^{k-1} h_{k}\left(X_{i}\right)$ is easily verified. We now show the reverse inclusion. First, we may assume without loss of generality that $X_{j} \subseteq R_{k}$ for all $1 \leq j \leq k-1$. If not, let $X_{j}^{\prime}=X_{j} \cap R_{k}$. By the closure properties of the CFLs, $X_{j}^{\prime} \in C F L$, and we still have $D_{k} \cap R_{k}=\cap_{i=1}^{k-1} X_{i}^{\prime}$.

Let $x \in \cap_{i=1}^{k-1} h_{k}\left(X_{i}\right)$. Let $y_{i} \in X_{i}$ be such that $h_{k}\left(y_{i}\right)=x$ for $1 \leq i \leq k-1$. By assumption, we can write

$$
y_{j}=\prod_{i=1}^{k} \alpha_{i}^{\ell_{i}^{(j)}} \prod_{i=1}^{k} \gamma_{i}^{m_{i}^{(j)}}
$$

for some $\ell_{i}^{(j)}, m_{i}^{(j)} \geq 1$ for $1 \leq i \leq k$ and $1 \leq j \leq k-1$. Thus, by definition of h_{k},

$$
h_{k}\left(y_{j}\right)=\prod_{i=1}^{k} \alpha_{i}^{\ell_{i}^{(j)}} \prod_{i=1}^{k} \alpha_{i}^{m_{i}^{(j)}}
$$

for all $1 \leq j \leq k-1$. As $h_{k}\left(y_{j}\right)=x$, for all $1 \leq j \leq k-1$, we must have that $\ell_{i}^{(j)}=\ell_{i}^{\left(j^{\prime}\right)}$ and $m_{i}^{(j)}=m_{i}^{\left(j^{\prime}\right)}$ for $1 \leq i \leq k$ and all $1 \leq j, j^{\prime} \leq k-1$. Thus $y_{1}=\cdots=y_{k-1} \in \cap_{i=1}^{k-1} X_{i}$ and thus $x \in h_{k}\left(\cap_{i=1}^{k-1} X_{i}\right)=h_{k}\left(D_{k} \cap R_{k}\right)$. Thus,

$$
h_{k}\left(D_{k} \cap R_{k}\right)=\cap_{i=1}^{k-1} h_{k}\left(X_{i}\right) .
$$

As $h_{k}\left(X_{i}\right)$ is a CFL for all $1 \leq i \leq k-1, h_{k}\left(D_{k} \cap R_{k}\right) \in C F L_{k-1}$. But now note that

$$
h_{k}\left(D_{k} \cap R_{k}\right)=L_{k}^{\prime}
$$

This contradicts Corollary 5. Thus, D_{k} cannot be expressed as the intersection of $k-1$ CFLs.

References

[1] Ito, M., and Silva, P. Remarks on Deletions, Scattered Deletions and Related Operations on Languages. In J. Howie et al., eds., Semigroups and Applications (1998), 97-105.
[2] Ito, M., Kari, L., and Thierrin, G. Shuffle and scattered deletion closure of languages. Theor. Comp. Sci. 245 (2000), 115-133.
[3] Kari, L. Deletion operations: Closure properties. International Journal of Computer Mathematics 52 (1994), 23-42.
[4] Liu, L., and Weiner, P. An infinite hierarchy of intersections of contextfree languages. Math. Sys. Th. 7, 2 (1973), 185-192.
[5] Sântean, L. Six arithmetic-like operation on languages. Revue Roumaine de Linguistique - Cahiers de linguistique théoretique et applique 25 (1988), 65-73.
[6] Yu, S. Regular languages. In Handbook of Formal Languages, Vol. I, G. Rozenberg and A. Salomaa, Eds. Springer-Verlag, 1997, pp. 41-110.

[^0]: *Research supported in part by an NSERC PGS-B graduate scholarship.

