
Fundamenta Informaticae 72 (2006) 1–17 1

IOS Press

Interpreted Trajectories

Michael Domaratzki
�

Jodrey School of Computer Science, Acadia University

Wolfville, NS Canada B4P 2R6

mike.domaratzki@acadiau.ca

Grzegorz Rozenberg
�

Leiden Institute of Advanced Computer Science, LIACS

University of Leiden, Niels Bohr Weg 1

2333 CA Leiden, The Netherlands

rozenber@liacs.nl

Kai Salomaa
���

School of Computing, Queen’s University

Kingston, ON Canada K7L 3N6

ksalomaa@cs.queensu.ca

Abstract. We introduce generalized trajectories where the individual symbols are interpreted as op-
erations performed on the operand words. The various previously considered trajectory-based oper-
ations can all be expressed in this formalism. It is shown that the generalized operations can simulate
Turing machine computations. We consider the equivalence problem and a notion of unambiguity
that is sufficient to make equivalence decidable for regular sets of trajectories under nonincreasing
interpretations.

Keywords: Formal languages, decidability, trajectories, regularity, unambiguity

�
Research supported in part by the Natural Sciences and Engineering Research Council of Canada.�
Also works: Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430, USA�
Address for correspondence: School of Computing, Queen’s University, Kingston, ON Canada K7L 3N6

2 M. Domaratzki et al. / Interpreted Trajectories

1. Introduction

The shuffle along trajectories operation was introduced in the paper by Mateescu, Rozenberg, and A.
Salomaa [24]. For other earlier work on this topic see also [14, 21, 22, 25]. Recently there has been
much renewed interest in trajectory based operations. A corresponding deletion operation has been
studied by Domaratzki [2] and Kari and Sosı́k [19]. Semantic extensions of these operations where the
shuffle operation can “see” symbols appearing in the operand words have been introduced by Domaratzki
[3]. Examples of other recent work include [4, 5, 7, 8, 9, 10, 16, 17, 18]. The theory of trajectories is
surveyed by Mateescu [23] and more recently by Domaratzki [6].

Shuffle or deletion along a set of trajectories
�

is an operation that combines two words ��� and ���
(or sets of words) as guided by some word in

�
. In the original definition of shuffle along trajectories the

result does not depend on symbols occurring in ��� and ��� , and in deletion along trajectories the operation
just verifies that the deleted symbols match. The extensions introduced in [3] allow the trajectory to
impose restrictions on the symbols to be inserted or deleted.

Here we consider generalized trajectories where the trajectory symbols are interpreted as operations
to be performed on the operand words. In the general case, this allows the trajectories to encode compu-
tations of a Turing machine tape, or of a pushdown if the interpretation is restricted to be nonincreasing
with respect to one of the arguments. The model is not capable to directly encode notions like the state of
the machine, but these can be simulated indirectly in the definition of the set of “legal” trajectories. The
class of languages that can be built from regular languages using a regular set of trajectories will consist
of all the regular, all the context-free, or all the recursively enumerable languages depending on whether
the interpretation is, respectively, nonincreasing, nonincreasing with respect to one of the arguments, or
arbitrary.

Two sets of trajectories are said to be equivalent (under a given interpretation) if they define the
same shuffle operation. Equivalence turns out to be undecidable even for regular sets of trajectories
under nonincreasing interpretations. We consider a notion of unambiguity that is sufficient to make
equivalence of regular sets of trajectories decidable. Unambiguity is closely related to determinism of
sets of trajectories [24].

2. Definitions

Words that define controlled shuffle operations are called trajectories. Unless otherwise mentioned, the
symbol � is used to denote a finite trajectory alphabet.

Let � be an alphabet. A 	
������ -interpretation � consists of three partial mappings

��� ��� ���� ����	������! #"$�%��	������! #"$��&(')� � �+*-,/.$�102�

such that � � , � �� , and � �� are defined on the same subset of �3�4	��4�5�! #"$�6�4	��4�7�! #"$� . This set is called
the domain of � , dom 	8�9� .

The set of all 	
������ -interpretations is :;	
������ . A pair 	 � ���9� , �=< � � , ��>�:;	
������ , is called an
interpreted set of trajectories.

Next we define the � -shuffle, �?� �@ ���;>4� � �A�CBD" , of words �E�F�G���;>4� � along a trajectory H6>�� �
according to interpretation �4>�:;	
������ . The case where �I� �@ ����,JB indicates that the operation is
not defined.

M. Domaratzki et al. / Interpreted Trajectories 3

Let H , � H�� , � >+� , H�� >+� � , and ��� ,���� ���� , ��� >4� , ���� >4� � , 	 ,/.$�10 . Then

�;� �@ ��� ,

 � � 	 � ��� �!���2�!� 	8� �� 	 � ��� �!���2�!� ��� � �@� � �� 	 � ��� � ���2�!� ���� �1� if 	 � ��� � ���2�!�6>������ 	8�9�1�
B2� otherwise.

For the cases where one or both of �?� and ��� is we set

� �G� � � �� @� E,

 � � 	 � ��� � �� $� 	8� �� 	 � ��� � �� $� ��� � �@� � �� 	 � ��� � �� $�G�1� if 	 � ��� �!�� $�6>�������	8�9�1�
B2� otherwise,

and, symmetrically,

 �� @� �2�� �� ,

 � � 	 � �� ���2�C� 	8� �� 	 � �� ���2�C� �@� � �� 	 � �� ���2�C� ���� �1� if 	 � �� ���2�$� >�������	8�9�1�
B2� otherwise,

and

 �� @� E,

 � � 	 � �� �� $� 	8� �� 	 � �� �� $� �@� � �� 	 � �� �� $�G�1� if 	 � �� �� $�%>������ 	8�9�1�
B2� otherwise.

Finally we set

�;� �� ��� ,

 � if �;�6, ��� , �
B2� otherwise.

Note that for a given interpretation � , � � and � �� are partial functions that are defined on ������	8�9� . If the
computation of an � -shuffle encounters a tuple 	 � ���(�!���2�!���>�������	8�9� , for � >+� , ��� >4�����! #" , 	 ,/.$�10 ,
this is an error-condition which means that the corresponding � -shuffle is not defined. According to the
above definition, the � -operations corresponding to 	 � ��� � ���2�!��>������ 	8�9� , � � , , *�> �D.$�10D" , can be
applied only when the * th argument is the empty word. This means that the evaluation of � -shuffle is
uniquely determined by the arguments and the trajectory.

In contrast to ordinary shuffle on trajectories, the numbers of symbol occurrences in ��� , ��� , and H
do not in any direct way tell us whether or not �I� �@ ��� is defined. However, the value of �?� �@ ��� can
always be straightforwardly determined by following the recursive definition (or “computation”) for � H��
steps.

Example 2.1. We illustrate how various previously considered trajectory-based operations can be ex-
pressed in this framework. For each interpretation � we list only the defined values of � � 	 � ��� � ���2�!� ,
� �� 	 � ��� � ���2�!� , � �� 	 � ��� � ���2�!� , � >+� , ��� >4�+�A�! #" , 	 ,/.$�10 . In this way the description implicitly defines
also ������	8�9� .

(i) With � , ���9� .C" the following interpretation ������ yields the classical shuffle along trajectories
definition [24]:

! � �#"�$&% 	'�9��� �!���2�!�I,(� � , � �#"�$&%� 	'�9��� � ���2�!�I, , � �#"�$&%� 	'�9��� �!���2�!�I,(�2� for all � ��> � , �2�7>
�����! #" .! � �#"�$&% 	 .$��� �!���2�!�;,)�2� , � �#"�$&%� 	 .$��� �!���2�!�;,)� � , � �#"�$&%� 	 .$��� �!���2�!�;, for all � � > � � �! #" ,�2�;>+� .

4 M. Domaratzki et al. / Interpreted Trajectories

(ii) Deletion along trajectories (see [2] for the definition) uses trajectory alphabet �J, ��	�� � " . The
following interpretation � ��� yields this definition:

! � �#"�� % 	 	���� � ���2�!��, � � , � �#"�� %� 	 	���� � ���2�!��, , � �#"�� %� 	 	���� �!���2�!�I, �2� for all � �A> � , �2� >
�����! #" .! � �#"�� % 	 � ��� � ��� � � , , � �#"�� %� 	 � ��� � ��� � � , , *�,/.$�10 , for all � �%>4� .

(iii) The semantic shuffle on trajectories (SST) [3] uses a trajectory alphabet ��, ���9� .$���(���	C�
� � �
�� ��;>
� " that depends on the alphabet � of the operand words. The interpretation ������ is given by the
following:

! � �#$�$&% 	'�9��� �!���2�!�-, � � , � �#$�$&%� 	'�9��� �!���2�!��, , � �#$�$&%� 	'�9��� �!���2�!��, �2� for all � �5> � , �2��>
�����! #" .! � �#$�$&% 	 .$��� �!���2�!�?,(�2� , � �#$�$&%� 	 .$��� �!���2�!�?,(� � , � �#$�$&%� 	 .$��� �!���2�!�?, for all � ��> � ���! #" ,�2�;>4� .! � �#$�$&% 	��(��� �!��� � � ,�� � , � �#$�$&%� 	��(��� �!��� � � , , *-,/.$�10 , for all � ��>4� .

! � �#$�$&% 	����	 ��� � ���2�!� , � � , � �#$�$&%� 	����	 ��� � ���2�!� , , � �#$�$&%� 	����	 ��� � ���2�!�7, �2� for all � ��> � ,�2�;>4�����! #" .! � �#$�$&% 	 ���� ��� � ���2�!� ,��2� , � �#$�$&%� 	 ���� ��� � ���2�!� ,�� � , � �#$�$&%� 	 ���� ��� � ���2�!� , for all � �%>4���A�! #" ,�2�;>4� .! � �#$�$&% 	 ���� ��� � ��� � � ,�� � , � �#$�$&%� 	 ���� ��� � ��� � � , , *-,/.$�10 , for all � ��>4� .

(iv) The semantic deletion on trajectories (SDT) [3] uses a trajectory alphabet � , ��	�� � ���(���� �
��$�
�� �
��> � " . We leave as an exercise for the reader the construction of an interpretation ����� >
:;	
������ that models this operation.

(v) Substitution on trajectories [16, 17, 18] uses trajectory alphabet ��, ���9� .C" . The operation is given
by the interpretation � ��� :

! � �#$� 	'�9��� � ���2�!�+, � � , � �#$�� 	'�9��� �!���2� �+,) , � �#$�� 	'�9��� �!���2� �+, �2� for all � �3> � , �2� >
�����! #" .! � �#$� 	 .$��� � ���2�!� ,��2� , � �#$�� 	 .$��� �!���2�!� , , � �#$�� 	 .$��� � ���2�!� , for all � � ���2�;>4� , � � �,��2� .

(vi) Splicing on routes [22] can be simulated by the following interpretation ����� . Here ��, ���9���� � .$��� .$" .
! � �#$�� 	'�9��� � ���2�!� ,�� � , � �#$��� 	'�9��� �!���2�!� , , � �#$��� 	'�9��� �!���2�!� ,��2� for all � ��>4� , �2�;>4� �6�! #" .! � �#$�� 	���9��� � ���2�!� , , � �#$��� 	���9��� � ���2�!� , , � �#$��� 	'�9��� � ���2�!� ,��2� for all � ��>4� , �2�;>4�7���! #" .! � �#$�� 	 .$��� � ���2�!� ,��2� , � �#$��� 	 .$��� �!���2�!� ,�� � , � �#$��� 	 .$��� �!���2�!� , for all �9�;>4� , � ��>4� �6�! #" .! � �#$�� 	�� .$��� � ���2�!� , , � �#$��� 	�� .$��� � ���2�!� ,�� � , � �#$��� 	�� .#��� �F���2�!� , for all �9�;>4� , � ��>4�7���! #" .

�

M. Domaratzki et al. / Interpreted Trajectories 5

To conclude this section we introduce the following notation. The � -shuffle, �7>5:;	
������ , of words
�;�F�G���;>4� � , is extended in the natural way for sets of trajectories

� < � � ,

�;� � ��� , �
@�� �;� �@ �����

This is further extended for languages � � , � � over � :

�%� � � ��, �
��� ��	 ��
 ��� �
 � �;� � �����

3. Regular Representations

Let � >7:;	
������ . We say that a language � < � � has a regular � -representation if � ,� � � ;� for
some regular set of trajectories

� < � � and regular languages � < � � , 	�, .$�10 . If � < :;	
������ , we
say that � has a regular � -representation if � has a regular � -representation for some ��>�� .

Next we consider restricted classes of 	
������ -interpretations and study the question which languages
have regular � -representations for different classes � .

An interpretation �A>�:;	
������ is said to be 1-preserving if for all � �F���2�E> �����! #" , � >4� such that
	 � ��� � ���2�!� >�������	8�9� ,

(i) � �� 	 � ��� � ���2�!�6> ��� � �� #" , and

(ii) if � ��>4� and � �� 	 � ��� �!���2� � , , then � � 	 � ��� � ���2�!� ,�� � .
If � is 1-preserving then for all H�>�� � and �;�F�G���;>4� � such that �E� �@ ��� is defined, the word �E� occurs
as a scattered subword of �?� �@ ��� . 2-preserving interpretations are defined completely analogously.
The interpretations given in Example 2.1 for the classical shuffle on trajectories operation, � ���� , and for
the SST operation, ������ , are both 1-preserving and 2-preserving.

An interpretation ��>�:;	
������ is said to be 1-nonincreasing if for all � ��>4� , �2�;>+�����! #" , � >+� ,

if 	 � ��� �!���2�!� >�������	8�9�1� then � �� 	 � ��� � ���2�!�6>4��� �! #"
and

if 	 � �� ���2�C� >�������	8�9�1� then � �� 	 � �� ���2�C� , �� (1)

Intuitively, the above means just that the function � �� never increases the length of the first argument
word. All results in the following would hold if the second condition (1) would be weakened to say
� �� 	 � �� ���2�C� >4�7���! #" (and then it could be combined with the first condition). However, then � �� would
not, strictly speaking, be nonincreasing.

Again, 2-nonincreasing interpretations are defined symmetrically, and nonincreasing interpretations
are both 1-nonincreasing and 2-nonincreasing. Any * -preserving interpretation is * -nonincreasing, *5,
.$�10 .

The class of languages that have regular � -representations, as can be expected, depends essentially
on whether � consists of nonincreasing or * -nonincreasing, *�> �D.$�10D" , interpretations.

The below example illustrates how any context-free language can be represented by the � -shuffle of
regular languages on a regular set of trajectories using a 1-preserving interpretation.

6 M. Domaratzki et al. / Interpreted Trajectories

Example 3.1. Let
� , 	��-���;��� ��� ��� 	 �
	 	 �
��� � be a pushdown automaton [15, 26] where � is the set

of states, � is the input alphabet, � is a binary pushdown alphabet, � defines the transitions of
�

as a
mapping that associates to an element of �J��	��3�+�! #"$� �� a subset of �J���� � , � 	 is the start state,
	 	 is the initial stack symbol and ��� is the set of final states. The language recognized by

�
by final

state and empty stack is denoted � 	 � � .
Above we have restricted the pushdown alphabet to be binary and restricted the automaton to always

write on the stack a word of length 0, 1 or 2 to replace the current topmost stack symbol. Since the number
of states in � is not limited, any context-free language can be recognized by a pushdown automaton with
the above properties. The restrictions allow us to use in the regular � -representation of � 	 � � a 	
������ -
interpretation � where the alphabets � and � depend only on � . If the alphabets would be allowed to
depend on

�
(i.e., � or � could explicitly contain the states of

�
), a somewhat simpler construction

would be possible.
Choose

��, ���9� .C" � 	������! #"$�%������� � � 	'�9� . �>��� ���
and,

� ,������ �
Let � � � ��/&(' ���9� .C" � be a bijective mapping. We define

I�6,�� � � ;��, ��	 	 " � and

� , ��� 	 � �F��� �!� 	��!� � � � ���$�F��� 	 � �C����� � 	�� �#� � �$��� �!� �!�!�"� 	 � #%$ � ��� # � 	��
#%$ � � � #%$ � ���!#%$ � ���
&(' .$��� � >)�-� 	 , .$� � � � & ��� �6,*� 	 ��� #�>)���6��� � >�����! #" � � � >+� ��� � >�� � � �
	 � �
, �F��� � �6>+�2	 � � ��� � � � � �1� * ,/.$� � � �!� & & .C"��

We define a 1-preserving 	
������ -interpretation � such that

I� � ;� , � 	 � � � (2)

Intuitively, each word H?> � encodes a sequence of transitions of
�

and the interpretation � performs
the corresponding operations on the argument words when the first argument is viewed as the input for�

and the second argument as the stack contents. As usual, below we list the values of � � , � �� , *-, .$�10 ,
for tuples in ������	8�9� , all other values are undefined.

(i) Let -�> ���9� .C" , � � ���2�;>4��� �! #" (,.�����5���! #"). Then

� � 	�-���� � ���2�!� , � � �� 	�-���� � ���2�!� ,�� � � *-,/.$�10 �

(ii) Let �;>� ,
� >+� , �?>+�/� � . Then

��� 	G	��C� � ���C�1���C� � �%, �C� � �� 	G	��C� � ���C�1���C� � �%, � � �� 	G	��C� � ���C�1���C� � �%,�� �

(iii) Let
� >+� , �E>+�/� � , ��>�����! #" . Then

� � 	G	8 � � ���C�1��� � � �%, � � �� 	G	8 � � ���C�1��� � � �%,�� � � �� 	G	8 � � ���C�1��� � � �%,�� �

M. Domaratzki et al. / Interpreted Trajectories 7

The rules (i) just erase elements of ���9� .C" from the trajectory and do not affect the argument words.
Elements ���9� .C" are used to encode pairs of states and to enforce, by way of the definition of

�
, that

together with the following triple in 	��5�-�! #"$� � �5� � � � the pair of states encodes a correct transition of�
. Rules (ii) use a trajectory symbol 	��C� � ���C�%>� � ��� � � � , and � verifies that the next symbol in the

first argument word is � , � � writes � to the output, � �� erases � from the first argument, and � �� replaces
in the second argument, which represents the stack, the symbol

�
with � >�� � � . Similarly rules (iii)

simulate an -transition of
�

when the first argument is viewed as the input and the second argument as
the stack. Here the next input symbol ��>�����! #" can be arbitrary and it is not changed. The case ��,
corresponds to the situation that the operations have reached the end of the first argument word.

From the above description it is clear that for any H�> � , ���A>�� �
and ��� >*� � , if �;� �@ ��� is

defined, the evaluation of this operation directly simulates the particular computation of
�

on input ���
and remaining stack contents � � that is given by the sequence of transitions encoded by H . In this case
�;� �@ ���4, �;� . On the other hand, for any �?�4>�� 	 � � there exists H > � that corresponds to a
sequence of accepting computation steps of

�
and consequently �-� �@ 	 	 , �;� . It follows that (2)

holds.
�

As mentioned above, the alphabets � and � used to construct the 	
������ -interpretation � in Ex-
ample 3.1 depend only on the input alphabet � of

�
. For easier readability the construction defines

� ,.�3� � but if � has at least two symbols, nothing prevents us from using elements of � as the stack
symbols, and consequently � needs only two symbols. If � is binary, the construction gives a trajectory
alphabet � of size 44. The size of � could be reduced1 but it is not clear whether � could have e.g. just
two symbols.

By recalling the standard construction used to simulate a Turing machine tape by two pushdowns, it
is easy to modify the construction of Example 3.1 to allow general � -shuffles (where � can be increasing
with respect to both arguments) to simulate computations of a single-tape Turing machine

�
.

Let 	6� and 	 � be symbols used as endmarkers. A particular computation of
�

on input � can be
simulated by a shuffle 	 ��	%�F� �@ 	 � where, as in Example 3.1, H encodes the sequence of transitions
used in the computation of

�
. The computation can first read the input word � , output � using the

function � � and at the same time store a copy of � in reverse order to the second pushdown using � �� .
After reaching the endmarker 	%� , the computation uses only as values for � � , (the symbols “pushed
back” to the first argument can be marked to distinguish them from the original “input” symbols) and
the two pushdowns then simulate the actual computation of

�
on � . Without loss of generality, the

computation of
�

can be made to erase the tape contents before accepting, and this guarantees that if
H gives a sequence of transitions that accepts � , the operations used to evaluate 	 ��	;� � �@ 	 � consume
both argument words.

With the above construction, 	 ��	%� � �@ 	 �;, � if the sequence of transitions given by H accepts � ,
and it is undefined otherwise. By choosing

�
to be the set of all valid sequences of transitions (that begin

in the start state, end in an accepting state, and where the initial state of each transition equals to the new
state of the previous transition), we get � � 	6� � 	 ��, � 	 � � , where � is the input alphabet of

�
.

Since any language having a regular � -representation, ��>�:;	
������ , is clearly recursively enumer-
able, we have:

1An immediate observation is that
�

could use a unary encoding instead of a binary one.

8 M. Domaratzki et al. / Interpreted Trajectories

Theorem 3.1. Let � be an alphabet. There exists a trajectory alphabet � such that the class of languages
with regular � -representations, ��>�:;	
������ , consists of all the recursively enumerable languages over � .

Recall that for given H+> � � and �;�F�G��� > � � the value of �E� �@ ��� can be straightforwardly
computed. On the other hand, the existence of universal Turing machines gives the following result.

Corollary 3.1. There exist alphabets � and � , a regular language
� < � � , and an interpretation �3>

:;	
������ such that the following problem is undecidable: Given words �-�F�G����>�� � , determine whether
or not �;� � ��� is empty.

We contrast the result of Theorem 3.1 by showing that for any nonincreasing interpretation � and
a regular set of trajectories

�
the operation � preserves regularity. The result extends the previously

known closure properties of the classical trajectory based operations [24, 2, 3, 19]. Note that the inter-
pretations ������ , ����� , ������ , ����� given in Example 2.1 to simulate the classical trajectory operations
are all nonincreasing.

Lemma 3.1. Let � be a nonincreasing 	
������ -interpretation and
� < � � a regular set of trajectories. For

any regular languages � < � � , 	 ,/.$�10 , the language �� � ;� is regular.

Proof. Let
� � , 	�� �
� � ��� �
 	 �
� �
 � ��� � � be a DFA recognizing � , *-,/.$�10 , and let ��, 	
�����%��� 	 ��� �6��� �

be a DFA recognizing
�

. We assume that there are no incoming transitions to any of the start states � �
 	 ,
*-,/.$�10 , or � 	 .

Recall that a generalized NFA is a finite automaton where transitions are labeled by arbitrary words. It
is well known that any language recognized by a generalized NFA is regular [27]. We define a generalized
NFA � that recognizes -� � ;� . Denote

� �� ,�� � ��	��������1�
	�"$� �

Choose

� , 	�� ��� �� � � �+� � � � 	 � 	 �!	��$�
 	 �
�G�1�!	�� �
 	 �
�G�G�1�;	�� � ��	����
 ���4��	�"$�%��	��E�
 ���4��	�"$�G� ��������1�
where

 ,

�2	 � 	 �!	��$�
 	 �
�G�1�!	�� �
 	 �
�G�G��" � if � 	 >�� �6��� �
 	 >)� �
 � � * ,/.$�102�
B2� otherwise.

(3)

and the transitions of � are defined as follows.
Let 	 � �!	��$� ��� ��1�!	�� �#��� � �G�1�!	 � �
�!	�� � � ��� � � �1�!	�� �� ��� � � �G��>�� �)� � � �)� � � and 	 � ��� �!���2�!��> ����� 	8�9� , � >�� ,����> � ���! #" , 	�,).$�10 . Then � has a transition from 	 � �!	�� � ��� � �1�!	�� �$��� � �G� to 	 � � �!	�� � � ��� � � �1�!	�� �� ��� � � �G�

labeled by � � 	 � ��� � ���2�!� always when the following conditions hold:

(i) � 	 � � � � , � � ,
(ii) if � �� 	 � ��� � ���2�!� , :

(a) if � � >4� , *�> �D.$�10D" :
i. if � � ,�� , then � � 	�� � ��� � � ,*� �� and � �� ,�� ,

M. Domaratzki et al. / Interpreted Trajectories 9

ii. if � � ,�	 , the transition is not defined for � � >4� ,

iii. if � � , � >4� , then � � , � , � �� ,*� � and � �� ,�� ,
(b) if � � , , *�> �D.$�10D" :

i. if � � ,�� , then � �� ,*� � and � �� ,�	 , (indicates a guess that the * th input is finished),

ii. if � � ,�	 , then � �� ,*� � and � �� ,�	 ,
iii. if � � , � >4� , then the transition is not defined.

(iii) if � �� 	 � ��� �!���2� � , �;>+� :

(a) if � � >4� , *�> �D.$�10D" :
i. if � � ,�� , then � � 	�� � ��� � � ,*� �� and � �� , � , *�> �D.$�10D" ,

ii. if � � ,�	 , then the transition is not defined with � � >4� ,

iii. if � � >4� , then � � ,�� � , � �� , � and � �� ,*� � , *�> �D.$�10D" .
(b) if � � , , *�> �D.$�10D" :

i. if � � ,�� , then � �� ,*� � and � �� ,�	 ,
ii. if � � ,�	 , then � �� ,*� � and � �� ,�	 ,

iii. if � � >4� , then the transition is not defined.

Note that since � is nonincreasing, � �� 	 � ��� �!���2�!� is in ��� �! #" when it is defined.
In the simulation of

� � by � , a state 	�� � �
�G� represents that
� � has reached state � � , and a state 	�� � ��� � ,

� >4� represents the situation that the computation of
� � after reading the original current symbol of the

* th argument word has reached state � � and the current symbol has been replaced by � in the previous
operation � �� . A state 	�� � �
	G� represents a situation where (� has guessed that) the * th argument word has
been completely processed.

The computation of � nondeterministically factorizes the input into a sequence of subwords of the
form � � 	 � ��� � ���2�!� , 	 � ��� � ���2�!� > ������	8�9� . For each subword � � 	 � ��� � ���2�!� , � makes a transition where
according to (i) the first component of the states directly simulates the operation of � , thus verifying that
the guessed sequence of trajectory symbols is in

�
. The rules (ii) and (iii) then simulate the computation

of
� � and

� � on the argument words that may be modified by the operations � �� , *-,/.$�10 .
In rules (ii) (a), the � �� operation consumes the current symbol from the * th argument. If the current

state is 	�� � �
�G� , the symbol � � has not been modified by previous applications of � �� and the 	 * � .!� th
component of the state of � (i.e., the state of

� �) is modified directly using � � .
If the current state is 	�� � �
	G� , the computation of � is not successful. Occurrence of 	 indicates that the

computation has simulated an � -operation with from the * th argument and it cannot now read � � >4� .
If the current state is 	�� � ��� � , this means that the current symbol been modified by a previous applica-

tion of � �� and the modified symbol is stored in the state (as �). In the state, the component � � indicates the
state that

� � reached after reading the original symbol in this position and
� � continues the computation

in state � � .
The rules (ii) (b) are the same as above, except now we simulate an operation of � with 	 � �� ���(�C��>����� 	8�9� . If � � , � , � guesses that the * th argument is finished and marks this by setting � �� , 	 . If

� � , 	 , � has already previously guessed that the * th argument is finished. The case � � , ��>3� is an
error situation.

10 M. Domaratzki et al. / Interpreted Trajectories

The rules (iii) replace the current symbol � � of the * th argument word by � . In (iii) (a), if � � , � , � �
is “from” the original argument word and hence the state reached after this symbol is obtained according
to the transition function � � . The new symbol � is stored as � �� . If � � , 	 , � has previously guessed that
the * th argument is finished and this is an error. If � � >4� , the current symbol has been modified before.
The newly modified symbol is again stored as � �� and the operation does not change the state of

� � at
this position.

Finally, the rules (iii) (b) represent the same situation as in (iii) (a), except that � simulates an � -
operation that is performed at the end of the * th input, that is � � , .

As explained above, the computation of � verifies that the input word can be written in a form

��� 	 � � ��� �
 � ��� �
 �!� � ��� 	 � �$���2�
 � ���2�
 �!� ��� � � � ��� 	 � � ��� �
 �F��� �
 �!�1� � ' �9� (4)

where H , � � �!�!� � � > � and (4) is the sequence of outputs produced by applying the operation �@ to
some words �E�I> I� and ���-> ;� . The inclusion of in the set of final states of � according to (3)
guarantees that � accepts if is in

�
as well as in both �� and ;� . Naturally it is possible that �

accepts also using a nonempty trajectory if in (4) � � 	 � � �����
 �F�����
 �!� , , 	 ,/.$� � � �!� � .
Above we have verified that � nondeterministically checks that the input is of the form � � �@ ��� ,

H6> � , ��� > � , 	 ,/.$�102� and, consequently, � 	 �I� , -� � ;� . ��

Lemma 3.2. Let � be a 1-nonincreasing (or, respectively, 2-nonincreasing) 	
������ -interpretation and� < � � be a regular set of trajectories. For any regular languages � < � � , 	 , .$�10 , the language
I� � ;� is context-free.

Proof. We only sketch the idea of the proof and leave the details of the construction for the reader. A
pushdown automaton to recognize � � ;� can be obtained from the construction used in the proof of
Lemma 3.1 by using the stack to remember the prefixes that � �� adds to the second argument (or that � ��
adds to the first argument when � is 2-nonincreasing).

��
Let �%: denote the class of unrestricted interpretations, � � the class of * -nonincreasing interpreta-

tions, *-,/.$�10 , and � the class of nonincreasing interpretations.
Now by Theorem 3.1, Lemmas 3.1 and 3.2, and Example 3.1 we get the following characterizations.

If we consider languages over a fixed alphabet � , in (i) and (ii) of Theorem 3.2 the trajectory alphabet
needed for the representations is also fixed.

Theorem 3.2. (i) The class of languages that have regular �%: -representations consists of all the re-
cursively enumerable languages.

(ii) The class of languages that have regular � � -representations consists of all the context-free lan-
guages, *-,/.$�10 .

(iii) The class of languages that have regular � -representations consists of the regular languages.

4. Equivalence Problem

It is known that two sets of trajectories
� � and

� � as considered in [24] define the same shuffle operation
if and only if

� ��, � � . The same does not hold for the SST operation considered in [3] but there it is

M. Domaratzki et al. / Interpreted Trajectories 11

shown that we can algorithmically decide whether or not two regular sets of trajectories define the same
SST operation.

The situation is more problematic for sets of interpreted trajectories. Example 3.1 directly implies
that equivalence of regular sets of trajectories under 1-nonincreasing (or 2-nonincreasing) interpretations
is undecidable. It turns out that also equivalence of regular sets of trajectories under a nonincreasing
interpretation is undecidable.

We say that trajectories
� � � � � < � � are � -equivalent, where ��>�:;	
������ , if for all �I� �G���;>4� � ,

�;� �
�
����, �;� �

�
�����

It follows that for any languages � �F� � � < � � , �%� �
�
� � , �%� �

�
� � when

� � and
� � are � -equivalent.

We establish the undecidability result by using a reduction from the equivalence problem for finite
transducers. By a finite transducer we mean a tuple

� , 	��;�
�-��� 	 �
���6� � �1� (5)

where � is the input and the output alphabet, � is the finite set of states, � 	 >)� is the start state, � � < �
is the set of final states and

�
is the set of transitions,

� < 	�� �+� �4�! #"-��I� � 	�� �4�! #"-�+� ��I� � (6)

The transduction realized by
�

is denoted � 	 � � (
< � � �(� �

). It is known that any rational relation
(with same input and output alphabet) can be realized by a transducer with transitions as in (6) [1].

Theorem 4.1. Let � ,���� ��� " and ��,����9� .$��� �C���2�$��� �F����C" . Given a nonincreasing 	
������ -interpretation
� and regular sets of trajectories

� � , � � , it is undecidable whether or not
� � and

� � are � -equivalent.

Proof. Let ��>�:;	
������ be defined as follows:

(i) Let - > ���9� .C" and � � >4��� �! #" , *-,/.$�10 . Then

� � 	�-���� � ��� �!� , � � �� 	�-���� � ��� �!� , � � �+*-,/.$�10 �

(ii) Let - be either symbol � or � , and ��>4�����! #" . Then

(a) � � 	�-#� ��-#� ��� � , , � �� 	�-#� ��-#� ��� � , , � �� 	�-#� ��-#� ��� � , � .

(b) � � 	�-!�$��� ��-!�!� , , � �� 	�-!�$��� ��-!�!� , � , � �� 	�-!�$��� ��-!�C� , .
(In all cases not listed above, the � -operations are not defined.) Since � � does not produce any output,
for all �E� �G���;>4� � and H6>+� � ,

�;� �@ ��� is defined if and only if �?� �@ ����, �� (7)

Consider an arbitrary finite transducer with input and output alphabet � ,
� , 	�� �
�-��� 	 �
���6� � �1�

where the transitions are of the form (6). Let � � � � �=&(' ���9� .C" � be an injective mapping. When
�$�F��� ��> � and - > ��� � ���2�$��� �F����C" , we say that the word � 	�� �F��� � � - encodes an

�
-transition if the

following holds:

12 M. Domaratzki et al. / Interpreted Trajectories

! If -�, � � , then 	��$� ��� �� ��� �!�6> �
, �+>4��� ��� " .

! If -�, � � , then 	��$� �� ��� ��� �!�6> �
, �+>4��� ��� " .

We define
� < � � as follows:

� , ��� 	 � �F��� �!� -#�
� 	 � �C����� � -!����� � � ��� 	 � # ��� # , �� - # ��	 & ,�� and � 	 >)��� � or
&(' .$��� � >�-� 	 ,/.$� � � �!� & � .$��� �%,*� 	 ��� # , �%>)���6��- � > ��� � ���2�$��� � ����!" �
and � 	 � � ��� �
, �� - � encodes an

�
-transition, *-,/.$� � � �!� & "��

For any H6> � and �E� �G���;>4� � , the evaluation of �E� �@ ��� simulates a computation of
�

with input
�;� and output � � . According to the definition of

�
, the trajectory H encodes a sequence of

�
-transitions

leading from the start state to a final state. The rules (i) of the interpretation � erase the encodings of
pairs of states from H (that is, all symbols 0 and 1 are processed without changing the arguments ���
and ���). The purpose of the states is just to guarantee that the sequence of symbols - � , (- is � or � ,
*�> �D.$�10D"), represent input/output actions that can occur in a computation of

�
. According to rules (ii),

an occurrence of a trajectory symbol -2� causes that - is read from �?� and an occurrence of a symbol -$�
causes that - is read from � � .

The above means that for all �?�F�G���;>4� � ,
�;� �@ ��� is defined if and only if 	 �?� �G��� �6> � 	 � � � (8)

Note that this holds also for �?��, ��� , since I> � if and only if � 	 >��� .
Since equivalence of finite transducers is undecidable [1], (7) and (8) imply that � -equivalence of

regular sets of trajectories (
< � �) is undecidable.

��

4.1. Unambiguity and determinism

Next we consider special cases where equivalence can be decided.
Let �7>5:;	
������ . We say that a set of trajectories

� < � � is � -unambiguous if for all �?�F�G���$�G� ��>
� � there exists at most one H6> � such that

� ��, �;� �@ �����
The above definition of unambiguity closely resembles the definition of deterministic sets of trajec-

tories [24] but the two notions do not coincide if � is a singleton alphabet. Let ������ be the interpretation
used in Example 2.1 to represent the classical shuffle on trajectories operation. Recall that

� < ���9� .C" � is
said to be deterministic [24] if for all �I�F�G���;>4� � , the cardinality of the set �?� �#"�$&% ��� is at most one.
If
� < ���9� .C" � is ������ -unambiguous then

�
is always deterministic in the above sense. This follows by

observing that if �E� �#"�$&% ��� has cardinality at least two, then there exist H �F�GH �?> � , H1� �, H � such that� � �
�

� �#"�$&%@
�

� � �
�

�
,�� � �

�
� �#"�$&%@

�
� � �

�
�
where � is any symbol of � .

The converse implication holds if � has at least two symbols. We note that if � � �#"�$&%@
�

���3,
�;� �#"�$&%@

�
��� , for �;� �G����>�� � , H1� �GH ��> � < ���9� .C" � , H1� �, H � , then � � �

�
� �#"�$&% �

� �
�

�
, where � ����>3� ,� �, � , contains at least two words. On the other hand, if � is a singleton alphabet, then any set of

trajectories
� < ���9� .C" � is deterministic in the sense of [24].

When considering general interpreted sets of trajectories, a significant drawback is, as observed
below, that � -unambiguity is undecidable for regular sets of trajectories, even if � is nonincreasing.

M. Domaratzki et al. / Interpreted Trajectories 13

Lemma 4.1. Let � be an alphabet with at least two symbols. Given trajectory alphabet � , a nonincreas-
ing interpretation �7>7:;	
������ and a regular set of trajectories

� < � � it is undecidable whether or not�
is � -unambiguous.

Proof. Let
�2	 � � ���2� �1� � � �!�!	 � � ��� � � � � ' .$� � � ����� >+� , � 	 ,/.$� � � �!� � " (9)

be an arbitrary instance of the Post correspondence problem (PCP) [15, 12].
We choose as the trajectory alphabet

��, �2	 	�� .$��� � � �9. � 	 � � � . � � � � � � ��� "%���2	 	��102��� � � �2. � 	 � � � . � � � � � ��� � "
Let � � �D.$� � � �C� � " &(' � � be an injective mapping such that � � 	 	 �&� ,(� � 	 *2�&� for all 	�� * >3�D.$� � � �C� � " .
We define a 	
������ -interpretation � by the following conditions:

(i) � � 	G	 	�� .$� .!�1���!���F��,�� 	 	 � , � �� 	G	 	�� .$� .!�1���!���F��, , * , .$�10 , if ��> � is the first symbol of � � ,	 > �D.$� � � �C� � " .
(ii) � � 	G	 	�� .$��� �1���!���F��, , � �� 	G	 	�� .$��� �1���!���F��, , *-,/.$�10 , if 0 � � � � � � � and � >4� is the � th symbol

of � � , 	 >4�D.$� � � �C� � " .
(iii) � � 	G	 	��102� .!�1���!���F��,�� 	 	 � , � �� 	G	 	��102� .!�1���!���F��,) , * , .$�10 , if ��> � is the first symbol of ��� ,	 > �D.$� � � �C� � " .
(iv) � � 	G	 	��102��� �1���!���F��, , � �� 	G	 	��102��� �1���!���F��, , *-,/.$�10 , if 0 � � � � ��� � and � >4� is the � th symbol

of ��� , 	 >4�D.$� � � �C� � " .
Let � � �D.$� � � �!� � "I&(' � � be the morphism defined by the condition

� 	 	 � , 	 	�� .$� .!� �!�!� 	 	�� .$� � � � � �1� . � 	 � � �

and let � � �D.$� � � �!� � "I&(' � � be the morphism defined by the condition

�(� , 	 	��102� .!� �!�!� 	 	��102� � ��� � �1� . � 	 � � �

We define � ,�� 	 �D.$� � � �C� � "
,
� ���(�D.$� � � �C� � "

,
� �

Assume that for some �?� �G���;>4� � and H1�F�GH �;> � , H1� �, H � , both operations �E� �@ 	 ��� , *-,/.$�10 , are
defined and

�;� �@
�
����, �;� �@

�
��� � (10)

For any � > �D.$� � � �!� � " , , any shuffle along � 	 � � (respectively, �(� �) that is defined outputs the � -
encoding of � . Thus if H � �, H � and (10) holds, the only possibility is that HF�%,.� 	 � � , �4>��D.$� � � �!� � " , �
and H � ,
�(�� � , ��> �D.$� � � �C� � " , � , or vice versa. Now (10) implies that ��,
� gives a solution to the
PCP instance (9).

Conversely, any solution 	1� � � � �!� 	� to the PCP instance (9) gives distinct trajectories � 	 	 � �!�!��	�#� ,
�(G� �!�!��	�#� > � such that (10) holds when �?�6, ��� is the word � �

�
�!�!� � ��� ,����

�
�!�!������� . ��

14 M. Domaratzki et al. / Interpreted Trajectories

It is known that Post correspondence problem remains undecidable when the size of the instances
(that is, � in (9)) is bounded to be at most nine [12, 13]. However, the trajectory alphabet used in the
proof of Lemma 4.1 depends both on the size of the PCP instance and the lengths of the words appearing
in the instance.

Due to Lemma 4.1, we consider below also the more restrictive notion of determinism that is associ-
ated with an interpretation rather than with individual sets of trajectories.

For words �E� and ��� , we denote �E� ���������� ��� if �;� is not a prefix of � � and ��� is not a prefix of �E� .
We say that a 	
������ -interpretation � is deterministic if

(i) for any � �F���2�;>4�����! #" , and any � �F� � �E>�� , � � �, � � , such that 	 � � ��� � ���2�!�6>������ 	8�9� , *-, .$�10 ,
��� 	 � � ��� �F���2�!� ���������� ��� 	 � �$��� � ���2�!�1�

(ii) for any 	 � ��� � ���2�!� >�������	8�9� , � >+� , � �F���2�;>4�����! #" ,
� � 	 � ��� � ���2�!� �, ��

Let ��>�:;	
������ be deterministic and let �?� �G���;>4� � be arbitrary. Consider trajectories HF�F�GH �;>+� � ,
H1� �, H � , such that �E� �@ � ��� is defined, 	 ,/.$�10 . If we can write H ��, H � �GH�� � and H ��, H � �H�� � , H�GH�� � �GH�� � >+� � ,� � � � �;>+� , � � �, � � , then condition (i) implies that

�;� �@
�
��� �, �;� �@

�
����� (11)

If H1� is a proper prefix of HG� , again (11) holds by condition (ii).

Proposition 4.1. If �7>5:;	
������ is a deterministic interpretation, then any set of trajectories
� < � �

is
� -unambiguous.

For the positive decidability result we can compare sets of trajectories with different interpretations.
Let �C�F���F��> :;	
������ and

� �F� � � < � � . We say that the interpreted sets of trajectories 	 � � ���C�� and
	 � �$���F�!� are equivalent if for all �?� �G���;>4� � ,

�;� �
�
��� , �;� �

�
��� �

The above implies that � � �
�
� � , �%� �

�
� � for any ���F� � � < � � .

Theorem 4.2. Let �$�F���F� >�:;	
������ be nonincreasing interpretations. For given regular sets of trajec-
tories

� � and
� � (

< � �) such that
� � is � � -unambiguous, 	�, .$�10 , it is decidable whether or not the

interpreted sets of trajectories 	 � � ���C�� and 	 � �C���F�!� are equivalent.

Proof. Since
� � is regular and � � nonincreasing, a nondeterministic 3-tape automaton

� � [11, 20] can

recognize 3-tuples of the form 	 �?� �G���$�G�;� � 	@ ��� �1�$�;�F�G���E>+� � , H6> � � , *�> �D.$�10D" .
Depending on the next symbols � � , �2� read from the first two tapes,

� � guesses � > � such that
	 � ��� � ���2�!�6>������ 	8�9� . Then it reads � � 	 � ��� � ���2�!� from the third tape, and the tape heads on the first two
tapes remain stationary or are advanced one step depending on the values of � �� 	 � ��� �!���2�!� , 	�, .$�10 . In
the former case the symbol � �� 	 � ��� � ���2�!� is stored in the state of

� � . Using the finite state memory,
� �

M. Domaratzki et al. / Interpreted Trajectories 15

can verify that the sequence of guessed trajectory symbols is in the regular language
� � . Except for the

choice of the next symbol � >�� , the operation of
� � can be made to be completely deterministic.

The crucial observation is that, since
� � is � � -unambiguous, for any 3-tuple of words

	 �;� �G���$�G� �!� (12)

there exists at most one trajectory H6> � � such � � , �;� �@ ��� . Thus, if
� � accepts (12),

� � has exactly
one accepting computation on (12).

Now 	 � � ���C� � and 	 � �$���F�!� are equivalent if and only if
� � � � � are multiplicity equivalent. The result

follows since multiplicity equivalence of nondeterministic multitape automata is decidable [11].
��

By Proposition 4.1 we get a positive decidability result for deterministic interpretations. This result
has the advantage that, in contrast to � -unambiguity, determinism of interpretations can be easily verified.

Corollary 4.1. Given deterministic nonincreasing interpretations � � > :;	
������ , and regular sets of tra-
jectories

� � < � � , *-,/.$�10 , it is decidable whether or not 	 � � ���C� � and 	 � �$���F� � are equivalent.

If � , � � " consists of only one symbol, for any nonincreasing interpretation �+>�:;	
������ , all sets
of trajectories

� < � � are “almost” � -unambiguous in the following sense. An equality

�;� �@
�
��� , �;� �@

�
��� (13)

with H1� �, H � can hold only if

	��(�� �� $�%> ������	8�9� and � � 	��(�� �� $� , �� (14)

If (14) holds, then always when �?� �@
�
��� is defined, the equation (13) holds for all H1� such that H� is a

prefix of HG� .
Thus when � consists of only one symbol, in the proof of Theorem 4.2 the multitape automata

� �
can be made to accept after reaching the end of the input tapes provided that the sequence of trajectory
symbols used is a prefix of some word in the regular language

� � . The latter condition can be easily
remembered by the finite state-memory of

� � . This means that for any 3-tuple of words as in (12),
� �

has at most one accepting computation.

Corollary 4.2. Let � be a singleton alphabet. For nonincreasing interpretations �9�F���F� >�:;	
������ and
regular sets of trajectories

� �F� � � < � � it is decidable whether or not 	 � � ���C� � and 	 � �$���F� � are equivalent.

In the construction of Theorem 4.1 the trajectory alphabet � needs only five symbols if � uses a
unary encoding for pairs of states of the transducer. We do not know whether equivalence of regular sets
of trajectories under nonincreasing interpretations remains undecidable when � has cardinality between
2 and 4.

References

[1] J. Berstel: Transductions and Context-Free Languages. Teubner, Stuttgart, 1979.

[2] M. Domaratzki: Deletion along trajectories. Theoretical Computer Science, 320 (2004), 293–313.

16 M. Domaratzki et al. / Interpreted Trajectories

[3] M. Domaratzki: Semantic shuffle on and deletion along trajectories. In Proc. 8th International Conference
on Developments on Language Theory, DLT’04, LNCS 3340, Springer-Verlag, Berlin, 2004, 163–174.

[4] M. Domaratzki: Trajectory-based codes. Acta Informatica, 40 (2004), 491–527.

[5] M. Domaratzki: Trajectory-based embedding relations. Fundamenta Informatica, 59 (2004), 349–363.

[6] M. Domaratzki: More words on trajectories. Bulletin of the EATCS, 86 (June 2005), 107–145.

[7] M. Domaratzki, A. Mateescu, K. Salomaa, S. Yu: Deletion along trajectories and commutative closure. In
Proc. of 4th International Conference on Combinatorics on Words (T. Harju, J. Karhumäki, eds.), 2003,
309–319.

[8] M. Domaratzki, K. Salomaa: Decidability of trajectory-based equations. In Mathematical Foundations of
Computer Science, MFCS’04 (J. Fiala, V. Koubek, J. Kratochvı́l, eds.), LNCS 3153, Springer-Verlag, Berlin,
2004, 723–734. Full version to appear in Theoretical Computer Science.

[9] M. Domaratzki, K. Salomaa: Codes defined by multiple sets of trajectories. In Proc. 11th International
Conference on Automata and Formal Languages, AFL’05 (Z. Ésik, Z. Fülöp, eds.), 2005, 97–111.

[10] M. Domaratzki, K. Salomaa: Restricted sets of trajectories and decidability of shuffle decompositions. Inter-
national Journal of Foundations of Computer Science, 16 (2005), 897–912.

[11] T. Harju, J. Karhumäki: The equivalence problem of multitape finite automata. Theoretical Computer Sci-
ence, 78 (1991), 347–355.

[12] T. Harju, J. Karhumäki: Morphisms. In [26], 439–510.

[13] T. Harju, J. Karhumäki, D. Krob: Remarks on generalized Post correspondence problem. In 13th Annual
Symposium on Theoretical Aspects of Computer Science, STACS’96, LNCS 1046, Springer-Verlag, Berlin,
1996, 39–48.

[14] T. Harju, A. Mateescu, A. Salomaa: Shuffle on trajectories: The Schützenberger product and related opera-
tions. In Mathematical Foundations of Computer Science, MFCS’98 (L. Brim, J. Gruska, J. Zlatuska, eds.),
LNCS 1450, Springer-Verlag, Berlin, 1998, 503–511.

[15] J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[16] L. Kari, S. Konstantinidis, P. Sosı́k: Substitutions on trajectories. In Theory is Forever (J. Karhumäki, H.
Maurer, G. Păun, G. Rozenberg, eds.), LNCS 3113, Springer-Verlag, Berlin, 2004, 145–158.

[17] L. Kari, S. Konstantinidis, P. Sosı́k: Substitutions, trajectories and noisy channels. In Implementation and
Application of Automata, CIAA’04 (M. Domaratzki, A. Okhotin, K. Salomaa, S. Yu, eds.), LNCS 3317,
Springer-Verlag, Berlin, 2005, 202–212.

[18] L. Kari, S. Konstantinidis, P. Sosı́k: Operations on trajectories with applications to coding and bioinformatics.
International Journal of Foundations of Computer Science, 16 (2005), 531–546.

[19] L. Kari, P. Sosı́k: Aspects of shuffle and deletion on trajectories. Theoretical Computer Science, 332 (2005),
47–61.

[20] E. Kinber: The inclusion problem for some classes of deterministic multitape automata. Theoretical Com-
puter Science, 26 (1983), 1–24.

[21] A. Mateescu: CD grammar systems and trajectories. Acta Cybernetica, 12 (1997), 141–157.

[22] A. Mateescu: Splicing on routes: a framework of DNA computation. In Unconventional Models of Compu-
tation (C. Calude, J. Casti, M. Dinneen, eds.), Springer-Verlag, Singapore, 1998, 273–285.

M. Domaratzki et al. / Interpreted Trajectories 17

[23] A. Mateescu: Words on trajectories. Bulletin of the EATCS, 65 (1998), 118–135.

[24] A. Mateescu, G. Rozenberg, A. Salomaa: Shuffle on trajectories: Syntactic constraints. Theoretical Computer
Science, 197 (1998), 1–56.

[25] A. Mateescu, K. Salomaa, S. Yu: On fairness of many dimensional trajectories. J. Automata, Languages and
Combinatorics, 5 (2000), 145–157.

[26] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, Vol. I–III. Springer-Verlag, Berlin, 1997.

[27] S. Yu: Regular languages. In [26], 41–110.

