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Abstract

We survey recent results on the use of trajectories as a tool for mod-
elling language operations and other, related objects. Many applications of
the concept of trajectories have been developed since their introduction by
Mateescu, Rozenberg and Salomaa in 1996. Areas which have seen activity
include the theory of codes, language equations, modelling noisy channels,
grammar models and DNA code-word design. We survey each of these ar-
eas.

Introduction

Trajectories, introduced by Mateescu, Rozenberg and Salomaa [79], are a manner
in which a language operation is defined by a fixed language, used as a parameter.
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In this way, we define infinitely many language operations as each language over
the trajectory alphabet defines a binary language operation.

The simplicity and elegance of the concept of trajectories has lead to appli-
cations and generalizations in a number of research areas, including language
equations, theory of codes, DNA code-word design, modelling noisy channels
and other applied areas of formal language theory.

In this survey, we review several recent research areas related to the use of
trajectories. For a survey of early results on trajectories, we refer the reader to the
Formal Language Theory column “Words on Trajectories” by Mateescu [78].

2 Shufle on Trajectories

We begin with the fundamental definition for the investigation of trajectories, that
of shyfle on trajectories The shiffie on trajectories operation is a method for
specifying the ways in which two input words may be merged, while preserving
the order of symbols in each word, to form a result. Each trajedt@y(0, 1}*
with [t|p = nand|t|; = mspecifies the manner in which we can form thefflblon
trajectories of two words of length (as the left input word) anch (as the right
input word). The word resulting from the sffie alongt will have a letter from
the left input word in position if the i-th symbol oft is 0, and a letter from the
right input word in position if the i-th symbol oft is 1.

We now give the formal definition of siffle on trajectories, originally due to
Mateesctet al.[79]. Shufie on trajectories is defined by first defining the f§leu
of two wordsx andy over an alphabéeX on a trajectoryt, a word over0, 1}. We
denote the shile of x andy on trajectoryt by xii .

If x=ax,y=Dby (witha, b e X)andt = et (with e € {0, 1}), then

_ a(X’ Ly by) if e= 0;
Xter ¥ = { b@ax e y) ife=1

If x=ax (aeX),y=eandt=et (ec{0,1}), then
x | aXwre) ife=0;
et €7 otherwise.
If x=¢,y=Dby (beX)andt=et (ec{0,1}), then

( blewyy) ife=1;
€lller Y = { 0 otherwise.

We letxiu .y = 0if {x,y} # {€}. Finally, if x=y = ¢, theneLi e = €if t = e and
0 otherwise.



It is not difficult to see that if = []"_, 0’ 1% for somen > 0 andji, k > O for
all 1 <i < n, then we have that

xmty={ﬁ>qyi D X= ﬁm,y= ﬁyi,
i=1 i=1 i=1

with |x] = ji,lyil = k forall 1 <i < n}

if |X| = |tlo andly| = |t|; andXxLuy = @ if |X| # |tlo Oor |y| # |t]s.
We extend shffie on trajectories tgets TC {0, 1}* of trajectoriesas follows:

Xty = U XLt Y.

teT

Further, forLq, L, € X*, we define

Lyt Ly = U XuwiTVy.

Xelq
yeLo

Consider the following examples. We can see thdt # 0°1*, we have that
Liwt Ly = LyLy, ie., T = 0*1* gives the concatenation operationTlE (0+ 1),
thenL,wt L, = Lyul,, i.e., T = {0, 1} gives the shfile operation. This is
the least restrictive set of trajectories. Tif= 0°1*0*, then it is the insertion
operation— (see, e.g, Kari [50]) which is defined by« y = {x1y% : X, X €
¥, X1 % = X} for all X,y € ¥*. See Mateescat al. [79] for the fundamental study
of shuffle on trajectories.

3 Deletion along Trajectories

We now consider deletion on trajectories, an important addition to the study of
trajectories and related areas. The concept of deletion along trajectories was in-
dependently introduced by the authorl[17] 22] and Kari and Sbsik [55, 56]. The
primary motivation for the introduction of deletion on trajectories is to define
an “inverse” to shffle on trajectories, in a sense we will see below. Intuitively,
deletion on trajectories uses the trajectories to model language operations which
delete an occurrence of the right argument from the left argument in a controlled,
scattered way.

Let x,y € ¥* be words withx = ax,y = by (a,b € X). Lett be a word over
{i,d} such that = et with e € {i,d}. Then we definex ~» y, the deletion ofy
from x along trajectoryt, as follows:

a(x' ~y by) ife=i;
X~ y=2 X ~op Y if e=danda=Db;
0 otherwise.



Also, if x = ax (a e X) andt = et (e€ {i,d}), then

oo € = ax ~pe) ife=i;
TV o0 otherwise.

If X # ¢, thenx ~, y = 0. Further,e ~; y = eif t =y = e. Otherwise,
e~ Y= 0.
LetT C {i,d}*. Then
X1y = U X~ Y.
teT
We extend this to languages as expected:Lek, € ¥* andT C {i,d}*. Then

Li~1 Ly = L,J X~o>T1 Y.
Xxelq
yeLo
We consider the following examples of deletion along trajectories:

(@) if T =i*d*, then~1=/, the right-quotient operation;

(b) if T =d*i*, then~1=\, the left-quotient operation;

(c) if T = i*d*i*, then~t=—, the deletion operation (see, e.g., Kari
[49,150));

(d)if T = (i +d)*, then~1=~», the scattered deletion operation (see,
e.g., ltoet al.[41]));

(e) if T = d*i*d*, then~t==, the bi-polar deletion operation (see,
e.g., Kari [50));

(f) letk > 0 andTy = i*d*i=*. Then~s1,=—k, thek-deletion operation
(see, e.qg., Kari and Thierrin [57]).

We now recall some of the closure properties of deletion along trajectories.

Theorem 3.1. Let X be an alphabet. There exist weak codipgso,, 7,¢ and a
regular language R such that for alhlL, C ¥* and all T C {i, d}",

Li~or L2 = (pi'(L) N o' (L) N T (T) N R).
Corollary 3.2. Let £ be a cone. Then for allL.L,, T such that two are regular

languages and the third is frofy, Ly ~>1 L, € L.

3.1 Non-regular Trajectories Preserving Regularity

Consider the following result of Mateeset al. [79, Thm. 5.1]: ifL;wr Ly is
regular for all regular languages, L, thenT is regular. This result is clear upon
noting that for allT, 0" .+ 1* = T.



However, we note that the same result does not hold if we replaceiteshu
on trajectories” by “deletion along trajectories”. As motivation, we begin with a
basic example. LeX be an alphabet and = {i"d" : n > 0}. Note that

Ry ~y R ={xe X" : dy e Ry such thatxy € R, and|x| = |y|}.

We can establish directly (by constructing an NFA) that for all regular languages
Ri, R, C ¥, the languag®; ~ R is regular. Howevert itself is not regular.

We remark thatR; ~»y Ry is similar to proportional removals studied by
Stearns and Hartmanis [90], Amar and Putzolu [1, 2], Seiferas and McNaughton
[86], Kosaraju [[60] 61/, 62], Kozen [63], Zhang [96], the author [16], Berstel
al. [4], and others. In particular, we note the cas%(dn‘), given by

%(L) ={xe€ X" : dy € ¥* such thatxy € L and|x| = |y|}.

The operation%(L) is one of a class of operations which preserve regularity.
Seiferas and McNaughton completely characterize those binary relations?
such that the operation

P(L,r) = {xe X : dy € £* such thatxy € L andr(|x], |y))}

preserves regularity.

Recall that a sed is ultimately periodic (u.p.) if there exisk, pe N, p > 0,
such that for allx > ny, x € | <= x+ p € |. Call a binary relatiorr ¢ N?
u.p.-preservingf A u.p. impliesr*(A) = {i : 3j € Asuchthart(i, j)} is also
u.p. Then, the binary relatiomssuch thaP(-, r) preserves regularity are precisely
the u.p.-preserving relations [86]. This was extended to deletion on trajectories
[17,122]:

Theorem 3.3. Let r ¢ N? be a binary relation and H= {i"d™ : r(n,m)}. The
operation~y, is regularity-preserving if and only if r is u.p.-preserving.

Theorenj 3.8 has been extended by the author [17, 22] to cover other bounded
sets of trajectories.

3.2 Algebraic Properties

Kari and Sosik [56] show the following results concerning algebraic properties of
deletion along trajectories:

Theorem 3.4.Let T C {i, d}*. The following three conditions are equivalent:
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(a) the operation~+ is commutative;
(b) Ly ~1 Ly C {€} for all languages L, Lo;
() Tcd.

Corollary 3.5. Given a context-free set of trajectoriesd{i, d}*, it is decidable
whether~+ is a commutative operation.

Theorem 3.6. For a set of trajectories TC {i, d}*, the following two conditions
are equivalent.

(i) Forallt; € 1Mu0" t, € 1"0 and § € 1wO0™", i, j,mne N,

(@m>0andt eT impliest ¢ T.
(b)m>0andt €T impliest ¢ T.
(c)t; e T and0™ e T impliesQ" € T.
(d)t; e T and0" € T impliesOm e T.

(i) ~»7 is an associative operation.
However, the associated decidability problem is apparently open:

Open Problem 3.7.Given a regular set of trajectories € {i,d}", is it decidable
whether~+ is an associative operation? What if T is context-free?

3.3 Commutative Closure

Recall that the commutative closure of a wavce X* is the setcomw) = {x :
Ya € X,|Wla = |Xla}. The commutative closure of a langualges the union of
the commutative closure of each wordLinNote that the operatiomomdoes not
preserve regularitycom((ab)*) = {x € {a, b}* : |Xla = [Xp}.

The author, Mateescu, K. Salomaa and [Yu [23] have shown tAatsfcom-
plete and associative, then for all languagesve can define an a congruence
relation~__r. Then the factor monoid ofr = (P(X*), LT, €) with respect tov 1
is finite if and only ifcom(L) is a regular language [23].

4 Language Equations

The immediate consequence of the introduction of deletion on trajectories is its
application to language equations. A language equation is an equality involving
constant languages, language operations and unknowns. We refer the reader to
Leiss [67] for an introduction to the theory of language equations.
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There are several facets to research on language equations. For instance, given
a language equation or a system of language equations, we can seek to character-
ize the solutions to the equation, or simply decide if a solution exists. In the
research on language equations involvingfBaon trajectories, the focus of re-
search has been the latter task.

4.1 Zero Variable Equations

The most simple language equations are those without any variables at all. It
follows from the closure properties ofiy and~» that it is decidable if either
Riut R, = Rsor Ry ~1 R, = Rs holds if all of R;, R, andR; are regular lan-
guages and is regular. Below, we review decidability results when the languages
and set of trajectories are not all regular.

LetWo(T) = {|tla : t € T}, whereais a letter andt|, denotes the number of
zeroes irt. Kari and Sosik[56] establish the following elegant result:

Theorem 4.1.Let T be an arbitrary but fixed regular set of trajectories. The
problem “Is Lyt L, = R?” is decidable for a CFL L and regular languages
L,, R if and only if¥(T) is finite.

The analogous result for deletion on trajectories (Wg(T) is finite) also holds
[56]. Further, ifL; is taken to be a regular language dnds taken to be a CFL,
then the necessary and8cient conditions are thal,(T) is finite [56].

We can contrast the above results with the following surprising result which
was established by the author and K. Salormaa [26].

Theorem 4.2.Let T = {01'0/1%0% : r # s;r,sareodd i, j,k > 0}. Then for
a given alphabek and given regular languages, B;, R, C X, it is undecidable
whether or not S= R; it R.

The result is interesting since it is an undecidability result about regular lan-
guages: given three regular languages, it is undecidable whether the given equality
holds; the context-free set of trajectoriesf fixed (and is not part of the input).

4.2 One Variable Equations

One variable equations involving dfle and deletion on trajectories have been
studied by the author [17, 22], Kari and Sosik![55, 56] and the author and K. Sa-
lomaa [25]. We summarize these results below.

By general results of Kari on the inverse of language operations [50], the fol-
lowing result on one variable language equations involvingtshand deletion
along trajectories is immediate.



Theorem 4.3. Let LR be regular languages. Then it is decidable whether any of
the following equations have a solution X, and if so, the maximal solution (under
inclusion) is an gectively constructible regular language:

(&) Xiut L = Rwhere TC {0, 1}" is regular.
(b) Liur X = Rwhere TC {0, 1}* is regular.
(c) X~1 L = Rwhere TC {i,d}* is regular.
(d) L~1 X =R where TC {i,d}* is regular.

We can also examine the question of if it is decidable whether a set of trajec-
tories can be found to satisfy a fixed language equation:

Theorem 4.4. Let L, L,,R C X* be regular languages. Then it is decidable
whether

(a) there exists a set T {0, 1}* of trajectories with Lt L, = R.
(b) there exists a set T {i, d}* of trajectories with L, ~1 L, = R.

We now turn to undecidability. Ld,, I1; : {0, 1}* — {0, 1}* be the projections
given byIly(0) = 0,11p(1) = € andII;(1) = 1,11,(0) = €. We say thafl c {0, 1}
is left-enabling(resp.,right-enabling if TIp(T) = 0" (resp.,I1y(T) = 1). Itis
undecidable whether the corresponding equation has a solution:

Theorem 4.5.Fix T C {0, 1} to be a regular set of left-enabling (resp., right-
enabling) trajectories. For a given LCFL L and regular language R, it is undecid-
able whether or not Lt X = R (resp., Xut L = R) has a solution X.

Say that a set of trajectories is left-preserving (resp., right-preservifigpif
0 (resp.,T 2 1*). We can give an incomparable result which removes the condi-
tion thatT must be regular, but must strengthen the conditions on words in

Theorem 4.6. Fix a left-preserving (resp., right-preserving) set of trajectories
T C {0, 1}*. Givenan LCFL L and aregular language R, itis undecidable whether
there exists a language X such thatik X = R (resp., Xur L = R).

By an extension of Theorem 4.2, we can also show that there exists a fixed
context-free set of trajectori€k such that, on inpuRy, R, (regular languages),
deciding whether or not there exists a languageuch thatR;, = Xwt Ry Is
undecidable[[26]. We also have the following undecidability results concerning
the existence of sets of trajectories|[25, 22]:

Theorem 4.7. Given an LCFL L and regular languages /R, it is undecidable
whether there exists € {0, 1}* such that (a) Rt R, = L, (b)) Rlut L = Ry or
(C) LT R =R,

Given an LCFL L and regular languages,R;, it is undecidable whether
there exists TC {i,d}* such that (a) R~1 R, = L, (b) L~1 R, = Ry, or (¢)
Rl 2T L= Rz.



4.3 Two Variable Equations

We can also consider language equations with two variables. As an example,
consider the well-studied language equation

L = X %o (1)

wherelL is a fixed language an¥,, X, are unknown. Study of this equation has
been undertaken by Conwely [10], Kari and Thierfin|[59], Salomaa and_Yu [85]
and Chdtrut and Karhumakil[9]. In particular, it is known thatlifis a regular
language, we can determine if a solution[tp (1) exists. Furthermore, it is known
that if a solutionXy, X, exists, there exists a maximal regular solution; i.e., there
existsR;, R, such thatX; € R fori = 1,2 andL = R|R».

For language equations of the form= X;i.ut X, unlike the case of one-
variable equations, we do not have a general result which applies to all regular
sets of trajectorie3. However, a large class of trajectories are covered by the
author and K. Salomaa [25,122].

Recall that a language C X* is boundedif there existw;, Ws, ..., w, € Z*
such thatL € w;w;---w;,. We say thatl is letter-boundedf w; € X for all
1 <i < n. The following result is due to the author and K. Salomaal[25, 22].

Theorem 4.8.Let T C {0, 1} be a letter-bounded regular set of trajectories.
Then given a regular language R, it is decidable whether there exjst;>uch
that Xt Xo = R.

As we have mentioned, this result was known for catenafion,0*1*. How-
ever, it also holds for, e.g., the following operations: inserticd’{@), k-insertion
(0*1*0=k for fixed k > 0), and bi-catenation {0 + 0*1*).

We also note that if the equatiof .ut X, = R has a solution, wherR is
a regular language and is a letter-bounded regular set of trajectories, then the
equation also has solutiofy LLit Y, = RwhereYy, Y, are regular languages. This
result is well-known foT = 0*1* (see, e.g., Cherut and Karhumaki [9]).

ForT = (0 + 1)*, the two-variable decomposition problem is open [7]:

Open Problem 4.9.Given a regular language R, is it decidable whether there
exist X, X, (with Xy, X5 # {e}) such that R= Xy1X,?

Recall that a languagde is k-thinif |[L N X" < k for all n > 0. The following
problem is also open:

Open Problem 4.10.Given a k-thin set of trajectories € {0, 1}, is it decidable,
given a regular language R, whether R has afgaulecomposition with respect
toT?



The author and K. Salomaa [26] have shown thal i€ {0,1}* is a fixed
1-thin set of trajectories, given a regular langu#éjet is decidable whetheR
has a shfile decomposition with respect i1 However, even for 2-thin sets of
trajectories, the problem remains open [26].

We can also note that if the left and right operand are restricted to be the same,
the resulting language equation problem remains decidable if the set of trajectories
is regular and letter-bounded 25, 22]:

Theorem 4.11.Fix a letter-bounded regular set of trajectoriesd {0, 1}*. Then
it is decidable whether there exists a solution X to the equatiorr X = R for a
given regular language R.

We now turn to undecidability. It has been showh [7] that it is undecidable
whether a context-free language has a nontriviali#alecomposition with re-
spect to the set of trajectori¢®, 1}*. This result can be extended for arbitrary
complete regular sets trajectories|[25]. (Note that i a complete set of trajec-
tories, then any languagehas decompositions.iit{e} and{e} L. Below we
exclude these trivial decompositions; all other decompositiohsart said to be
nontrivial.)

Theorem 4.12.Let T be any fixed complete regular set of trajectories. For a given
context-free language L it is undecidable whether or not there exist languages
X1, Xo # {€} such that L= X Xo.

We also note the following open problem [26]:

Open Problem 4.13.Is it possible to construct a fixed context-free set of trajecto-
ries T such that it is undecidable whether there exist languageX,X%+ {€} such
that L = X Xo?

Also open are other forms of language equation. We mention only two here:

Open Problem 4.14.Find necessary and gicient conditions on sets of trajecto-
ries Ty, T, so that, given a regular language R, it is decidable whether there exist
nontrivial languages X X,, X3 satisfying(X; i, Xp) T, X3 = R.

Open Problem 4.15.Given regular languages 1RR,, is it decidable whether
there exists nontrivial languages X (with T C {0,1}*) such that X .t R = R,
orRjuT X1 = R?

5 Splicing on Routes

The notion of shffle on trajectories was extended by Mateescu [77] to encompass
certain splicing operations. This extension is capticing on routes Splicing
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on routes is a proper extension of el on trajectories, and also encompasses
several unary operations. Bel-Enguekal. also use the concept of splicing on
routes to model dialog in natural language [3].

Splicing on routes was introduced by Mateescu [77] to model generaliza-
tions of the crossover splicing operation (see Mateescu [77] for a definition of
the crossover splicing operation). Splicing on routes generalizes the crossover
splicing operation by specifying a setof routes which restricts the way in which
splicing can occur. The result is that specific sets of routes can simulate not only
the crossover operation, but also such operations on DNA such sisitpie splic-
ing and theequal-length crossovearperations (see Mateescu for details and defi-
nitions of these operations [77]).

We now define the concept splicing on routesand note the dlierence be-
tween deletion along trajectories from splicing on routes, which allows discarding
letters from either input word. In particular,raute is a wordt specified over
the alphabet0, 0, 1, 1}, where, informally, 01 means insert the letter from the
appropriate word, an@, 1 means discard that letter and continue.

Formally, letx,y € =* andt € {0,0, 1, 1}*. We define the splicing of andy,
denotedx > y recursively as follows: ix = ax,y = by (a,b € X) andt = ct’

(c € {0,0,1,1}), then

a(x’ vy y)
(X >y y)
b(X >« y')
(X><y ')

Xbdey Y =

if c=0;
if c=0;
ifc=1;
if c=1.

If x = ax andt = ct’, wherea € £ andc € {0,0, 1, 1}, then

a(x' >y €)

X Doy € =
0

(X/ P><yr E)

if c=0;
if c=0;
otherwise.

If y = by andt = ct’, wherea € = andc € {0,0, 1, 1}, then

a(x’ ><y €)

Xbey € =
0

(X >y €)

if c=0;
if c=0;
otherwise.

If y = by andt = ct’, wherea € = andc € {0,0, 1, 1}, then

b(e >« y)
€xcr Y =1 (> Y)
0

11
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We havex =, y = 0 if {X,y} # {€}. Finally, we sete >, € = €if t = e and
otherwise. We extens, to sets of routes and languages as expected:

Xbar Y = Ux><ty VT €{0,0,1, 1}, x,y € *;

teT

Liver Lo = U X<t Y.

X€L1,y6 Lg

For example, ifx = abg y = cbcandT = {010011010011}, thenx s y =
{acbcbcabbg.

It turns out that splicing on routes can be simulated by a combination éfeshu
on trajectories and deletion along trajectories [22]:

Theorem 5.1. There exist weak codings, 7 : {0, 1,0, 1}* ,d}* and a weak

— {i
codingns : {0,1,0,1}* — {0,1}* such that for all te {0,0,1,1}*, and for all
X,y € ¥*, we have

X Y = (X~om@) Z7) Wiy (Y ~mm Z°).

Corollary 5.2. There exist weak codings, > : {0,1,0,1}" — {i,d}* andns :
{0,1,0,1}* — {0, 1}* such that for all TC {0,0,1,1}* and Ly, L, C ¥,

Ly o Ly = U(Ll ~mt) Z) Wty (L2~ X7
teT

Unfortunately, the identity
Livar Lo = (L1 ~omy(m) Z°) Wingery (L2 ~orp(my Z7)

does not hold in general, evenlif, L, are singletons and'| = 2. For example, if
L; = {ab}, L, = {cd} andT = {0011, 0011}, then

{bc, ad};
{ac, ad, be, bd}.

Ly»ar Lo
(L1 ~yy Z°) Wing(my (L2 ~omymy Z7)

—_—k

However, if T is aunary set of routes, by which we mean tHatc {0, 0}*1 ,
then we have the following result [22]:

Corollary 5.3. Let T ¢ {0,011 . Then for all LC ¥,

L > > =L 2 21(T) >

12



We refer the reader to Mateescu [77] for a discussion of unary operations
defined by splicing on routes. As an example, consider thatTigh{0"0 : n >
011, Loer XF = (L), where3(L) was given in Sectio.l.

Bel-Enguixet al.[3] have used splicing on routes to model dialogue in natural
language. Adialogueis the result of two or more actors who alternately com-
municate. The alternating nature of trajectory-based operations makes it natural
to apply them to modeling dialogue. Routes, and in particular the ability to not
insert portions of certain actor’s input, is important for selectirfGedent pieces
of information for diferent dialogues: “Depending on the conversational goal and
on the behaviour of the agentsffdrent acts will be selected”|[3]. Bel-Engust
al. [3] note three important classes of routes used in dialogue:

(a) Imbricationin a dialogue is the result of applying a route from the set of
routes defined by the regular expression (@191))". Imbrication repre-
sents the “perfect conversation” where actors strictly alternate.

(b) Concatenationn a dialogue is the result of applying a route from the set
of route defined by the regular expression{0)*(1 + 1)*. According to
Bel-Enguix, concatenation has applications to more formal dialogues such
as debates and round tables [3].

(c) Mergingis the result of applying a route which does not fall into the cat-
egories of imbrication or concatenation. Merging is more common than
imbrication and concatenation in informal dialogues.

Bel-Enguixet al. [3] mention several open areas of research relating to the
use of splicing on routes for modelling dialogue. In particular, they ask about
establishing a mechanism in order to select routes depending on context. This
would establish a more semantic operation, in the terminology of S¢gtion 6 below.

6 Semantic Shifie on Trajectories

In the paper which introduced sfiie¢ on trajectories, Mateeset al. make a dis-
tinction betweersyntacticandsemanticoperations on words:

[Shufie on trajectories is] based on syntactic constraints on thi@shu
operations. The constraints are referred to as syntactic constraints
since they do not concern properties of the words that argletpor
properties of the letters that occur in these words.

Instead, the constraints involve the general strategy to switch from
one word to another word. Once such a strategy is defined, the struc-
ture of the words that are sfiled does not play any role.
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However, constraints that take into consideration the inner structure
of the words that are sffiled together are referred to as semantic con-
straints. [79, p. 2]

The author[[19] has introduced a semantic variant offhn trajectories,
naturally calledsemantic shffe on trajectories(SST). The corresponding no-
tion for deletion on trajectories is calls@mantic deletion on trajectori€SDT).

The advantages of SST and SDT are that they preserves many of the desirable
properties of the usual, syntactic $he on trajectories, while being capable of
simulating more operations of interest.

The two semantic constructs we introduce ayachronizatiorand content
restriction Synchronization allows for only one letter to be output for two cor-
responding, identical symbols in the input words. Content restriction allows a
trajectory to specify that a particular letter must appear at a specific point. This is
inspired by bio-informatical operations, where operations occur only in the con-
text of certain subsequences of the DNA strand.

Before we define SST, we define the trajectory alphabetl"l=et0, 1, o-}. For

any alphabek, letI's =T'U (I' x X). For ease of readability, we denoted] by ¢
forallae XandceT.

We can now define the SST operation. DBebe an alphabet, € I and
X,y € ¥*. Then the SST ok andy alongt, denotedx m; v, is defined as follows:
If x =ax,y = by (wherea,b € X, X,y € X¥), andt = ct’, wherec € I'y and
t I3, then

a(X myy) if ce (0,0},

) b
xrmy =1 bxmey) if ce (1,1}, a
ax myy) ifa=bandce{o,0},
0 otherwise.

If x=ax,y=eandt=ct then

. a
XMy € = a(X/ My 6) if ce {0, 0},
0 otherwise.

If x=¢,y=Dby andt = ct’ then

] b
ermyy = Plemvy) ifce{l1},
0 otherwise.

If x=y=¢, thenxm;y = €if t = e and® otherwise. Finally, ifx,y} # {¢}, then
XMey=0.1f x,ye X andT C I3, thenxmyry = Uerxmyr y. If Ly, L, € X and
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T C I, thenLy My Ly = Uyer,ye, XMt Y. The associated deletion operation, over
the alphabef\y = A U (A x X) (whereA = {i,d, o}), is defined in the natural way
[19].

We now consider, givel and two sets of trajectori€f;, T, € I, whether
the operationsny,, T, coincide, that is, whethdr; m+, L, = L; M, L, for all
languages,, L, € Z*. If M, My, represent, in this sense, the same operation, we
say thafl;, T, areequivalentsets of trajectories.

We note that it is possible for two distinct sets of trajectofligsT, C I'; to be

equivalent. As a simple example, consider= {Si} andT, = {38}. Note that for
i=12,
_ [ {aa} if LinL; 2 {al);
Lo Lo = { 0  otherwise.

Thus, T4, T, are equivalent, but not equal.

By using a special case of partial commutation and trace languages (see Diek-
ert and Métivier[[15]), we can show that two sets of trajectofigdl, C I’ are
equivalent if and only if their corresponding trace languages (under the natural
morphism) are equivalent. This implies the following important decidability re-
sult:

Theorem 6.1. LetX be an alphabet and I T, c I's. If T1, T, are regular, it is
decidable whether Tand T, are equivalent.

We can now consider some examples of the power of SST and SDT. We first
note that SST consists of a valid extension of theflswn trajectories: il C
{0, 1}, thenL; Mt L, = Lyt Ly, the syntactic shitie on trajectories operation
[79]. We also note that it = o*, thenmt =nN.

Given the very natural set of trajectoriés= (0 + 1 + o)*, Mt denotes the
infiltration product T, see, e.g., Pin and Sakarovitch![81]. The infiltration product
is defined as follows: ik = X; ... X, is a word of lengtm andl = (i, ip,...,i;)is
a subsequence of (2,...,n), letx, = x,X,--- X,. Then givenx,y € X*,

xTy={zeX : Al,JC[|Z] suchthat U J=[|Z],z = xandz; =y}.

For exampleab T ba = {aba bah baah baba abba abaly.

We now show how to use SST and SDT to simulate ciliate bio-operations
which have been the subject of recent research in the literature. A model of cil-
iate bio-operations without circular variants were introduced by Deley. [11]
to mimic the manner in which DNA is unscrambled in the DNA of certain uni-
cellular ciliates in the process of asexual reproduction. Ciliate bio-operations are
also investigated by Ehrenfeucét al. [28], Prescottet al. [82], and Daley and
McQuillan [12] using various approaches.
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Daley et al. [11] define several language operations which simulate ciliate
bio-operations, including synchronized insertion, deletion and bi-polar deletion.
Synchronized insertion can be given as follows:

a®pf={uavaw: ac€ X, a = uaw,s = vaj.

The operation is extended to languages as usualT et J s 0° 8 1 i 0“. Then
forall L;,L, € X, Ly @ L, = Ly Mt L,. The operations of synchronized deletion
and synchronized bi-polar deletion (also defined by Datesl. [11]]) can also be
simulated by SDT.

Contextual insertion and deletion were introduced by Kari and Thierrin as a
simple set of operations which are capable for modelling DNA computing [58].
Let = be an alphabet andk[y] € (Z*)2. We call [x,y] a context Then given
v, U € X*, the [x, y]-contextual insertiomf vinto u is given byu ry V = {UyXvyw :

U= U Xy, Uy, Uy € *}. LetC C (Z¥)2. Then

— «—
Uc V= U u [x¥] V.
[xy]eC

The operationc is extended to languages monotonically as expected.x et
X1+ X, andy =y, - - - Yy be arbitrary words ovex. Then define

n
Xi Yi
i=1

m
i=1
We naturally extend this tBc = Ujxyjec Tixy for all C € (£%)2. Under this defini-
tion it is clear thatri, ="c for all C ¢ (Z*)2.

Kari and Thierrin note that i€ c (Z*)? is finite, then the regular and context-
free languages are closed under As Tc is regular for all finiteC, we note
that the closure of the regular languages undes a consequence of the closure
properties of SST. It is known that the CFLs are closed undg®8]. However,

in general, the CFLs are not closed undetr. This leads to the following open
problem:

Open Problem 6.2.Find necessary and gicient (language-theoretic) conditions
on a set of trajectories E I'; such that the CFLs oveX are closed undemy.

We note that X, y]-contextual deletion andx|y]-contextual bi-polar deletion
[58] can be simulated by SDT [19].

Recall thasynchronized shfie (see, e.g., Latteux and Roos [66]) is defined as
follows. LetX,, X, be alphabets, not necessarily disjoint. pet (£, U X)) — %
be the projection ont@; given bypi(a) = a for all a € %; andp;(@) = € for all
ae(ZUL) -3
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LetL; C % fori = 1,2. Then the synchronized sffie of L, andL,, denoted
L1 || Ly, is given by
L1 Il Lz = p1*(L1) N p3*(L2).

Lemma 6.3. LetX,, X, be alphabets. Let £ I'%, .. be given by

21UZo

T=J H+J o+l D

acx Ny acx—Xo acxo—X1
Thenforall Ly, L, suchthat Lc X; fori =1,2, Ly || L, = Ly ™t L.

Further examples of operations simulated by SST are described by the author
[19].

We note that many of the results on language equations hold for SST. In par-
ticular, the following are new results on bio-operations which have not been noted
before [19]:

Corollary 6.4. Let R be a regular language. Then it is decidable whether there
exist languages XX, such that R= X; & X,.

Corollary 6.5. Let C ¢ (£*)? be a finite set of contexts. Let R be a regular
language. Then it is decidable whether there exist languageX,Xsuch that
R=X; ¢ Xo.

7 Descriptional Complexity

Descriptional complexity of formal languages deals with the problems of concise
descriptions of languages in terms of generative or accepting devices. For in-
stance, thédeterministic) state complexibf a regular languagk is the minimal
number of states in any deterministic finite automaton accetijég]. Nonde-
terministic state complexity of a regular language is similarly defined (see, e.g.,
Holzer and Kutrib[[36]).

For shutle on trajectories, Mateeset al. [79] and Harjuet al. [34] both give
proofs that, given a regular set of trajectoriesind regular languagés, L, the
operationL, Lt L, always yields a regular language. Thus, it is reasonable to
consider the state complexity of gfie on trajectories. The author and K. Salo-
maa [24] have obtained results in this area. We state an upper bound in terms of
nondeterministic state complexity:

Lemma 7.1. Let Ly, L, be regular languages ovér and T C {0, 1}* be a regular
set of trajectories. Then

S((Ll LT |_2) < 2nS((L1)nS('(L2)nS((T)'
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The following open problem appears to be very challenging:

Open Problem 7.2.For what regular sets of trajectories T {0, 1}* does the
construction given by Lemma¥.1 give a construction which is best possible?

Consider unrestricted shile, given by the set of trajectorids = (0 + 1)*.
The bound of Lemmf 7.1 in this case R$@vsd2) Campeantet al. [8] have
shown that there exist languagesandL, accepted by incomplete DFAs having,
respectivelyn andm states such that any incomplete DFA accepting L, has
at least 2™ — 1 states. This bound is optimal for incomplete DFAs, however,
for complete DFAs it gives only the lower boun&®-)-D6d)-1) - However, we
regard this as near enough to our goal of Lemimé& 7.1 for our purposes, i.e., we
regardT = (0 + 1)* as an example of a set of trajectori€ssatisfying Open
ProbleniZ.R.

The density functiorof a languagd. € X* is defined byp, : N — N as
pL(n) = LN X" for all n > 0. That is, p.(n) gives the number of words of
lengthnin L. By the density of a languade we informally mean the asymptotic
behaviour ofp.. The following important result of Szilardt al. [91, Thm. 3]
characterizes the density of regular languages:

Theorem 7.3. A regular language R oveE satisfies g(n) € O(nY), k > 0 if
and only if R can be represented as a finite union of regular expressions of the
following form: xyz; - - - y;z where Xy1,z1,--- ,y,,z € ', and0 <t <k + 1.

Call a languagé. slenderif p_(n) € O(1) [83]. LetR be a regular language
which has polynomial densit@(n), and lett be the smallest integer such that
R = U}zlxiy;‘,lzi,l---wﬁhz,h, 0<k <k+1,i =1,...,t. Then callt the UKL-
indexof L. If k = 0, we callt the USL-indexof L (languages with USL indek
are called-thin by Paun and Salomaa [83]; slender regular languages were also
characterized independently by Shallit|[87, Lemma 3, p. 336]).

Lemma 7.4.Let T = uv: where yv € {0, 1}*. Let L; be regular languages ové,
with sqLj) =n;,i=1,2. LetL= Lyt Ly. Then

sql) < |uvngn,. (2)
We now give a bound for sets of trajectories= uv'w with w # €.

Lemma 7.5. Let T = uv'w where yv,w € {0,1} and w# €. Let L, be regular
languages ovek, with s€L;) = n;,i=1,2. LetL= Lyiut L,. Then

(nlnz)[%hl — N
nn,—1

sql) < ninp | jul + 1+ |V

(3)
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Our aim is to obtain a lower bound for the she& operation on trajectories
with USL index 1. It seems likely that the bourid (3) cannot be reached for any
fixed set of trajectories (and for all valuessi{L;),i = 1, 2). In particular, ifiw] is
fixed andsq(L;) can grow arbitrarily, then it seems impossible that[ﬂﬁ@ parallel
computations on the §iix w could simultaneously reach all combinations of states
of the DFAs forL; andL,. Note that if the computation d contains parallel
branches that simulate the computationd/®f1 < i < 2), in stated; C Q;, then
all the states oP; need to be reachable from a single statdvipfwith inputs of
length at mosjw|.

For the above reason, we consider a lower bound for sets of trajeatoties
where the length of and ofw can depend on the sizes of the minimal DFAs for
the component languageg andL,. Furthermore, to simplify the notations below
we give lower bound results for sets of trajectories of the foim i.e.,u = e.

It would be straightforward to modify the construction for prefixesft arbitrary
length to include the additive termn, - (ul + 1) from (3).

Lemma 7.6. LetX = {a,b,c}. For any n,n, € N there exist regular languages
Li € X with sdL;j) = n;, i = 1,2, and a set of trajectories == v*w, where
v,w € {0, 1}*, such that

saLyurly) > (nan)[%Hl-
The ratio|w|/|v| above can be chosen to be arbitrarily large.

By extending Lemmp 7|6 slightly, we obtain the following result:

Theorem 7.7. The upper bound (3) is asymptotically optimal i{ BE(that is,|v])
can be arbitrarily large compared to €g), i = 1, 2.

We conclude with some open problems. Recall that the example of arbitrary
shutle, shown by Campearet al. to have state complexity no better than our
construction in Lemm@ 7.1, uses the set of trajectories(0 + 1)* of density 2.

We also note that, by Szilawet al. [91], the density of a regular language over
is eitherO(p(n)), wherep is a polynomial, oQQ(|Z|").

Thus, we may conjecture that a set of trajectofiggelds an operation which
is, in the worst case, no better than Lenjma 7.1 if and onpy (h) € Q(2"), i.e. T
has exponential density.

Our constructions in Lemnia 7.6 use three-letter alphabets. Can these con-
structions be improved to two-letter alphabets? The problem of restricting the
alphabet size to be as small as possible is often challenging. For example, in the
case of concatenation, the state complexity problem was solved for a three-letter
alphabet by Yuet al. [94], but the case of a two-letter alphabet was open until
recently [44] 43].
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8 Substitution on Trajectories

We now recall the definition of substitution on trajectories, originally given by
Kari et al. [53,/52]. A trajectoryt is a word over0, 1}. Given a trajectory and
u,v € ¥*, the substitution o¥ into u (or the substitution im of v) is given by

n n n
Ub V. = {(]—[ UVi)unir - N2 0,u= (]_[ Uidj)Uns1, V = l_[ Vi
i=1 i=1 =1

n
t= ]—[Oa*'l)oa“”,ai,vi exVi,l<i<kueX, Vil<i<k+l,
i=1

ji = ulv1l<i <k

Note that iflu| # |t] or |v| # |t| thenu < v = 0.
We extend this to sets of trajectorids C {0, 1}* as expectedu s« Vv =
UietU »<r Vv Further, if Ly, L, are languages, thely s<r Ly = Uy, U ber V.
L

We note that the notatiorr was also used by Mateescu [77] fory'fhze splicing on
routes. This concept is unrelated to substitution on trajectories except in that they
both are based on the concept of trajectories.
We consider some examples:

() If T = {0,1}", the resulting operatiosr is known as the substi-

tution operation. In this operation, substitutions are permitted in any

possible position.

(ii) If T, = 0°(10°)k0%, the languagex = XX contains all possible

words obtained by substituting exackygymbols intox.

One motivation for substitution on trajectories is the close associations between
insertion, deletion and substitution in models of channels with can generate errors
while transmitting data. Indeed, so-called SID channels (for substitution, insertion
and deletion) are a strong model of transmission media where these three types
of errors may occur. Thus, it is natural to consider a substitution-based operation
using trajectories.

Formally, a channe} is a binary relation on words which defines a set of
possible outputs from a channel given an input wordr yfy, theny is a possible
output of the channel on input A languagel is error-detecting for a channel
if, for all u,v € L U {€}, uy vimpliesu = v. For a given set of trajectoriéls, the
channel defined by is given by the relatiori(u,v) : v € usg X*}. Thisis a
very natural definition: it is completely analogous to the definition of the binary
relation defined by shiie on trajectories defined independently by the author and
described in Sectidn 9.1 below).

Kari et al. [53,[52] show that given a language and a substitution channel
(defined by a set of trajectories), it is decidable in polynomial time whether the
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language is error-detecting for a channel. Ketral. [53,/52] have also investi-
gated language equations involving substitution on trajectories. In particular, for
one-variable equations of the forkis<r R; = R, or Ry s X = Ry, it is decid-

able whether there exists a solutiorR{, R, andT are all regular. The problem

of examining two-variable equations for substitution on trajectories, however, is
apparently open:

Open Problem 8.1.Find necessary and gicient conditions on T such that, given
a regular language R, it is decidable whether there exigtXX such that R=
Xl DT Xz.

9 Theory of Codes

Prefix codes are fundamental objects in formal language theory, and are likely
one of the most well-studied classes of languages which are not defined by their
relation to a generating or accepting device. A languaggea prefix code if no

word x € L is a prefix of another worgt in L. The use of prefix is intricately
linked to concatenation—which is itself a particular case of an operation defined
by shufie on trajectories. This is reflected by the following well-known identify
for prefix codesl is a prefix code if and only iE N LE* = 0 (We refer the reader

to Berstel and Perrin_[5], Jurgensen and Konstantinidis [46] or Shyr [88] for an
introduction to the theory of codes and prefix codes).

The question now arises: is concatenation the onlyfs&on-trajectories op-
eration for which the associated “prefix-like” property defines a class of languages
related to the theory of codes? It turns out that the answer is no: several well-
studied language classes related to the theory of codes are a particular case of the
concept ofT -codes, which we review now. The results in this section are due to
the author[[20, 21, 22].

LetL C X* be a language. Then, for aiyc {0, 1}*, we say that is aT-code
if L is non-empty andl(iut X*) N L = 0. If £ is an alphabet andl C {0, 1}*, let
P+ (X) denote the set of all-codes ovek.

There has been much research into the ide&-obdes for particulail C
{0, 1}*, including

(a) prefix, stifix and biprefix (or bifix) codes, correspondingTo=

01", T = 1*0* andT = 0*1* + 10", respectively;

(b) outfix and infix codes, corresponding To= 0*1*0* and T =
1°0*1*, respectively;

(c) shutie-codes, corresponding to bounded sets of trajectories such
asT = (0"1*)" for fixedn > 1 (prefix codes of inder), T = (1*0)"

for fixedn > 1 (sufix codes of index), T = 1*(0*1")" for fixedn > 1
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(infix codes of index), or T = (0*1*)"0* for fixedn > 1 (outfix codes
of indexn).

(d) hypercodes, correspondingTo= (0 + 1)*;

(e) k-codes, corresponding = 0°1*0<¢ (see Kari and Thierrin
[57]) for fixedk > O; and

(f) for arbitraryk > 1, codes defined by the sets of trajectod% =
0" + (0°1")<10° 1%, PS¢ = 0 + 170°(1°0")%L, Pl = 0* + (1°0%)k1-,
Sk = 0+ 17(0*1%)%, PB, = PP,UPS, andBl, = Pl,US |, see Long
[69], or Ito et al.[40] for Pl, S |.

For a list of references related to (a)—(d), see Jurgensen and Konstantinidis [46,
pp. 549-553].

9.1 The Binary Relation Defined by Shdfle on Trajectories

We can also defin€-codes by appealing to a definition based on binary relations.
In particular, forT C {0, 1}*, definewt as follows: for allx,y € ¥*,

Xwrty & Yye Xt

Itis clear thatl C £* is aT-code if and only ifL is an anti-chain undeo (i.e,
X,y € Landx wr yimpliesx =y).

We note that the relation analogousde for infinite words andv-trajectories
was defined by Kadriet al. [48]. In what follows, we will refer toT having a
propertyP if and only if wt has propertyP. Recall that a binary relatiomon X*
is said to bepositiveif € p x for all x € ¥*.

Lemma9.1.Let T C {0, 1}*.

(a) The relationwy is anti-symmetric.
(b) T isreflexive ifand only * C T.
(c) T is positive ifand only it* C T.

Let p be a binary relation o&*. Then we say thai is left-compatible(resp.,
right-compatibl@ if, for all u,v,w € *, upvimplies thatwup wv (resp.,uwp vw).
If p is both left- and right-compatible, we say itdempatible

Lemma 9.2. Let T C {0,1}*. Then T is right-compatible (resp., left-compatible,
compatible) if and only if 0* C T (resp.,0°T € T,0°TO* C T).

We now consider conditions of which will ensure thatwt is a transitive
relation. Transitivity is often, but not always, a property of the binary relations
defining the classic code classes. For instance, both bi-prefix and outfix codes are
defined by binary relations which are not transitive, and hence not a partial order.
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First, we define three morphisms we will need. Det {Xx,y,z} andy, o,y :
D* — {0, 1}* be the morphisms given by

e(x) = 0, o(x) = 0, ¥(x) = O,
ey) = 0 oy) = L yly) = L
w2 =1 0@ =€ y@ = L

Note that these morphisms are similar to the substitutions defined by Mattescu
al. [79], whose purpose is to give necessary arfid@ant conditions on a sét of
trajectories defining an associative operation.

Theorem 9.3. Let T € {0,1}*. Then T is transitive if and only if(¢~*(T) N
o {(T)) cT.

As an alternate formulation for Theorém|9.3, we note that, fof atl {0, 1}*,
T is transitive if and only ifT Lur 1* C T.

Corollary 9.4. Given a regular set TC {0, 1}* of trajectories, it is decidable
whether T is transitive.

For undecidability, we naturally find that deciding whether a context-free set
of trajectories is transitive is undecidable:

Theorem 9.5.Given a CF set TC {0, 1}* of trajectories, it is undecidable whether
T is transitive.

It is easy to see that {fT;}ic, is a family of transitive sets of trajectories, then
the setni T; is also transitive. Thus, we can define the transitive closure of a set
T of trajectories as follows: for all C {0,1}", lettr(T) = {T" C {0,1}* : T C
T’, T’ transitivd. Note thattr(T) # 0, as{0, 1}* € tr(T) for all T C {0, 1}*. Define
T as
T=()T. (4)

T’etr(T)
Then note thaT is transitive and is the smallest transitive set of trajectories con-
tainingT. The operation: 2% — 201" jsindeed a closure operator (much like
the closure operators on sets of trajectories constructed by MateestU79]
for, e.g., associativity and commutativity) in the algebraic sense, 3incd, and
~“preserves inclusion and is idempotent.

Consider the operatd@; : 2%V — 201" given by

Qr(T) =TUT VYl (T) N (T)).

It is not difficult to see that, giveiii, we can findT by iteratively applyingQr to
T, and in facfT = U,>0Q (T). This observation allows us to constrdctand, for
instance, gives us the following result (a similar resultdsetrajectories is given
by Kadrieet al. [48]):

23



Lemma 9.6. There exists a regular set of trajectoriesd {0, 1}* such thatT is
not a CFL.

In particular, considef = (01), corresponding to perfect or balanced literal
shufle. Then we note thdt N 01* = {0121 : n> 1).

Open Problem 9.7.Given T reG (or T € cF), is it decidable whetheF € c¥?

We now examine the relationship betweBrtodes and -codes for arbitrary
T C {0,1}*. We call a languagé C X* T-convexf, for all y € ¥* andx,z € L,
X wt yandy wr zimpliesy € L.

We now characterize when a languagd isonvex using shitie and deletion
along trajectories. Define the morphism: {0,1}* — {i,d}* by 7(0) = i and
7(1) = d. This morphism defines the relationship betweenffsdand deletion
along trajectories.

Lemma 9.8.Let T C {0, 1}*. Then LC X* is T-convex if and only ifL .t X*) N
(L '\’)T(T) 2*) c L.

We now turn to decidability:

Corollary 9.9. Let T C {0, 1} be a regular set of trajectories. Given a regular
language L, it is decidable whether L is T -convex.

__ These results lead to the following general relationship betweeades and
T-codes:

Theorem 9.10.LetX be an alphabet and T {0, 1}*. For all languages Lc X+,
the following two conditions are equivalent:

(i) Lis aT-code;
(i) L is a T-convex T-code.

Theoren 9.170 was known for the caBe= 0°1°0*, which corresponds to outfix
codes, see, e.g., Shyr and Thierfinl[89, Prop. 2]. In this d@seH = (0 + 1),
which corresponds to hypercodes. Theofem]9.10 was known toeGalb[31,

Prop. 2] in a slightly weaker form fd8 = 0*1*+1*0". In this caseB = | = 101",
and the convexity is with respect to the factor (or subword) ordering. See also
Long [70, Sect. 5] for the case of dfie codes.

We conclude this section with some research directions. A binary relation
on X* is said to bdeft-cancellative(resp.,right-cancellative if uvp uximplies
vp X (resp.vup xuimpliesvp X) for all u, v, x € £*. The relatiorp is cancellative
if it is both left- and right-cancellative.
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Open Problem 9.11.What are necessary andjguient language-theoretic con-
ditions on a set of trajectories T so that T is left-cancellative, right-cancellative
or cancellative?

Another research direction would be to consider the class of codes defined
not by shditle on trajectories, but by splicing on routes. We note that additional
interesting binary relations from the literature can be modeled using splicing on
routes. For instance, we leave it to the reader to verify th@it# 0* + (011
then the associated binary relation (defined in the same way as fitesbn
trajectories) is the length ordering, given by

X<y < (X<|y)orx=y.

9.2 Maximal T-codes

LetT C {0, 1}". We say that € P1(X) is amaximal T-code if, for allL’ € P1(X),
L c L impliesL = L’. Denote the set of all maximdl-codes over an alphabEt
by M+ (X). Note that the alphabé&tis crucial in the definition of maximality. By
Zorn’s Lemma, we can easily establish that eMery P+ (X) is contained in some
element ofM+(X). The proof is a specific instance of a result from dependency
theory [46].

Unlike showing that every-code can be embedded in a maxintatode,
to our knowledge, dependency theory has not addressed the problem of decid-
ing whether a language is a maximal code under some dependence system. We
address this problem foF-codes now. We first require the following technical
lemma, which is interesting in its own right (specific cases were known for, e.g.,
prefix codes/|b, Prop. 3.1, Thm. 3.3], hypercodes [89, Cor. to Prop. 11], as well as
biprefix and outfix codes [68, Lemmas 3.3 and 3.5]). tet{0, 1}* — {i,d}* be
again given byr(0) = i andr(1) = d.

Lemma 9.12.Let T C {0,1}*. LetX be an alphabet. For all Le P1(X), L €
Mz (2) if and only if

LU (L LT E+) U (L 24T Z+) =X". (5)

Corollary 9.13. Let T C {0, 1}* be a regular set of trajectories. Given a regular
language LC X*, it is decidable whether E M+ ().

Similar results were also obtained by Katial. [51], Sect. 5].
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9.3 Embedding and Finiteness

Given a class of codeasS, and a languagé € C of given complexity, there has
been much research into whether or hatan beembedded iifor completed tpa
maximal elemenL’ € C of the same complexity, i.e., a maximal cdde= C with
L C L’. Finite and regular languages in these classes of codes are of particular
interest. For instance, we note that every regular code can be completed to a
maximal regular code, while the same is not true for finite codes or finite biprefix
codes.

We now show an interesting result on embeddirgodes in maximar -codes
while preserving complexity. Our construction is a generalization of a result due
to Lam [65]. In particular, we define two transformations on languagesT lbet
a set of trajectories and C ~* be a language. Then defikg (L), V(L) € X* as

UT(L) = X - (LLUT >TulL 2 (T) Z+),
V(L) Ur(L) - (Ur (L) T Z7).

Recall thatr : {0, 1}* — {i, d}* is given byr(0) = i andr(1) = d.

Theorem 9.14.Let T C {0, 1}* be transitive. Lek be an alphabet. Then for all
L € P1(), the language ¥(L) contains L and Y(L) € Mt (Y).

We note one consequence of Theofem|9.14:

Corollary 9.15. Let T C {0, 1}* be transitive and regular. Then every regular
(resp., recursive) T-code is contained in a maximal regular (resp., recursive) T-
code.

Corollary[9.1% was given fof = 1°0*1" and regulafT-codes by Lam/[[65,
Prop. 3.2]. Further research into the case whesinot transitive is necessary (for
example, the proofs of Zhang and Shen [97] and Bruyere and Férrin [6] on embed-
ding regular biprefix codes are much more involved than the above construction,
and do not seem to be easily generalized).

Open Problem 9.16.Characterize those TC {0, 1}* for which every regular
(resp., finite, recursive) T-code can be embedded in a maximal regular (resp.,
finite recursive) T -code.

We can extend our embedding results to finite languages with one additional
constraint oril', namely completeness.

Corollary 9.17. Let T C {0, 1}* be transitive and complete. LEtbe an alphabet.
Then for all finite Fe P1(X), there exists a finite language E M+ (%) such that

F C F’. Further, if T is gfectively regular, and F is fgectively given, we can
gffectively construct £
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In practice, the condition that be complete is not very restrictive, since nat-
ural operations seem to typically be defined by a complete set of trajectories.

Also of interest are thos& < {0, 1}* such that allT-codes are finite. It is
a well-known result that all hypercode$ (= {0, 1}*) are finite, which can be
concluded from a result due to Higman [35]. We define the clasas

Fy =1{T €{0,1} : Pr(Z) C Fin.

Also studied by the author are the classes of trajectories such thatregefgr
(or context-free)r -code is finite([[20, 22].

The classyy is related to a large amount of research in the literatur€.isfa
partial order and” € &y, thenT is awell partial order. We define‘{yfj’o) to be the
set of allT which are well partial orders. Without trying to be exhaustive, we note
the work of Jullien[[45], Haines [32], van Leeuwen [93], Ehrenfeiettdl. [29],
llie [B7,,[38], llie and Salomaa [42] and Harju and llie [33] on well partial orders
relating to words. We also refer the reader to the survey of results presented by de
Luca and Varricchio[14, Sect. 5].

We now consider the question of the existence of arbitrary infinite languages
in a class ofT -codes. We first show that ¥ is bounded, then there is an infinite
T-code.

Theorem 9.18.Let T C {0,1}" be a bounded set of trajectories. Then for 2ll
with |Z] > 1, P1(X) contains an infinite language, i.e., d &n.

Further, there exist uncountably many unbounded trajectdrissich that
P+ (X) contains infinite—even infiniteegular-languages. Infinitely many of these
are unbounded regular sets of trajectories.

Theorem 9.19.Let T C {0, 1}* be a set of trajectories such that there exists @
such that TC 0="1(0+ 1)*. Then for allX with [X| > 1, £7(X) contains an infinite
regular language.

We now turn to defining sefB of trajectories such that all-codes are finite.
The following proof is generalized from the case= (0 + 1)* found in, e.g.,
Lothaire [74] or Conway [10, pp. 63—64].

Lemma 9.20.Let nm > 1 be such that mn. Let T, = (0" + 1M)*0=""%, Then
Tn,m € 8H-

As another class of examples, Ehrenfewattal. [29, p. 317] note th&tl", O} €
&y for alln > 1. llie [38, Sect. 7.7] also gives a class of partial orders which we
may phrase in terms of sets of trajectories. In particular, define the set of functions

G={g:N->N : g0)=0and 1< g(n) < nforalln=>1}.
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Then for allg € G, we define

m m
To={1] [0 1) : ikz0vi<k<m m=g(} i}
k=1 k=1

We denote theipper limit of a sequencés,}ns1 by lim,..S.. We have the
following result [38, Thm. 7.7.8]:

< 00,

Theorem 9.21.Letge G. Then € Fu = liMp g

However, a complete characterization is still open:

Open Problem 9.22.Give necessary and gicient language-theoretic conditions
on a set of trajectories T so thatd .

We now turn to the complexity of -convex languages:

Theorem 9.23.LetC be a cone. Let Te Eﬁj"’) be an element af. Then every
T-convex language is an element®A co-C.

Corollary 9.24. Let T € reG (resp. rec) be such that Te §?. If L is a T-convex
language, then le reG (resp.,REc).

Corollary[9.24 was known for the case Hf = (0 + 1)" andL € reg, see
Thierrin [92, Cor. to Prop. 3].

9.4 Codes defined by Multiple Sets of Trajectories

there is not necessarily a set of trajectoifesuch thatwr = wr, N wr,, i.€., such
thatxwry & (Xwr,¥) A (Xwr,Y). Forinstance, foP = 0*1* andS = 1*0, the
relationwp N ws is given by<y, wherex <4 y if and only if there exisu, v € X*

such thalyy = xu = vx. This relation cannot be represented by a set of trajectories.
For a discussion ofq4, see Shyr[88, Ch. 8].

In fact, there exist many natural classes of languages studied in connection to
the theory of codes which are ndtcodes. Classes and their associated binary
relations studied by Day and Shyr [13], Fainal. [30], Ito et al.[39], Long [71],

Long et al. [73,[72], Shyr [88], Yu[[95] and the authdr [18] are instead defined
by a binary relation dependent on multiple sets of trajectories. The author and
K. Salomaal]2]7] have studied the properties of classes of languages defined by
multiple sets of trajectories.

When studyingT -codes, we note that if;, T, € {0, 1}* are sets of trajectories,
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Let T c 20%  We call such a set of sets of trajectoriEsa hyperset of
trajectories such a hyperset of trajectories is always assumed to be a finite set of
sets of trajectories. Defingr as

Xwrty & /\X(,()Ty.

TeT

Thatis,xwr yifand only if xwr yforall T € T.

The clasP!’(Z) is defined as follows: for all non-empty languades >,
L e SD(TA)(Z) if and only if L is an anti-chain undept. That is, for allx,y € L, if
Xwr Y, thenx =y.

The definition ofP!"(Z) is motivated by the interest in the cI@%)S(Z) for

Tps = {0°1%,10}. Note thatx wr,, Y, i.€., X <q Y, implies thatx is both a prefix

and a stix of y. We refer the reader to Jirgensen and Konstantinidis [46, pp.
550-551] for references and a dlscussmﬂPfﬁf (2).

We also define a second class of Ianguages indexed by an integiich is
considered in conjunction with{"(Z) for particularT. For allm > 0, letP{"(z)
be defined as follows: for all non-empty languages **, L € PI"() if and
only if forall L’ € L with [L’] £ m, L’ € UrrPr ().

The following hypersets of trajectories have been studied in connection with
the associated clagd™(2):

(i) Tps={(0"1",0°1}. The clasé’)(m)(Z) is known as the class of-prefix-sgix
codegor m-ps-codes). See ltex al. [39] for details;

(i) Tio = {0°1°0", 1°0*1"} [73,[18]. The clas®{"(z) is known as the class of
m-infix-outfix codes

(i) Tioio = {(1707)K1*, (0°17)%0"} and Ty_ps = {(0°1)K, (1°0%)%} for k > 1. The
classP (%) (resp., P(m) (%)) is known as the class ah-k-infix-outfix

codes(resp m-k-prefix- sﬁix code$. For results on these classes, see Long
et al.[72, Sect. 4] or Long [71, Sect. 2.3])

The following lemmal[27] states th&"(2) andP?(Z) always coincide:
Lemma 9.25. LetT c 2% be a hyperset of trajectories. Then
PY(E) = PA(D).
Lemmd 9.2b was previously observed for, e.g., the Ggse {0°1", 1"0"}, see

Ito et al.[39]. The following equations detail the hierarchies induced by varging
in P(%), and their collapse. These equations, which hold foTal 20", can
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be proven using dependency theary![46] (in the followifgjs the cardinality of
T as a subset of ®):

POE) 2 PMYE) Vn>0; (6)
P = PEE) = JPr() vizo (7)

TeT

See, e.g., Itet al.[39, Cor. 3.2] for[(T) in the particular case ©fs = {0*1*, 10"}

The positive decidability of membership?f&(X) for regular languages (see
Ito et al.[39] or Jurgenseat al.[47]) relies intrinsically on the nature of the mem-
bers ofT ,s. The corresponding positive decidability problemTgy also relies on
the nature of the sets of trajectories involved [18]. Karal.[51, Thm. 4.7] have
resolved the decidability of a somewhat similar decision problem for two sets of
trajectories in their framework dfond-free propertysee Sectioh 10). However,
their approach is not applicable to our formalism. We recall a particular case of
their result, translated into our framework:

Theorem 9.26.Let T = {T4, To} be a hyperset of trajectories wherg d rec for
I = 1,2. Given a regular language R X*, we can determine whether there exist
wi, W, € R, and we X* such that w# w and w wr, wfori =1, 2.

However, the following surprising undecidability result holdsﬂﬁﬁ”(z) [27]:

Theorem 9.27.GivenT = {T, T,}, where T € reg, for i = 1,2 and a regular
language R it is undecidable whether or not I%P(TA)(Z).

The following undecidability result also holds |27]:

Theorem 9.28. There exists a fixed hyperset of trajectories= {T,, T»} where
T; € reg for i = 1,2, such that the following problem is undecidable: “Given
L € cr, is Le PL(2)?”

However, the decidability of membership ?PfrA)(Z) for a fixed T remains
open:

Open Problem 9.29.For which hypersets of trajectoriés c 2% is the follow-
ing problem decidable: “Given ke reg, is L € P)(2)?”

It is conceivable that the question stated in Open Problenj 9.29 could be de-
cidable for all hyperset = {T,,...,T,} whereT; € rec for 1 < i < n, in
particular, if the alphabel is fixed. If this is the case, by Theor¢m 9.27, givien
the corresponding algorithm cannot be fouffi@etively.

The author and K. Salomaa have also studied the equivalence problem for
hypersets of trajectories. In particular, given T, € 2%Y", we say thal'; andT,
are A-equivalent with respect tb if P(TAI)(Z) = ’P(TAZ)(Z). We simply say thal,, T,
are A-equivalent if they are\-equivalent with respect to every finite alphaket
We use the notatiof, =, T, to indicate thafl 1, T, are A-equivalent.
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Open Problem 9.30.GivenT, T,, each consisting of regular sets of trajectories,
can we determine wheth&r and T, are A-equivalent?

We can restate Open Problém 9.30 as follows:

Open Problem 9.31.For given regular languagesJ--- , Tx € {0,1}* and U C
{0, 1}* is it decidable whether or not there exist an alphabetnd xy € £* such
thatforall1 <i <k, ye Xxuw X buty¢ xuy =*.

This problem seems very challenging. Similarly, we say thafl, arem
equivalent with respect t if P{7(5) = PI(X). Again, we say thaly, T,
arem-equivalent if they aren-equivalent with respect to every finite alphaBet
We use the notatiol; =, T, to indicate thafT 1, T, are mequivalent. Open
Problemq 9.30 and 9.B1 also remain open whemquivalence is replaced by
m-equivalence.

10 DNA Code-word Design

The design of DNA code-words is a crucial step in employing DNA for computing
purposes. DNA code-words are strands of DNA which allow only desired bonding
to occur; careful consideration must be taken when designing code-word®tKari
al. [54] have used trajectories to investigate DNA bonding and code-word design.
An involution @ : ¥ — X is any function such that’ is equal to the identity
mapping. Any involution can be extended to a morphism via the #(tg) =
6(x)0(y) for all x,y € ¥*, or an antimorphism via the ruxy) = 6(y)6(x) for all
X,y exr.
Kari et al. [54] define the concept of tHeond-free propertiesf languages. In
particular, the bond-free property with respect to the sets of trajecthsiel,, is
given by the following condition (for some involutiat):

Ywe X', Xy e (W, XN L #0,wur, yNno(L) #0) = xy=e

Several previously studied DNA coding-inspired conditions are particular cases
of the bond-free properties for particular pairs of sets of trajectories. This again
demonstrates the power of trajectories—by approaching a problem from a uniform,
trajectory-based viewpoint, many particular cases can be unified and studied sys-
tematically. The following decidability result shows that the bond-free property is
decidable if all languages involved are regular [54]:

Theorem 10.1.Let T, Typ be regular sets of trajectories. Given a regular lan-
guage L, it is decidable in quadratic time whether L satisfies the bond-free prop-
erty with respect to |f, Typ.
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11 Contextual Grammars

Contextual grammar with contexts siiad along trajectories, &ST grammars

are an interesting application of trajectories to the study of the generative capacity
of grammar forms. CST grammars were introduced by Martin-¥id#. [/5]. We

recall the definition here: A CST grammar is a 4-tu@le- (X, B,C, 7°), whereX

is an alphabetB,C C X* are finite languages, arfd = (T)cc is a finite family

of sets of trajectories indexed by wordgrom C. The languagé is called the

base ofG andC is called the contexts @. Derivations inG are given byx =g y

if and only if there exist€ € C such thaty € x.r c. The reflexive, transitive
closure of=¢ is denoted by=¢. The language o is the set of all words which

are derivable from a word in the base@f

L(G) ={we X" : Ix e Bsuch thatx =¢ wj}.

Recently, Okhotin and K. Salomé&a [80] have investigated uniform CST gram-
mars. A CST grammat = (X, B,C,7) is said to beuniformif T, = T for all
c,c’ € C. In this case, we denote the uniform CST®y= (£, B,C, T) for some
T C X*. Okhotin and K. Salomaa demonstrate several results relating to uniform
CST grammars:

Theorem 11.1. There exists a language £ X* where|X| > 2 that cannot be
generated by any uniform CST grammar.

Theoren{ I1]1 does not depend in any way on the complexity of the set of
trajectories: the languade cannot be generated by a uniform CST gram@ar
regardless of the complexity df. However, Okhotin and K. Salomaa show that
this same language can be generated by a non-uniform C&T= (X£,B,C,7)
where eacli; € 7 is a context-sensitive set of trajectories.

Theorem 11.2. Non-uniform CST grammars with context-sensitive sets of tra-
jectories are strictly more powerful than uniform CST grammars with context-
sensitive sets of trajectories.

The following questions remain open [80]:

Open Problem 11.3.Are non-uniform CST grammars with context-free (resp.
regular) sets of trajectories more powerful than uniform CST grammars with
context-free (resp., regular) sets of trajectories?

We also note that Mateescu has also extended the notion of co-operating dis-
tributed grammars (CD grammars) to encompass the notion of trajectorles [76].
A CD grammar on trajectory is a six-tuplel’ = (V, X, S, Py, P1, T) whereV is
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a finite set of non-terminalg; is a finite alphabet$ € V is a distinguished start
state,Pp, P, € V x (V U X)* are two finite sets of productions, afidc {0, 1}* is
the set of trajectories.

Let =; denote the relation defined by the CFG= (V, X, S, P), fori = 0, 1.
Then a wordw € X* is generated by if there existt € T of lengthn anda; €
(VUX) forl <i < nsuch thatift = tit,---t, with t; € {0, 1} then for all
1<i<n-1lq =4 @1, With S = @; andw = «,,. The usual notion of a CD
grammar corresponds i = 0*1*. The notion of CD grammars on trajectories
is also generalized to grammars witlsets of production®y, Py, ..., P,_1, and a
set of trajectorie§ C {0,...,n—1}*.

12 Conclusion

The notion of trajectories can seem deceptively simple: languages are used to
parameterize language operations. This provides a basis for uniform results on
language operations. However, in the ten years since their introduction, trajecto-
ries have seen much use beyond modelling language operations; we have surveyed
these areas. The use of trajectories in many, varied areas is a testament to the el-
egance of the concept. We are confident that interest in trajectories will remain
high as researchers continue to find new applications for the concept.
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