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Abstract

We survey recent results on the use of trajectories as a tool for mod-
elling language operations and other, related objects. Many applications of
the concept of trajectories have been developed since their introduction by
Mateescu, Rozenberg and Salomaa in 1996. Areas which have seen activity
include the theory of codes, language equations, modelling noisy channels,
grammar models and DNA code-word design. We survey each of these ar-
eas.

1 Introduction

Trajectories, introduced by Mateescu, Rozenberg and Salomaa [79], are a manner
in which a language operation is defined by a fixed language, used as a parameter.
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In this way, we define infinitely many language operations as each language over
the trajectory alphabet defines a binary language operation.

The simplicity and elegance of the concept of trajectories has lead to appli-
cations and generalizations in a number of research areas, including language
equations, theory of codes, DNA code-word design, modelling noisy channels
and other applied areas of formal language theory.

In this survey, we review several recent research areas related to the use of
trajectories. For a survey of early results on trajectories, we refer the reader to the
Formal Language Theory column “Words on Trajectories” by Mateescu [78].

2 Shuffle on Trajectories

We begin with the fundamental definition for the investigation of trajectories, that
of shuffle on trajectories. The shuffle on trajectories operation is a method for
specifying the ways in which two input words may be merged, while preserving
the order of symbols in each word, to form a result. Each trajectoryt ∈ {0,1}∗

with |t|0 = n and|t|1 = mspecifies the manner in which we can form the shuffle on
trajectories of two words of lengthn (as the left input word) andm (as the right
input word). The word resulting from the shuffle alongt will have a letter from
the left input word in positioni if the i-th symbol oft is 0, and a letter from the
right input word in positioni if the i-th symbol oft is 1.

We now give the formal definition of shuffle on trajectories, originally due to
Mateescuet al. [79]. Shuffle on trajectories is defined by first defining the shuffle
of two wordsx andy over an alphabetΣ on a trajectoryt, a word over{0,1}. We
denote the shuffle of x andy on trajectoryt by x t y.

If x = ax′, y = by′ (with a,b ∈ Σ) andt = et′ (with e ∈ {0,1}), then

x et′ y =

{
a(x′ t′ by′) if e= 0;
b(ax′ t′ y′) if e= 1.

If x = ax′ (a ∈ Σ), y = ε andt = et′ (e ∈ {0,1}), then

x et′ ε =

{
a(x′ t′ ε) if e= 0;
∅ otherwise.

If x = ε, y = by′ (b ∈ Σ) andt = et′ (e ∈ {0,1}), then

ε et′ y =

{
b(ε t′ y′) if e= 1;
∅ otherwise.

We let x ε y = ∅ if {x, y} , {ε}. Finally, if x = y = ε, thenε t ε = ε if t = ε and
∅ otherwise.
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It is not difficult to see that ift =
∏n

i=1 0j i 1ki for somen ≥ 0 and j i , ki ≥ 0 for
all 1 ≤ i ≤ n, then we have that

x t y ={
n∏

i=1

xiyi : x =
n∏

i=1

xi , y =
n∏

i=1

yi ,

with |xi | = j i , |yi | = ki for all 1 ≤ i ≤ n}

if |x| = |t|0 and|y| = |t|1 andx t y = ∅ if |x| , |t|0 or |y| , |t|1.
We extend shuffle on trajectories tosets T⊆ {0,1}∗ of trajectoriesas follows:

x T y =
⋃
t∈T

x t y.

Further, forL1, L2 ⊆ Σ
∗, we define

L1 T L2 =
⋃
x∈L1
y∈L2

x T y.

Consider the following examples. We can see that ifT = 0∗1∗, we have that
L1 T L2 = L1L2, i.e.,T = 0∗1∗ gives the concatenation operation. IfT = (0+1)∗,
then L1 T L2 = L1 L2, i.e., T = {0,1}∗ gives the shuffle operation. This is
the least restrictive set of trajectories. IfT = 0∗1∗0∗, then T is the insertion
operation← (see, e.g, Kari [50]) which is defined byx← y = {x1yx2 : x1, x2 ∈

Σ∗, x1x2 = x} for all x, y ∈ Σ∗. See Mateescuet al. [79] for the fundamental study
of shuffle on trajectories.

3 Deletion along Trajectories

We now consider deletion on trajectories, an important addition to the study of
trajectories and related areas. The concept of deletion along trajectories was in-
dependently introduced by the author [17, 22] and Kari and Sosík [55, 56]. The
primary motivation for the introduction of deletion on trajectories is to define
an “inverse” to shuffle on trajectories, in a sense we will see below. Intuitively,
deletion on trajectories uses the trajectories to model language operations which
delete an occurrence of the right argument from the left argument in a controlled,
scattered way.

Let x, y ∈ Σ∗ be words withx = ax′, y = by′ (a,b ∈ Σ). Let t be a word over
{i,d} such thatt = et′ with e ∈ {i,d}. Then we definex {t y, the deletion ofy
from x along trajectoryt, as follows:

x{t y =


a(x′ {t′ by′) if e= i;
x′ {t′ y′ if e= d anda = b;
∅ otherwise.
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Also, if x = ax′ (a ∈ Σ) andt = et′ (e ∈ {i,d}), then

x{t ε =

{
a(x′ {t′ ε) if e= i;
∅ otherwise.

If x , ε, then x {ε y = ∅. Further,ε {t y = ε if t = y = ε. Otherwise,
ε {t y = ∅.

Let T ⊆ {i,d}∗. Then
x{T y =

⋃
t∈T

x{t y.

We extend this to languages as expected: LetL1, L2 ⊆ Σ
∗ andT ⊆ {i,d}∗. Then

L1{T L2 =
⋃
x∈L1
y∈L2

x{T y.

We consider the following examples of deletion along trajectories:

(a) if T = i∗d∗, then{T= /, the right-quotient operation;
(b) if T = d∗i∗, then{T= \, the left-quotient operation;
(c) if T = i∗d∗i∗, then{T=→, the deletion operation (see, e.g., Kari
[49, 50]);
(d) if T = (i + d)∗, then{T={, the scattered deletion operation (see,
e.g., Itoet al. [41]);
(e) if T = d∗i∗d∗, then{T=
, the bi-polar deletion operation (see,
e.g., Kari [50]);
(f) let k ≥ 0 andTk = i∗d∗i≤k. Then{Tk=→

k, thek-deletion operation
(see, e.g., Kari and Thierrin [57]).

We now recall some of the closure properties of deletion along trajectories.

Theorem 3.1. Let Σ be an alphabet. There exist weak codingsρ1, ρ2, τ, ϕ and a
regular language R such that for all L1, L2 ⊆ Σ

∗ and all T ⊆ {i,d}∗,

L1{T L2 = ϕ
(
ρ−1

1 (L1) ∩ ρ
−1
2 (L2) ∩ τ

−1(T) ∩ R
)
.

Corollary 3.2. LetL be a cone. Then for all L1, L2,T such that two are regular
languages and the third is fromL, L1{T L2 ∈ L.

3.1 Non-regular Trajectories Preserving Regularity

Consider the following result of Mateescuet al. [79, Thm. 5.1]: if L1 T L2 is
regular for all regular languagesL1, L2, thenT is regular. This result is clear upon
noting that for allT, 0∗ T 1∗ = T.
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However, we note that the same result does not hold if we replace “shuffle
on trajectories” by “deletion along trajectories”. As motivation, we begin with a
basic example. LetΣ be an alphabet andH = {indn : n ≥ 0}. Note that

R1{H R2 = {x ∈ Σ
∗ : ∃y ∈ R2 such thatxy ∈ R1 and|x| = |y|}.

We can establish directly (by constructing an NFA) that for all regular languages
R1,R2 ⊆ Σ

∗, the languageR1{H R2 is regular. However,H itself is not regular.
We remark thatR1 {H R2 is similar to proportional removals studied by

Stearns and Hartmanis [90], Amar and Putzolu [1, 2], Seiferas and McNaughton
[86], Kosaraju [60, 61, 62], Kozen [63], Zhang [96], the author [16], Berstelet
al. [4], and others. In particular, we note the case of1

2(L), given by

1
2

(L) = {x ∈ Σ∗ : ∃y ∈ Σ∗ such thatxy ∈ L and|x| = |y|}.

The operation1
2(L) is one of a class of operations which preserve regularity.

Seiferas and McNaughton completely characterize those binary relationsr ⊆ N2

such that the operation

P(L, r) = {x ∈ Σ∗ : ∃y ∈ Σ∗ such thatxy ∈ L andr(|x|, |y|)}

preserves regularity.
Recall that a setA is ultimately periodic (u.p.) if there existn0, p ∈ N, p > 0,

such that for allx ≥ n0, x ∈ I ⇐⇒ x + p ∈ I . Call a binary relationr ⊆ N2

u.p.-preservingif A u.p. impliesr−1(A) = {i : ∃ j ∈ A such thatr(i, j)} is also
u.p. Then, the binary relationsr such thatP(·, r) preserves regularity are precisely
the u.p.-preserving relations [86]. This was extended to deletion on trajectories
[17, 22]:

Theorem 3.3. Let r ⊆ N2 be a binary relation and Hr = {indm : r(n,m)}. The
operation{Hr is regularity-preserving if and only if r is u.p.-preserving.

Theorem 3.3 has been extended by the author [17, 22] to cover other bounded
sets of trajectories.

3.2 Algebraic Properties

Kari and Sosík [56] show the following results concerning algebraic properties of
deletion along trajectories:

Theorem 3.4.Let T ⊆ {i,d}∗. The following three conditions are equivalent:
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(a) the operation{T is commutative;
(b) L1{T L2 ⊆ {ε} for all languages L1, L2;
(c) T ⊆ d∗.

Corollary 3.5. Given a context-free set of trajectories T⊆ {i,d}∗, it is decidable
whether{T is a commutative operation.

Theorem 3.6. For a set of trajectories T⊆ {i,d}∗, the following two conditions
are equivalent.

(i) For all t1 ∈ 1m 0n, t2 ∈ 1n 0i and t3 ∈ 1j 0m+n, i, j,m,n ∈ N,

(a) m> 0 and t1 ∈ T implies t2 < T.
(b) m> 0 and t1 ∈ T implies t3 < T.
(c) t1 ∈ T and0m ∈ T implies0n ∈ T.
(d) t1 ∈ T and0n ∈ T implies0m ∈ T.

(ii) {T is an associative operation.

However, the associated decidability problem is apparently open:

Open Problem 3.7.Given a regular set of trajectories T⊆ {i,d}∗, is it decidable
whether{T is an associative operation? What if T is context-free?

3.3 Commutative Closure

Recall that the commutative closure of a wordw ∈ Σ∗ is the setcom(w) = {x :
∀a ∈ Σ, |w|a = |x|a}. The commutative closure of a languageL is the union of
the commutative closure of each word inL. Note that the operationcomdoes not
preserve regularity:com((ab)∗) = {x ∈ {a,b}∗ : |x|a = |x|b}.

The author, Mateescu, K. Salomaa and Yu [23] have shown that ifT is com-
plete and associative, then for all languagesL, we can define an a congruence
relation∼L,T . Then the factor monoid ofLT = (P(Σ∗), T , ε) with respect to∼L,T

is finite if and only ifcom(L) is a regular language [23].

4 Language Equations

The immediate consequence of the introduction of deletion on trajectories is its
application to language equations. A language equation is an equality involving
constant languages, language operations and unknowns. We refer the reader to
Leiss [67] for an introduction to the theory of language equations.
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There are several facets to research on language equations. For instance, given
a language equation or a system of language equations, we can seek to character-
ize the solutions to the equation, or simply decide if a solution exists. In the
research on language equations involving shuffle on trajectories, the focus of re-
search has been the latter task.

4.1 Zero Variable Equations

The most simple language equations are those without any variables at all. It
follows from the closure properties of T and{T that it is decidable if either
R1 T R2 = R3 or R1 {T R2 = R3 holds if all of R1,R2 andR3 are regular lan-
guages andT is regular. Below, we review decidability results when the languages
and set of trajectories are not all regular.

Let Ψa(T) = {|t|a : t ∈ T}, wherea is a letter and|t|a denotes the number of
zeroes int. Kari and Sosík [56] establish the following elegant result:

Theorem 4.1. Let T be an arbitrary but fixed regular set of trajectories. The
problem “Is L1 T L2 = R?” is decidable for a CFL L1 and regular languages
L2,R if and only ifΨ0(T) is finite.

The analogous result for deletion on trajectories (i.e.,Ψi(T) is finite) also holds
[56]. Further, ifL1 is taken to be a regular language andL2 is taken to be a CFL,
then the necessary and sufficient conditions are thatΨ1(T) is finite [56].

We can contrast the above results with the following surprising result which
was established by the author and K. Salomaa [26].

Theorem 4.2. Let T = {0i1r0j1s0k : r , s, r, s are odd, i, j, k ≥ 0}. Then for
a given alphabetΣ and given regular languages S,R1,R2 ⊆ Σ, it is undecidable
whether or not S= R1 T R2.

The result is interesting since it is an undecidability result about regular lan-
guages: given three regular languages, it is undecidable whether the given equality
holds; the context-free set of trajectoriesT if fixed (and is not part of the input).

4.2 One Variable Equations

One variable equations involving shuffle and deletion on trajectories have been
studied by the author [17, 22], Kari and Sosík [55, 56] and the author and K. Sa-
lomaa [25]. We summarize these results below.

By general results of Kari on the inverse of language operations [50], the fol-
lowing result on one variable language equations involving shuffle and deletion
along trajectories is immediate.
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Theorem 4.3.Let L,R be regular languages. Then it is decidable whether any of
the following equations have a solution X, and if so, the maximal solution (under
inclusion) is an effectively constructible regular language:

(a) X T L = R where T⊆ {0,1}∗ is regular.
(b) L T X = R where T⊆ {0,1}∗ is regular.
(c) X{T L = R where T⊆ {i,d}∗ is regular.
(d) L{T X = R where T⊆ {i,d}∗ is regular.

We can also examine the question of if it is decidable whether a set of trajec-
tories can be found to satisfy a fixed language equation:

Theorem 4.4. Let L1, L2,R ⊆ Σ∗ be regular languages. Then it is decidable
whether

(a) there exists a set T⊆ {0,1}∗ of trajectories with L1 T L2 = R.
(b) there exists a set T⊆ {i,d}∗ of trajectories with L1{T L2 = R.

We now turn to undecidability. LetΠ0,Π1 : {0,1}∗ → {0,1}∗ be the projections
given byΠ0(0) = 0,Π0(1) = ε andΠ1(1) = 1,Π1(0) = ε. We say thatT ⊆ {0,1}∗

is left-enabling(resp.,right-enabling) if Π0(T) = 0∗ (resp.,Π1(T) = 1∗). It is
undecidable whether the corresponding equation has a solution:

Theorem 4.5. Fix T ⊆ {0,1}∗ to be a regular set of left-enabling (resp., right-
enabling) trajectories. For a given LCFL L and regular language R, it is undecid-
able whether or not L T X = R (resp., X T L = R) has a solution X.

Say that a set of trajectories is left-preserving (resp., right-preserving) ifT ⊇
0∗ (resp.,T ⊇ 1∗). We can give an incomparable result which removes the condi-
tion thatT must be regular, but must strengthen the conditions on words inT:

Theorem 4.6. Fix a left-preserving (resp., right-preserving) set of trajectories
T ⊆ {0,1}∗. Given an LCFL L and a regular language R, it is undecidable whether
there exists a language X such that LT X = R (resp., X T L = R).

By an extension of Theorem 4.2, we can also show that there exists a fixed
context-free set of trajectoriesT such that, on inputR1,R2 (regular languages),
deciding whether or not there exists a languageX such thatR1 = X T R2 is
undecidable [26]. We also have the following undecidability results concerning
the existence of sets of trajectories [25, 22]:

Theorem 4.7. Given an LCFL L and regular languages R1,R2, it is undecidable
whether there exists T⊆ {0,1}∗ such that (a) R1 T R2 = L, (b) R1 T L = R2 or
(c) L T R1 = R2.

Given an LCFL L and regular languages R1,R2, it is undecidable whether
there exists T⊆ {i,d}∗ such that (a) R1 {T R2 = L, (b) L {T R1 = R2, or (c)
R1{T L = R2.
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4.3 Two Variable Equations

We can also consider language equations with two variables. As an example,
consider the well-studied language equation

L = X1X2 (1)

whereL is a fixed language andX1,X2 are unknown. Study of this equation has
been undertaken by Conway [10], Kari and Thierrin [59], Salomaa and Yu [85]
and Choffrut and Karhumäki [9]. In particular, it is known that ifL is a regular
language, we can determine if a solution to (1) exists. Furthermore, it is known
that if a solutionX1,X2 exists, there exists a maximal regular solution; i.e., there
existsR1,R2 such thatXi ⊆ Ri for i = 1,2 andL = R1R2.

For language equations of the formL = X1 T X2, unlike the case of one-
variable equations, we do not have a general result which applies to all regular
sets of trajectoriesT. However, a large class of trajectories are covered by the
author and K. Salomaa [25, 22].

Recall that a languageL ⊆ Σ∗ is boundedif there existw1,w2, . . . ,wn ∈ Σ
∗

such thatL ⊆ w∗1w
∗
2 · · ·w

∗
n. We say thatL is letter-boundedif wi ∈ Σ for all

1 ≤ i ≤ n. The following result is due to the author and K. Salomaa [25, 22].

Theorem 4.8. Let T ⊆ {0,1}∗ be a letter-bounded regular set of trajectories.
Then given a regular language R, it is decidable whether there exist X1,X2 such
that X1 T X2 = R.

As we have mentioned, this result was known for catenation,T = 0∗1∗. How-
ever, it also holds for, e.g., the following operations: insertion (0∗1∗0∗), k-insertion
(0∗1∗0≤k for fixedk ≥ 0), and bi-catenation (1∗0∗ + 0∗1∗).

We also note that if the equationX1 T X2 = R has a solution, whereR is
a regular language andT is a letter-bounded regular set of trajectories, then the
equation also has solutionY1 T Y2 = R whereY1,Y2 are regular languages. This
result is well-known forT = 0∗1∗ (see, e.g., Choffrut and Karhumäki [9]).

For T = (0+ 1)∗, the two-variable decomposition problem is open [7]:

Open Problem 4.9.Given a regular language R, is it decidable whether there
exist X1,X2 (with X1,X2 , {ε}) such that R= X1 X2?

Recall that a languageL is k-thin if |L ∩ Σn| ≤ k for all n ≥ 0. The following
problem is also open:

Open Problem 4.10.Given a k-thin set of trajectories T⊆ {0,1}∗, is it decidable,
given a regular language R, whether R has a shuffle decomposition with respect
to T?
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The author and K. Salomaa [26] have shown that ifT ⊆ {0,1}∗ is a fixed
1-thin set of trajectories, given a regular languageR, it is decidable whetherR
has a shuffle decomposition with respect toT. However, even for 2-thin sets of
trajectories, the problem remains open [26].

We can also note that if the left and right operand are restricted to be the same,
the resulting language equation problem remains decidable if the set of trajectories
is regular and letter-bounded [25, 22]:

Theorem 4.11.Fix a letter-bounded regular set of trajectories T⊆ {0,1}∗. Then
it is decidable whether there exists a solution X to the equation XT X = R for a
given regular language R.

We now turn to undecidability. It has been shown [7] that it is undecidable
whether a context-free language has a nontrivial shuffle decomposition with re-
spect to the set of trajectories{0,1}∗. This result can be extended for arbitrary
complete regular sets trajectories [25]. (Note that ifT is a complete set of trajec-
tories, then any languageL has decompositionsL T{ε} and{ε} TL. Below we
exclude these trivial decompositions; all other decompositions ofL are said to be
nontrivial.)

Theorem 4.12.Let T be any fixed complete regular set of trajectories. For a given
context-free language L it is undecidable whether or not there exist languages
X1,X2 , {ε} such that L= X1 TX2.

We also note the following open problem [26]:

Open Problem 4.13.Is it possible to construct a fixed context-free set of trajecto-
ries T such that it is undecidable whether there exist languages X1,X2 , {ε} such
that L= X1 TX2?

Also open are other forms of language equation. We mention only two here:

Open Problem 4.14.Find necessary and sufficient conditions on sets of trajecto-
ries T1,T2 so that, given a regular language R, it is decidable whether there exist
nontrivial languages X1,X2,X3 satisfying(X1 T1 X2) T2 X3 = R.

Open Problem 4.15.Given regular languages R1,R2, is it decidable whether
there exists nontrivial languages X1,T (with T ⊆ {0,1}∗) such that X1 T R1 = R2

or R1 T X1 = R2?

5 Splicing on Routes

The notion of shuffle on trajectories was extended by Mateescu [77] to encompass
certain splicing operations. This extension is calledsplicing on routes. Splicing
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on routes is a proper extension of shuffle on trajectories, and also encompasses
several unary operations. Bel-Enguixet al. also use the concept of splicing on
routes to model dialog in natural language [3].

Splicing on routes was introduced by Mateescu [77] to model generaliza-
tions of the crossover splicing operation (see Mateescu [77] for a definition of
the crossover splicing operation). Splicing on routes generalizes the crossover
splicing operation by specifying a setT of routes which restricts the way in which
splicing can occur. The result is that specific sets of routes can simulate not only
the crossover operation, but also such operations on DNA such as thesimple splic-
ing and theequal-length crossoveroperations (see Mateescu for details and defi-
nitions of these operations [77]).

We now define the concept ofsplicing on routes, and note the difference be-
tween deletion along trajectories from splicing on routes, which allows discarding
letters from either input word. In particular, aroute is a wordt specified over
the alphabet{0,0,1,1}, where, informally, 0,1 means insert the letter from the
appropriate word, and0,1 means discard that letter and continue.

Formally, letx, y ∈ Σ∗ andt ∈ {0,0,1,1}∗. We define the splicing ofx andy,
denotedx ./t y recursively as follows: ifx = ax′, y = by′ (a,b ∈ Σ) andt = ct′

(c ∈ {0,0,1,1}), then

x ./ct′ y =


a(x′ ./t′ y) if c = 0;
(x′ ./t′ y) if c = 0;
b(x ./t′ y′) if c = 1;
(x ./t′ y′) if c = 1.

If x = ax′ andt = ct′, wherea ∈ Σ andc ∈ {0,0,1,1}, then

x ./ct′ ε =


a(x′ ./t′ ε) if c = 0;
(x′ ./t′ ε) if c = 0;
∅ otherwise.

If y = by′ andt = ct′, wherea ∈ Σ andc ∈ {0,0,1,1}, then

x ./ct′ ε =


a(x′ ./t′ ε) if c = 0;
(x′ ./t′ ε) if c = 0;
∅ otherwise.

If y = by′ andt = ct′, wherea ∈ Σ andc ∈ {0,0,1,1}, then

ε ./ct′ y =


b(ε ./t′ y′) if c = 1;
(ε ./t′ y′) if c = 1;
∅ otherwise.
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We havex ./ε y = ∅ if {x, y} , {ε}. Finally, we setε ./t ε = ε if t = ε and∅
otherwise. We extend./t to sets of routes and languages as expected:

x ./T y =
⋃
t∈T

x ./t y ∀T ⊆ {0,0,1,1}∗, x, y ∈ Σ∗;

L1 ./T L2 =
⋃

x∈L1,y∈L2

x ./T y.

For example, ifx = abc, y = cbcandT = {010011,010011}, thenx ./T y =
{acbcbc,abbc}.

It turns out that splicing on routes can be simulated by a combination of shuffle
on trajectories and deletion along trajectories [22]:

Theorem 5.1. There exist weak codingsπ1, π2 : {0,1,0,1}∗ → {i,d}∗ and a weak
codingπ3 : {0,1,0,1}∗ → {0,1}∗ such that for all t ∈ {0,0,1,1}∗, and for all
x, y ∈ Σ∗, we have

x ./t y = (x{π1(t) Σ
∗) π3(t) (y{π2(t) Σ

∗).

Corollary 5.2. There exist weak codingsπ1, π2 : {0,1,0,1}∗ → {i,d}∗ and π3 :
{0,1,0,1}∗ → {0,1}∗ such that for all T⊆ {0,0,1,1}∗ and L1, L2 ⊆ Σ

∗,

L1 ./T L2 =
⋃
t∈T

(L1{π1(t) Σ
∗) π3(t) (L2{π2(t) Σ

∗).

Unfortunately, the identity

L1 ./T L2 = (L1{π1(T) Σ
∗) π3(T) (L2{π2(T) Σ

∗)

does not hold in general, even ifL1, L2 are singletons and|T | = 2. For example, if
L1 = {ab}, L2 = {cd} andT = {0011,0011}, then

L1 ./T L2 = {bc,ad};

(L1{π1(T) Σ
∗) π3(T) (L2{π2(T) Σ

∗) = {ac,ad,bc,bd}.

However, ifT is aunaryset of routes, by which we mean thatT ⊆ {0,0}∗1
∗
,

then we have the following result [22]:

Corollary 5.3. Let T ⊆ {0,0}∗1
∗
. Then for all L⊆ Σ∗,

L ./T Σ
∗ = L{π1(T) Σ

∗.
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We refer the reader to Mateescu [77] for a discussion of unary operations
defined by splicing on routes. As an example, consider that withT = {0n0

n
: n ≥

0}1
∗
, L ./T Σ

∗ = 1
2(L), where1

2(L) was given in Section 3.1.
Bel-Enguixet al. [3] have used splicing on routes to model dialogue in natural

language. Adialogueis the result of two or more actors who alternately com-
municate. The alternating nature of trajectory-based operations makes it natural
to apply them to modeling dialogue. Routes, and in particular the ability to not
insert portions of certain actor’s input, is important for selecting different pieces
of information for different dialogues: “Depending on the conversational goal and
on the behaviour of the agents, different acts will be selected ” [3]. Bel-Enguixet
al. [3] note three important classes of routes used in dialogue:

(a) Imbrication in a dialogue is the result of applying a route from the set of
routes defined by the regular expression ((01)+ (01))+. Imbrication repre-
sents the “perfect conversation” where actors strictly alternate.

(b) Concatenationin a dialogue is the result of applying a route from the set
of route defined by the regular expression (0+ 0)+(1 + 1)+. According to
Bel-Enguix, concatenation has applications to more formal dialogues such
as debates and round tables [3].

(c) Merging is the result of applying a route which does not fall into the cat-
egories of imbrication or concatenation. Merging is more common than
imbrication and concatenation in informal dialogues.

Bel-Enguixet al. [3] mention several open areas of research relating to the
use of splicing on routes for modelling dialogue. In particular, they ask about
establishing a mechanism in order to select routes depending on context. This
would establish a more semantic operation, in the terminology of Section 6 below.

6 Semantic Shuffle on Trajectories

In the paper which introduced shuffle on trajectories, Mateescuet al.make a dis-
tinction betweensyntacticandsemanticoperations on words:

[Shuffle on trajectories is] based on syntactic constraints on the shuffle
operations. The constraints are referred to as syntactic constraints
since they do not concern properties of the words that are shuffled, or
properties of the letters that occur in these words.

Instead, the constraints involve the general strategy to switch from
one word to another word. Once such a strategy is defined, the struc-
ture of the words that are shuffled does not play any role.

13



However, constraints that take into consideration the inner structure
of the words that are shuffled together are referred to as semantic con-
straints. [79, p. 2]

The author [19] has introduced a semantic variant of shuffle on trajectories,
naturally calledsemantic shuffle on trajectories(SST). The corresponding no-
tion for deletion on trajectories is calledsemantic deletion on trajectories(SDT).
The advantages of SST and SDT are that they preserves many of the desirable
properties of the usual, syntactic shuffle on trajectories, while being capable of
simulating more operations of interest.

The two semantic constructs we introduce aresynchronizationand content
restriction. Synchronization allows for only one letter to be output for two cor-
responding, identical symbols in the input words. Content restriction allows a
trajectory to specify that a particular letter must appear at a specific point. This is
inspired by bio-informatical operations, where operations occur only in the con-
text of certain subsequences of the DNA strand.

Before we define SST, we define the trajectory alphabet. LetΓ = {0,1, σ}. For
any alphabetΣ, letΓΣ = Γ ∪ (Γ × Σ). For ease of readability, we denote [c,a] by

a
c

for all a ∈ Σ andc ∈ Γ.
We can now define the SST operation. LetΣ be an alphabet,t ∈ Γ∗

Σ
and

x, y ∈ Σ∗. Then the SST ofx andy alongt, denotedx t y, is defined as follows:
If x = ax′, y = by′ (wherea,b ∈ Σ, x′, y′ ∈ Σ∗), andt = ct′, wherec ∈ ΓΣ and
t′ ∈ Γ∗

Σ
, then

x t y =


a(x′ t′ y) if c ∈ {0,

a
0},

b(x t′ y′) if c ∈ {1,
b
1},

a(x′ t′ y′) if a = b andc ∈ {σ,
a
σ},

∅ otherwise.

If x = ax′, y = ε andt = ct′ then

x t ε =

 a(x′ t′ ε) if c ∈ {0,
a
0},

∅ otherwise.

If x = ε, y = by′ andt = ct′ then

ε t y =

 b(ε t′ y′) if c ∈ {1,
b
1},

∅ otherwise.

If x = y = ε, thenx t y = ε if t = ε and∅ otherwise. Finally, if{x, y} , {ε}, then
x ε y = ∅. If x, y ∈ Σ∗ andT ⊆ Γ∗

Σ
, thenx T y = ∪t∈T x T y. If L1, L2 ⊆ Σ

∗ and

14



T ⊆ Γ∗
Σ
, thenL1 T L2 = ∪x∈L1,y∈L2 x T y. The associated deletion operation, over

the alphabet∆Σ = ∆ ∪ (∆ × Σ) (where∆ = {i,d, σ}), is defined in the natural way
[19].

We now consider, givenΣ and two sets of trajectoriesT1,T2 ⊆ Γ
∗
Σ
, whether

the operations T1, T2 coincide, that is, whetherL1 T1 L2 = L1 T2 L2 for all
languagesL1, L2 ⊆ Σ

∗. If T1, T2 represent, in this sense, the same operation, we
say thatT1,T2 areequivalentsets of trajectories.

We note that it is possible for two distinct sets of trajectoriesT1,T2 ⊆ Γ
∗
Σ

to be

equivalent. As a simple example, considerT1 = {
a
0

a
1} andT2 = {

a
1

a
0}. Note that for

i = 1,2,

L1 Ti L2 =

{
{aa} if L1 ∩ L2 ⊇ {a};
∅ otherwise.

Thus,T1,T2 are equivalent, but not equal.
By using a special case of partial commutation and trace languages (see Diek-

ert and Métivier [15]), we can show that two sets of trajectoriesT1,T2 ⊆ Γ
∗
Σ

are
equivalent if and only if their corresponding trace languages (under the natural
morphism) are equivalent. This implies the following important decidability re-
sult:

Theorem 6.1. Let Σ be an alphabet and T1,T2 ⊆ Γ
∗
Σ
. If T1,T2 are regular, it is

decidable whether T1 and T2 are equivalent.

We can now consider some examples of the power of SST and SDT. We first
note that SST consists of a valid extension of the shuffle on trajectories: ifT ⊆
{0,1}∗, thenL1 T L2 = L1 T L2, the syntactic shuffle on trajectories operation
[79]. We also note that ifT = σ∗, then T = ∩.

Given the very natural set of trajectoriesT = (0 + 1 + σ)∗, T denotes the
infiltration product, ↑, see, e.g., Pin and Sakarovitch [81]. The infiltration product
is defined as follows: ifx = x1 . . . xn is a word of lengthn andI = (i1, i2, . . . , ir) is
a subsequence of (1,2, . . . ,n), let xI = xi1 xi2 · · · xir . Then givenx, y ∈ Σ∗,

x ↑ y = {z ∈ Σ∗ : ∃I , J ⊆ [|z|] such thatI ∪ J = [|z|], zI = x andzJ = y}.

For example,ab↑ ba= {aba,bab,baab,baba,abba,abab}.
We now show how to use SST and SDT to simulate ciliate bio-operations

which have been the subject of recent research in the literature. A model of cil-
iate bio-operations without circular variants were introduced by Daleyet al. [11]
to mimic the manner in which DNA is unscrambled in the DNA of certain uni-
cellular ciliates in the process of asexual reproduction. Ciliate bio-operations are
also investigated by Ehrenfeuchtet al. [28], Prescottet al. [82], and Daley and
McQuillan [12] using various approaches.

15



Daley et al. [11] define several language operations which simulate ciliate
bio-operations, including synchronized insertion, deletion and bi-polar deletion.
Synchronized insertion can be given as follows:

α ⊕ β = {uavaw : a ∈ Σ, α = uaw, β = va}.

The operation is extended to languages as usual. LetT =
⋃

a∈Σ 0∗
a
0 1∗

a
1 0∗. Then

for all L1, L2 ⊆ Σ
∗, L1 ⊕ L2 = L1 T L2. The operations of synchronized deletion

and synchronized bi-polar deletion (also defined by Daleyet al. [11]) can also be
simulated by SDT.

Contextual insertion and deletion were introduced by Kari and Thierrin as a
simple set of operations which are capable for modelling DNA computing [58].
Let Σ be an alphabet and [x, y] ∈ (Σ∗)2. We call [x, y] a context. Then given
v,u ∈ Σ∗, the [x, y]-contextual insertionof v into u is given byu ←−[x,y] v = {u1xvyu2 :
u = u1xyu2,u1,u2 ∈ Σ

∗}. Let C ⊆ (Σ∗)2. Then

u ←−C v =
⋃

[x,y]∈C

u ←−[x,y] v.

The operation←−C is extended to languages monotonically as expected. Letx =
x1 · · · xn andy = y1 · · · ym be arbitrary words overΣ. Then define

T[x,y] = 0∗
n∏

i=1

xi

0 1∗
m∏

i=1

yi

0 0∗.

We naturally extend this toTC = ∪[x,y]∈CT[x,y] for all C ⊆ (Σ∗)2. Under this defini-
tion it is clear that TC =

←−
C for all C ⊆ (Σ∗)2.

Kari and Thierrin note that ifC ⊆ (Σ∗)2 is finite, then the regular and context-
free languages are closed under←−

C . As TC is regular for all finiteC, we note
that the closure of the regular languages under←−

C is a consequence of the closure
properties of SST. It is known that the CFLs are closed under←−

C [58]. However,
in general, the CFLs are not closed underT . This leads to the following open
problem:

Open Problem 6.2.Find necessary and sufficient (language-theoretic) conditions
on a set of trajectories T⊆ Γ∗

Σ
such that the CFLs overΣ are closed under T .

We note that [x, y]-contextual deletion and [x, y]-contextual bi-polar deletion
[58] can be simulated by SDT [19].

Recall thatsynchronized shuffle (see, e.g., Latteux and Roos [66]) is defined as
follows. LetΣ1,Σ2 be alphabets, not necessarily disjoint. Letρi : (Σ1 ∪ Σ2) → Σi

be the projection ontoΣi given byρi(a) = a for all a ∈ Σi andρi(a) = ε for all
a ∈ (Σ1 ∪ Σ2) − Σi.
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Let Li ⊆ Σi for i = 1,2. Then the synchronized shuffle of L1 andL2, denoted
L1 ‖ L2, is given by

L1 ‖ L2 = ρ
−1
1 (L1) ∩ ρ

−1
2 (L2).

Lemma 6.3. LetΣ1,Σ2 be alphabets. Let T⊆ Γ∗
Σ1∪Σ2

be given by

T = ((
⋃

a∈Σ1∩Σ2

a
σ) + (

⋃
a∈Σ1−Σ2

a
0) + (

⋃
a∈Σ2−Σ1

a
1))∗.

Then for all L1, L2 such that Li ⊆ Σi for i = 1,2, L1 ‖ L2 = L1 T L2.

Further examples of operations simulated by SST are described by the author
[19].

We note that many of the results on language equations hold for SST. In par-
ticular, the following are new results on bio-operations which have not been noted
before [19]:

Corollary 6.4. Let R be a regular language. Then it is decidable whether there
exist languages X1,X2 such that R= X1 ⊕ X2.

Corollary 6.5. Let C ⊆ (Σ∗)2 be a finite set of contexts. Let R be a regular
language. Then it is decidable whether there exist languages X1,X2 such that
R= X1

←
C X2.

7 Descriptional Complexity

Descriptional complexity of formal languages deals with the problems of concise
descriptions of languages in terms of generative or accepting devices. For in-
stance, the(deterministic) state complexityof a regular languageL is the minimal
number of states in any deterministic finite automaton acceptingL [94]. Nonde-
terministic state complexity of a regular language is similarly defined (see, e.g.,
Holzer and Kutrib [36]).

For shuffle on trajectories, Mateescuet al. [79] and Harjuet al. [34] both give
proofs that, given a regular set of trajectoriesT and regular languagesL1, L2, the
operationL1 T L2 always yields a regular language. Thus, it is reasonable to
consider the state complexity of shuffle on trajectories. The author and K. Salo-
maa [24] have obtained results in this area. We state an upper bound in terms of
nondeterministic state complexity:

Lemma 7.1. Let L1, L2 be regular languages overΣ∗ and T⊆ {0,1}∗ be a regular
set of trajectories. Then

sc(L1 T L2) ≤ 2nsc(L1)nsc(L2)nsc(T).
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The following open problem appears to be very challenging:

Open Problem 7.2. For what regular sets of trajectories T⊆ {0,1}∗ does the
construction given by Lemma 7.1 give a construction which is best possible?

Consider unrestricted shuffle, given by the set of trajectoriesT = (0 + 1)∗.
The bound of Lemma 7.1 in this case is 2nsc(L1)nsc(L2). Câmpeanuet al. [8] have
shown that there exist languagesL1 andL2 accepted by incomplete DFAs having,
respectively,n andm states such that any incomplete DFA acceptingL1 L2 has
at least 2nm − 1 states. This bound is optimal for incomplete DFAs, however;
for complete DFAs it gives only the lower bound 2(sc(L1)−1)(sc(L2)−1). However, we
regard this as near enough to our goal of Lemma 7.1 for our purposes, i.e., we
regardT = (0 + 1)∗ as an example of a set of trajectoriesT satisfying Open
Problem 7.2.

The density functionof a languageL ⊆ Σ∗ is defined bypL : N → N as
pL(n) = |L ∩ Σn| for all n ≥ 0. That is, pL(n) gives the number of words of
lengthn in L. By the density of a languageL, we informally mean the asymptotic
behaviour ofpL. The following important result of Szilardet al. [91, Thm. 3]
characterizes the density of regular languages:

Theorem 7.3. A regular language R overΣ satisfies pR(n) ∈ O(nk), k ≥ 0 if
and only if R can be represented as a finite union of regular expressions of the
following form: xy∗1z1 · · · y∗t zt where x, y1, z1, · · · , yt, zt ∈ Σ

∗, and0 ≤ t ≤ k+ 1.

Call a languageL slenderif pL(n) ∈ O(1) [83]. Let R be a regular language
which has polynomial densityO(nk), and lett be the smallest integer such that
R = ∪t

i=1xiy∗i,1zi,1 · · · y∗i,ki
zi,ki , 0 ≤ ki ≤ k + 1, i = 1, . . . , t. Then callt the UkL-

indexof L. If k = 0, we callt theUSL-indexof L (languages with USL indext
are calledt-thin by P̌aun and Salomaa [83]; slender regular languages were also
characterized independently by Shallit [87, Lemma 3, p. 336]).

Lemma 7.4. Let T = uv∗ where u, v ∈ {0,1}∗. Let Li be regular languages overΣ,
with sc(Li) = ni, i = 1,2. Let L= L1 T L2. Then

sc(L) ≤ |uv|n1n2. (2)

We now give a bound for sets of trajectoriesT = uv∗w with w , ε.

Lemma 7.5. Let T = uv∗w where u, v,w ∈ {0,1}∗ and w, ε. Let Li be regular
languages overΣ, with sc(Li) = ni, i = 1,2. Let L= L1 T L2. Then

sc(L) ≤ n1n2

|u| + 1+ |v|
(n1n2)

⌈
|w|
|v|

⌉
+1
− n1n2

n1n2 − 1

 . (3)
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Our aim is to obtain a lower bound for the shuffle operation on trajectories
with USL index 1. It seems likely that the bound (3) cannot be reached for any
fixed set of trajectories (and for all values ofsc(Li),i = 1,2). In particular, if|w| is
fixed andsc(Li) can grow arbitrarily, then it seems impossible that the

⌈
|w|
|v|

⌉
parallel

computations on the suffix wcould simultaneously reach all combinations of states
of the DFAs forL1 andL2. Note that if the computation ofM contains parallel
branches that simulate the computations ofMi (1 ≤ i ≤ 2), in statesPi ⊆ Qi, then
all the states ofPi need to be reachable from a single state ofMi with inputs of
length at most|w|.

For the above reason, we consider a lower bound for sets of trajectoriesuv∗w
where the length ofv and ofw can depend on the sizes of the minimal DFAs for
the component languagesL1 andL2. Furthermore, to simplify the notations below
we give lower bound results for sets of trajectories of the formv∗w, i.e., u = ε.
It would be straightforward to modify the construction for prefixesu of arbitrary
length to include the additive termn1n2 · (|u| + 1) from (3).

Lemma 7.6. Let Σ = {a,b, c}. For any n1,n2 ∈ N there exist regular languages
Li ⊆ Σ

∗ with sc(Li) = ni, i = 1,2, and a set of trajectories T= v∗w, where
v,w ∈ {0,1}∗, such that

sc(L1 TL2) ≥ (n1n2)
d
|w|
|v| e+1.

The ratio|w|/|v| above can be chosen to be arbitrarily large.

By extending Lemma 7.6 slightly, we obtain the following result:

Theorem 7.7.The upper bound (3) is asymptotically optimal if sc(T) (that is,|v|)
can be arbitrarily large compared to sc(Li), i = 1,2.

We conclude with some open problems. Recall that the example of arbitrary
shuffle, shown by Câmpeanuet al. to have state complexity no better than our
construction in Lemma 7.1, uses the set of trajectoriesT = (0+ 1)∗ of density 2n.
We also note that, by Szilardet al. [91], the density of a regular language overΣ
is eitherO(p(n)), wherep is a polynomial, orΩ(|Σ|n).

Thus, we may conjecture that a set of trajectoriesT yields an operation which
is, in the worst case, no better than Lemma 7.1 if and only ifpT(n) ∈ Ω(2n), i.e.T
has exponential density.

Our constructions in Lemma 7.6 use three-letter alphabets. Can these con-
structions be improved to two-letter alphabets? The problem of restricting the
alphabet size to be as small as possible is often challenging. For example, in the
case of concatenation, the state complexity problem was solved for a three-letter
alphabet by Yuet al. [94], but the case of a two-letter alphabet was open until
recently [44, 43].
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8 Substitution on Trajectories

We now recall the definition of substitution on trajectories, originally given by
Kari et al. [53, 52]. A trajectoryt is a word over{0,1}. Given a trajectoryt and
u, v ∈ Σ∗, the substitution ofv into u (or the substitution inu of v) is given by

u ./t v = {(
n∏

i=1

uivi)un+1 : n ≥ 0,u = (
n∏

i=1

uiai)un+1, v =
n∏

i=1

vi

t =
n∏

i=1

0ai 1)0an+1,ai , vi ∈ Σ,∀i,1 ≤ i ≤ k,ui ∈ Σ
∗,∀i,1 ≤ i ≤ k+ 1,

j i = |ui |∀1 ≤ i ≤ k}.

Note that if|u| , |t| or |v| , |t|1 thenu ./t v = ∅.
We extend this to sets of trajectoriesT ⊆ {0,1}∗ as expected:u ./T v =

∪t∈Tu ./T v Further, if L1, L2 are languages, thenL1 ./T L2 = ∪x∈L1
y∈L2

u ./T v.

We note that the notation./T was also used by Mateescu [77] for the splicing on
routes. This concept is unrelated to substitution on trajectories except in that they
both are based on the concept of trajectories.

We consider some examples:
(i) If T = {0,1}∗, the resulting operation./T is known as the substi-
tution operation. In this operation, substitutions are permitted in any
possible position.
(ii) If Tk = 0∗(10∗)k0∗, the languagex ./T Σ

k contains all possible
words obtained by substituting exactlyk symbols intox.

One motivation for substitution on trajectories is the close associations between
insertion, deletion and substitution in models of channels with can generate errors
while transmitting data. Indeed, so-called SID channels (for substitution, insertion
and deletion) are a strong model of transmission media where these three types
of errors may occur. Thus, it is natural to consider a substitution-based operation
using trajectories.

Formally, a channelγ is a binary relation on words which defines a set of
possible outputs from a channel given an input word: ifu γ y, theny is a possible
output of the channel on inputu. A languageL is error-detecting for a channelγ
if, for all u, v ∈ L ∪ {ε}, u γ v impliesu = v. For a given set of trajectoriesT, the
channel defined byT is given by the relation{(u, v) : v ∈ u ./T Σ

∗}. This is a
very natural definition: it is completely analogous to the definition of the binary
relation defined by shuffle on trajectories defined independently by the author and
described in Section 9.1 below).

Kari et al. [53, 52] show that given a language and a substitution channel
(defined by a set of trajectories), it is decidable in polynomial time whether the
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language is error-detecting for a channel. Kariet al. [53, 52] have also investi-
gated language equations involving substitution on trajectories. In particular, for
one-variable equations of the formX ./T R1 = R2 or R1 ./T X = R2, it is decid-
able whether there exists a solution ifR1,R2 andT are all regular. The problem
of examining two-variable equations for substitution on trajectories, however, is
apparently open:

Open Problem 8.1.Find necessary and sufficient conditions on T such that, given
a regular language R, it is decidable whether there exist X1,X2 such that R=
X1 ./T X2.

9 Theory of Codes

Prefix codes are fundamental objects in formal language theory, and are likely
one of the most well-studied classes of languages which are not defined by their
relation to a generating or accepting device. A languageL is a prefix code if no
word x ∈ L is a prefix of another wordy in L. The use of prefix is intricately
linked to concatenation—which is itself a particular case of an operation defined
by shuffle on trajectories. This is reflected by the following well-known identify
for prefix codes:L is a prefix code if and only ifL∩ LΣ+ = ∅ (We refer the reader
to Berstel and Perrin [5], Jürgensen and Konstantinidis [46] or Shyr [88] for an
introduction to the theory of codes and prefix codes).

The question now arises: is concatenation the only shuffle-on-trajectories op-
eration for which the associated “prefix-like” property defines a class of languages
related to the theory of codes? It turns out that the answer is no: several well-
studied language classes related to the theory of codes are a particular case of the
concept ofT-codes, which we review now. The results in this section are due to
the author [20, 21, 22].

Let L ⊆ Σ+ be a language. Then, for anyT ⊆ {0,1}∗, we say thatL is aT-code
if L is non-empty and (L T Σ

+) ∩ L = ∅. If Σ is an alphabet andT ⊆ {0,1}∗, let
PT(Σ) denote the set of allT-codes overΣ.

There has been much research into the idea ofT-codes for particularT ⊆
{0,1}∗, including

(a) prefix, suffix and biprefix (or bifix) codes, corresponding toT =
0∗1∗, T = 1∗0∗ andT = 0∗1∗ + 1∗0∗, respectively;
(b) outfix and infix codes, corresponding toT = 0∗1∗0∗ and T =
1∗0∗1∗, respectively;
(c) shuffle-codes, corresponding to bounded sets of trajectories such
asT = (0∗1∗)n for fixed n ≥ 1 (prefix codes of indexn), T = (1∗0∗)n

for fixedn ≥ 1 (suffix codes of indexn), T = 1∗(0∗1∗)n for fixedn ≥ 1
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(infix codes of indexn), orT = (0∗1∗)n0∗ for fixedn ≥ 1 (outfix codes
of indexn).
(d) hypercodes, corresponding toT = (0+ 1)∗;
(e) k-codes, corresponding toT = 0∗1∗0≤k (see Kari and Thierrin
[57]) for fixedk ≥ 0; and
(f) for arbitraryk ≥ 1, codes defined by the sets of trajectoriesPPk =

0∗ + (0∗1∗)k−10∗1+, PSk = 0∗ + 1+0∗(1∗0∗)k−1, PIk = 0∗ + (1∗0∗)k1+,
S Ik = 0∗+1+(0∗1∗)k, PBk = PPk∪PSk andBIk = PIk∪S Ik, see Long
[69], or Ito et al. [40] for PI1,S I1.

For a list of references related to (a)–(d), see Jürgensen and Konstantinidis [46,
pp. 549–553].

9.1 The Binary Relation Defined by Shuffle on Trajectories

We can also defineT-codes by appealing to a definition based on binary relations.
In particular, forT ⊆ {0,1}∗, defineωT as follows: for allx, y ∈ Σ∗,

xωT y ⇐⇒ y ∈ x T Σ
∗.

It is clear thatL ⊆ Σ+ is aT-code if and only ifL is an anti-chain underωT (i.e,
x, y ∈ L andxωT y impliesx = y).

We note that the relation analogous toωT for infinite words andω-trajectories
was defined by Kadrieet al. [48]. In what follows, we will refer toT having a
propertyP if and only if ωT has propertyP. Recall that a binary relationρ onΣ∗

is said to bepositiveif ε ρ x for all x ∈ Σ∗.

Lemma 9.1. Let T ⊆ {0,1}∗.

(a) The relationωT is anti-symmetric.
(b) T is reflexive if and only if0∗ ⊆ T.
(c) T is positive if and only if1∗ ⊆ T.

Let ρ be a binary relation onΣ∗. Then we say thatρ is left-compatible(resp.,
right-compatible) if, for all u, v,w ∈ Σ∗, uρv implies thatwuρwv (resp.,uwρvw).
If ρ is both left- and right-compatible, we say it iscompatible.

Lemma 9.2. Let T ⊆ {0,1}∗. Then T is right-compatible (resp., left-compatible,
compatible) if and only if T0∗ ⊆ T (resp.,0∗T ⊆ T, 0∗T0∗ ⊆ T).

We now consider conditions onT which will ensure thatωT is a transitive
relation. Transitivity is often, but not always, a property of the binary relations
defining the classic code classes. For instance, both bi-prefix and outfix codes are
defined by binary relations which are not transitive, and hence not a partial order.
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First, we define three morphisms we will need. LetD = {x, y, z} andϕ, σ, ψ :
D∗ → {0,1}∗ be the morphisms given by

ϕ(x) = 0, σ(x) = 0, ψ(x) = 0,
ϕ(y) = 0, σ(y) = 1, ψ(y) = 1,
ϕ(z) = 1, σ(z) = ε, ψ(z) = 1.

Note that these morphisms are similar to the substitutions defined by Mateescuet
al. [79], whose purpose is to give necessary and sufficient conditions on a setT of
trajectories defining an associative operation.

Theorem 9.3. Let T ⊆ {0,1}∗. Then T is transitive if and only ifψ(ϕ−1(T) ∩
σ−1(T)) ⊆ T.

As an alternate formulation for Theorem 9.3, we note that, for allT ⊆ {0,1}∗,
T is transitive if and only ifT T 1∗ ⊆ T.

Corollary 9.4. Given a regular set T⊆ {0,1}∗ of trajectories, it is decidable
whether T is transitive.

For undecidability, we naturally find that deciding whether a context-free set
of trajectories is transitive is undecidable:

Theorem 9.5.Given a CF set T⊆ {0,1}∗ of trajectories, it is undecidable whether
T is transitive.

It is easy to see that if{Ti}i∈I is a family of transitive sets of trajectories, then
the set∩i∈ITi is also transitive. Thus, we can define the transitive closure of a set
T of trajectories as follows: for allT ⊆ {0,1}∗, let tr(T) = {T′ ⊆ {0,1}∗ : T ⊆
T′,T′ transitive}. Note thattr(T) , ∅, as{0,1}∗ ∈ tr(T) for all T ⊆ {0,1}∗. Define
T̂ as

T̂ =
⋂

T′∈tr(T)

T′. (4)

Then note that̂T is transitive and is the smallest transitive set of trajectories con-
tainingT. The operation̂· : 2{0,1}

∗

→ 2{0,1}
∗

is indeed a closure operator (much like
the closure operators on sets of trajectories constructed by Mateescuet al. [79]
for, e.g., associativity and commutativity) in the algebraic sense, sinceT ⊆ T̂, and
·̂ preserves inclusion and is idempotent.

Consider the operatorΩT : 2{0,1}
∗

→ 2{0,1}
∗

given by

ΩT(T′) = T ∪ T′ ∪ ψ(σ−1(T′) ∩ ϕ−1(T′)).

It is not difficult to see that, givenT, we can find̂T by iteratively applyingΩT to
T, and in fact̂T =

⋃
i≥0Ω

i
T(T). This observation allows us to constructT̂, and, for

instance, gives us the following result (a similar result forω-trajectories is given
by Kadrieet al. [48]):
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Lemma 9.6. There exists a regular set of trajectories T⊆ {0,1}∗ such thatT̂ is
not a CFL.

In particular, considerT = (01)∗, corresponding to perfect or balanced literal
shuffle. Then we note that̂T ∩ 01∗ = {012n−1 : n ≥ 1}.

Open Problem 9.7.Given T∈  (or T ∈ ), is it decidable whether̂T ∈ ?

We now examine the relationship betweenT-codes and̂T-codes for arbitrary
T ⊆ {0,1}∗. We call a languageL ⊆ Σ∗ T-convexif, for all y ∈ Σ∗ andx, z ∈ L,
xωT y andyωT z impliesy ∈ L.

We now characterize when a language isT-convex using shuffle and deletion
along trajectories. Define the morphismτ : {0,1}∗ → {i,d}∗ by τ(0) = i and
τ(1) = d. This morphism defines the relationship between shuffle and deletion
along trajectories.

Lemma 9.8. Let T ⊆ {0,1}∗. Then L⊆ Σ∗ is T-convex if and only if(L T Σ
∗) ∩

(L{τ(T) Σ
∗) ⊆ L.

We now turn to decidability:

Corollary 9.9. Let T ⊆ {0,1}∗ be a regular set of trajectories. Given a regular
language L, it is decidable whether L is T-convex.

These results lead to the following general relationship betweenT-codes and
T̂-codes:

Theorem 9.10.LetΣ be an alphabet and T⊆ {0,1}∗. For all languages L⊆ Σ+,
the following two conditions are equivalent:

(i) L is a T̂ -code;
(ii) L is a T̂ -convex T-code.

Theorem 9.10 was known for the caseO = 0∗1∗0∗, which corresponds to outfix
codes, see, e.g., Shyr and Thierrin [89, Prop. 2]. In this case,Ô = H = (0+ 1)∗,
which corresponds to hypercodes. Theorem 9.10 was known to Guoet al. [31,
Prop. 2] in a slightly weaker form forB = 0∗1∗+1∗0∗. In this case,̂B = I = 1∗0∗1∗,
and the convexity is with respect to the factor (or subword) ordering. See also
Long [70, Sect. 5] for the case of shuffle codes.

We conclude this section with some research directions. A binary relationρ
on Σ∗ is said to beleft-cancellative(resp.,right-cancellative) if uv ρ ux implies
vρ x (resp.,vuρ xu impliesvρ x) for all u, v, x ∈ Σ∗. The relationρ is cancellative
if it is both left- and right-cancellative.
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Open Problem 9.11.What are necessary and sufficient language-theoretic con-
ditions on a set of trajectories T so that T is left-cancellative, right-cancellative
or cancellative?

Another research direction would be to consider the class of codes defined
not by shuffle on trajectories, but by splicing on routes. We note that additional
interesting binary relations from the literature can be modeled using splicing on
routes. For instance, we leave it to the reader to verify that ifT = 0∗ + (01)∗1+

then the associated binary relation (defined in the same way as for shuffle on
trajectories) is the length ordering, given by

x ≤ y ⇐⇒ (|x| < |y|) or x = y.

9.2 Maximal T-codes

Let T ⊆ {0,1}∗. We say thatL ∈ PT(Σ) is amaximal T-code if, for allL′ ∈ PT(Σ),
L ⊆ L′ impliesL = L′. Denote the set of all maximalT-codes over an alphabetΣ
byMT(Σ). Note that the alphabetΣ is crucial in the definition of maximality. By
Zorn’s Lemma, we can easily establish that everyL ∈ PT(Σ) is contained in some
element ofMT(Σ). The proof is a specific instance of a result from dependency
theory [46].

Unlike showing that everyT-code can be embedded in a maximalT-code,
to our knowledge, dependency theory has not addressed the problem of decid-
ing whether a language is a maximal code under some dependence system. We
address this problem forT-codes now. We first require the following technical
lemma, which is interesting in its own right (specific cases were known for, e.g.,
prefix codes [5, Prop. 3.1, Thm. 3.3], hypercodes [89, Cor. to Prop. 11], as well as
biprefix and outfix codes [68, Lemmas 3.3 and 3.5]). Letτ : {0,1}∗ → {i,d}∗ be
again given byτ(0) = i andτ(1) = d.

Lemma 9.12. Let T ⊆ {0,1}∗. Let Σ be an alphabet. For all L∈ PT(Σ), L ∈
MT(Σ) if and only if

L ∪ (L T Σ
+) ∪ (L{τ(T) Σ

+) = Σ+. (5)

Corollary 9.13. Let T ⊆ {0,1}∗ be a regular set of trajectories. Given a regular
language L⊆ Σ+, it is decidable whether L∈ MT(Σ).

Similar results were also obtained by Kariet al. [51, Sect. 5].
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9.3 Embedding and Finiteness

Given a class of codesC, and a languageL ∈ C of given complexity, there has
been much research into whether or notL can beembedded in(or completed to) a
maximal elementL′ ∈ C of the same complexity, i.e., a maximal codeL′ ∈ C with
L ⊆ L′. Finite and regular languages in these classes of codes are of particular
interest. For instance, we note that every regular code can be completed to a
maximal regular code, while the same is not true for finite codes or finite biprefix
codes.

We now show an interesting result on embeddingT-codes in maximalT-codes
while preserving complexity. Our construction is a generalization of a result due
to Lam [65]. In particular, we define two transformations on languages. LetT be
a set of trajectories andL ⊆ Σ+ be a language. Then defineUT(L),VT(L) ⊆ Σ+ as

UT(L) = Σ+ − (L T Σ
+ ∪ L{τ(T) Σ

+);

VT(L) = UT(L) − (UT(L) T Σ
+).

Recall thatτ : {0,1}∗ → {i,d}∗ is given byτ(0) = i andτ(1) = d.

Theorem 9.14.Let T ⊆ {0,1}∗ be transitive. LetΣ be an alphabet. Then for all
L ∈ PT(Σ), the language VT(L) contains L and VT(L) ∈ MT(Σ).

We note one consequence of Theorem 9.14:

Corollary 9.15. Let T ⊆ {0,1}∗ be transitive and regular. Then every regular
(resp., recursive) T-code is contained in a maximal regular (resp., recursive) T-
code.

Corollary 9.15 was given forT = 1∗0∗1∗ and regularT-codes by Lam [65,
Prop. 3.2]. Further research into the case whenT is not transitive is necessary (for
example, the proofs of Zhang and Shen [97] and Bruyère and Perrin [6] on embed-
ding regular biprefix codes are much more involved than the above construction,
and do not seem to be easily generalized).

Open Problem 9.16.Characterize those T⊆ {0,1}∗ for which every regular
(resp., finite, recursive) T-code can be embedded in a maximal regular (resp.,
finite recursive) T-code.

We can extend our embedding results to finite languages with one additional
constraint onT, namely completeness.

Corollary 9.17. Let T ⊆ {0,1}∗ be transitive and complete. LetΣ be an alphabet.
Then for all finite F∈ PT(Σ), there exists a finite language F′ ∈ MT(Σ) such that
F ⊆ F′. Further, if T is effectively regular, and F is effectively given, we can
effectively construct F′.
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In practice, the condition thatT be complete is not very restrictive, since nat-
ural operations seem to typically be defined by a complete set of trajectories.

Also of interest are thoseT ⊆ {0,1}∗ such that allT-codes are finite. It is
a well-known result that all hypercodes (T = {0,1}∗) are finite, which can be
concluded from a result due to Higman [35]. We define the classFH as

FH = {T ∈ {0,1}
∗ : PT(Σ) ⊆ }.

Also studied by the author are the classes of trajectories such that everyregular
(or context-free)T-code is finite [20, 22].

The classFH is related to a large amount of research in the literature. IfT is a
partial order andT ∈ FH, thenT is awell partial order. We defineF(po)

H to be the
set of allT which are well partial orders. Without trying to be exhaustive, we note
the work of Jullien [45], Haines [32], van Leeuwen [93], Ehrenfeuchtet al. [29],
Ilie [37, 38], Ilie and Salomaa [42] and Harju and Ilie [33] on well partial orders
relating to words. We also refer the reader to the survey of results presented by de
Luca and Varricchio [14, Sect. 5].

We now consider the question of the existence of arbitrary infinite languages
in a class ofT-codes. We first show that ifT is bounded, then there is an infinite
T-code.

Theorem 9.18.Let T ⊆ {0,1}∗ be a bounded set of trajectories. Then for allΣ
with |Σ| > 1, PT(Σ) contains an infinite language, i.e., T< FH.

Further, there exist uncountably many unbounded trajectoriesT such that
PT(Σ) contains infinite–even infiniteregular–languages. Infinitely many of these
are unbounded regular sets of trajectories.

Theorem 9.19.Let T ⊆ {0,1}∗ be a set of trajectories such that there exists n≥ 0
such that T⊆ 0≤n1(0+ 1)∗. Then for allΣ with |Σ| > 1, PT(Σ) contains an infinite
regular language.

We now turn to defining setsT of trajectories such that allT-codes are finite.
The following proof is generalized from the caseH = (0 + 1)∗ found in, e.g.,
Lothaire [74] or Conway [10, pp. 63–64].

Lemma 9.20. Let n,m ≥ 1 be such that m| n. Let Tn,m = (0n + 1m)∗0≤n−1. Then
Tn,m ∈ FH.

As another class of examples, Ehrenfeuchtet al.[29, p. 317] note that{1n,0}∗ ∈
FH for all n ≥ 1. Ilie [38, Sect. 7.7] also gives a class of partial orders which we
may phrase in terms of sets of trajectories. In particular, define the set of functions

G = {g : N→ N : g(0) = 0 and 1≤ g(n) ≤ n for all n ≥ 1}.
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Then for allg ∈ G, we define

Tg = {1
∗

m∏
k=1

(0ik1∗) : ik ≥ 0 ∀1 ≤ k ≤ m; m= g(
m∑

k=1

ik)}.

We denote theupper limit of a sequence{sn}n≥1 by limn→∞sn. We have the
following result [38, Thm. 7.7.8]:

Theorem 9.21.Let g∈ G. Then Tg ∈ FH ⇐⇒ limn→∞
n

g(n) < ∞.

However, a complete characterization is still open:

Open Problem 9.22.Give necessary and sufficient language-theoretic conditions
on a set of trajectories T so that T∈ FH.

We now turn to the complexity ofT-convex languages:

Theorem 9.23.Let C be a cone. Let T∈ F(po)
H be an element ofC. Then every

T-convex language is an element ofC ∧ co-C.

Corollary 9.24. Let T ∈  (resp.,) be such that T∈ F(po)
H . If L is a T-convex

language, then L∈  (resp.,).

Corollary 9.24 was known for the case ofH = (0 + 1)∗ and L ∈ , see
Thierrin [92, Cor. to Prop. 3].

9.4 Codes defined by Multiple Sets of Trajectories

When studyingT-codes, we note that ifT1,T2 ⊆ {0,1}∗ are sets of trajectories,
there is not necessarily a set of trajectoriesT such thatωT = ωT1 ∩ ωT2, i.e., such
thatxωT y ⇐⇒ (xωT1 y)∧ (xωT2 y). For instance, forP = 0∗1∗ andS = 1∗0∗, the
relationωP ∩ ωS is given by≤d, wherex ≤d y if and only if there existu, v ∈ Σ∗

such thaty = xu= vx. This relation cannot be represented by a set of trajectories.
For a discussion of≤d, see Shyr [88, Ch. 8].

In fact, there exist many natural classes of languages studied in connection to
the theory of codes which are notT-codes. Classes and their associated binary
relations studied by Day and Shyr [13], Fanet al. [30], Ito et al. [39], Long [71],
Long et al. [73, 72], Shyr [88], Yu [95] and the author [18] are instead defined
by a binary relation dependent on multiple sets of trajectories. The author and
K. Salomaa [27] have studied the properties of classes of languages defined by
multiple sets of trajectories.
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Let T ⊆ 2{0,1}
∗

. We call such a set of sets of trajectoriesT a hyperset of
trajectories; such a hyperset of trajectories is always assumed to be a finite set of
sets of trajectories. DefineωT as

xωT y ⇐⇒
∧
T∈T

xωT y.

That is,xωT y if and only if xωT y for all T ∈ T.
The classP(∧)

T (Σ) is defined as follows: for all non-empty languagesL ⊆ Σ+,
L ∈ P(∧)

T (Σ) if and only if L is an anti-chain underωT. That is, for allx, y ∈ L, if
xωT y, thenx = y.

The definition ofP(∧)
T (Σ) is motivated by the interest in the classP(∧)

Tps
(Σ) for

Tps = {0∗1∗,1∗0∗}. Note thatxωTps y, i.e., x ≤d y, implies thatx is both a prefix
and a suffix of y. We refer the reader to Jürgensen and Konstantinidis [46, pp.
550–551] for references and a discussion ofP(∧)

Tps
(Σ).

We also define a second class of languages, indexed by an integerm, which is
considered in conjunction withP(∧)

T (Σ) for particularT. For allm≥ 0, letP(m)
T (Σ)

be defined as follows: for all non-empty languagesL ⊆ Σ+, L ∈ P(m)
T (Σ) if and

only if for all L′ ⊆ L with |L′| ≤ m, L′ ∈ ∪T∈TPT(Σ).
The following hypersets of trajectories have been studied in connection with

the associated classP(m)
T (Σ):

(i) Tps = {0∗1∗,0∗1∗}. The classP(m)
Tps

(Σ) is known as the class ofm-prefix-suffix
codes(or m-ps-codes). See Itoet al. [39] for details;

(ii) T io = {0∗1∗0∗,1∗0∗1∗} [73, 18]. The classP(m)
T io

(Σ) is known as the class of
m-infix-outfix codes;

(iii) Tk−io = {(1∗0∗)k1∗, (0∗1∗)k0∗} andTk−ps = {(0∗1∗)k, (1∗0∗)k} for k ≥ 1. The
classP(m)

Tk−io
(Σ) (resp.,P(m)

Tk−ps
(Σ)) is known as the class ofm-k-infix-outfix

codes(resp.,m-k-prefix-suffix codes). For results on these classes, see Long
et al. [72, Sect. 4] or Long [71, Sect. 2.3])

The following lemma [27] states thatP(∧)
T (Σ) andP(2)

T (Σ) always coincide:

Lemma 9.25.LetT ⊆ 2{0,1}
∗

be a hyperset of trajectories. Then

P
(∧)
T (Σ) = P(2)

T (Σ).

Lemma 9.25 was previously observed for, e.g., the caseTps = {0∗1∗,1∗0∗}, see
Ito et al.[39]. The following equations detail the hierarchies induced by varyingm
in P(m)

T (Σ), and their collapse. These equations, which hold for allT ⊆ 2{0,1}
∗

, can
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be proven using dependency theory [46] (in the following,|T| is the cardinality of
T as a subset of 2{0,1}

∗

):

P
(n)
T (Σ) ⊇ P

(n+1)
T (Σ) ∀n ≥ 0; (6)

P
(2|T|)
T (Σ) = P

(2|T|+i)
T (Σ) =

⋃
T∈T

PT(Σ) ∀i ≥ 0. (7)

See, e.g., Itoet al. [39, Cor. 3.2] for (7) in the particular case ofTps = {0∗1∗,1∗0∗}.
The positive decidability of membership inP(∧)

Tps
(Σ) for regular languages (see

Ito et al.[39] or Jürgensenet al.[47]) relies intrinsically on the nature of the mem-
bers ofTps. The corresponding positive decidability problem forT io also relies on
the nature of the sets of trajectories involved [18]. Kariet al. [51, Thm. 4.7] have
resolved the decidability of a somewhat similar decision problem for two sets of
trajectories in their framework ofbond-free property(see Section 10). However,
their approach is not applicable to our formalism. We recall a particular case of
their result, translated into our framework:

Theorem 9.26.Let T = {T1,T2} be a hyperset of trajectories where Ti ∈  for
i = 1,2. Given a regular language R⊆ Σ∗, we can determine whether there exist
w1,w2 ∈ R, and w∈ Σ+ such that wi , w and wi ωTi w for i = 1,2.

However, the following surprising undecidability result holds forP(∧)
T (Σ) [27]:

Theorem 9.27.GivenT = {T1,T2}, where Ti ∈ , for i = 1,2 and a regular
language R it is undecidable whether or not R∈ P(∧)

T (Σ).

The following undecidability result also holds [27]:

Theorem 9.28.There exists a fixed hyperset of trajectoriesT = {T1,T2} where
Ti ∈  for i = 1,2, such that the following problem is undecidable: “Given
L ∈ , is L ∈ P(∧)

T (Σ)?”

However, the decidability of membership inP(∧)
T (Σ) for a fixed T remains

open:

Open Problem 9.29.For which hypersets of trajectoriesT ⊆ 2{0,1}
∗

is the follow-
ing problem decidable: “Given L∈ , is L ∈ P(∧)

T (Σ)?”

It is conceivable that the question stated in Open Problem 9.29 could be de-
cidable for all hypersetsT = {T1, . . . ,Tn} whereTi ∈  for 1 ≤ i ≤ n, in
particular, if the alphabetΣ is fixed. If this is the case, by Theorem 9.27, givenT,
the corresponding algorithm cannot be found effectively.

The author and K. Salomaa have also studied the equivalence problem for
hypersets of trajectories. In particular, givenT1,T2 ⊆ 2{0,1}

∗

, we say thatT1 andT2

are∧-equivalent with respect toΣ if P(∧)
T1

(Σ) = P(∧)
T2

(Σ). We simply say thatT1,T2

are∧-equivalent if they are∧-equivalent with respect to every finite alphabetΣ.
We use the notationT1 ≡∧ T2 to indicate thatT1,T2 are∧-equivalent.

30



Open Problem 9.30.GivenT1,T2, each consisting of regular sets of trajectories,
can we determine whetherT1 andT2 are∧-equivalent?

We can restate Open Problem 9.30 as follows:

Open Problem 9.31.For given regular languages T1, · · · ,Tk ⊆ {0,1}∗ and U ⊆
{0,1}∗ is it decidable whether or not there exist an alphabetΣ and x, y ∈ Σ+ such
that for all 1 ≤ i ≤ k, y∈ x Ti Σ

+ but y< x U Σ
+.

This problem seems very challenging. Similarly, we say thatT1,T2 arem-
equivalent with respect toΣ if P(m)

T1
(Σ) = P(m)

T2
(Σ). Again, we say thatT1,T2

arem-equivalent if they arem-equivalent with respect to every finite alphabetΣ.
We use the notationT1 ≡m T2 to indicate thatT1,T2 are m-equivalent. Open
Problems 9.30 and 9.31 also remain open where∧-equivalence is replaced by
m-equivalence.

10 DNA Code-word Design

The design of DNA code-words is a crucial step in employing DNA for computing
purposes. DNA code-words are strands of DNA which allow only desired bonding
to occur; careful consideration must be taken when designing code-words. Kariet
al. [54] have used trajectories to investigate DNA bonding and code-word design.

An involution θ : Σ → Σ is any function such thatθ2 is equal to the identity
mapping. Any involution can be extended to a morphism via the ruleθ(xy) =
θ(x)θ(y) for all x, y ∈ Σ∗, or an antimorphism via the ruleθ(xy) = θ(y)θ(x) for all
x, y ∈ Σ∗.

Kari et al. [54] define the concept of thebond-free propertiesof languages. In
particular, the bond-free property with respect to the sets of trajectoriesTlo,Tup is
given by the following condition (for some involutionθ):

∀w ∈ Σ+, x, y ∈ Σ∗(w Tlo x∩ L , ∅,w Tup y∩ θ(L) , ∅)⇒ xy= ε.

Several previously studied DNA coding-inspired conditions are particular cases
of the bond-free properties for particular pairs of sets of trajectories. This again
demonstrates the power of trajectories–by approaching a problem from a uniform,
trajectory-based viewpoint, many particular cases can be unified and studied sys-
tematically. The following decidability result shows that the bond-free property is
decidable if all languages involved are regular [54]:

Theorem 10.1.Let Tlo,Tup be regular sets of trajectories. Given a regular lan-
guage L, it is decidable in quadratic time whether L satisfies the bond-free prop-
erty with respect to Tlo,Tup.
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11 Contextual Grammars

Contextual grammar with contexts shuffled along trajectories, orCST grammars
are an interesting application of trajectories to the study of the generative capacity
of grammar forms. CST grammars were introduced by Martin-Videet al.[75]. We
recall the definition here: A CST grammar is a 4-tupleG = (Σ, B,C,T ), whereΣ
is an alphabet,B,C ⊆ Σ∗ are finite languages, andT = (Tc)c∈C is a finite family
of sets of trajectories indexed by wordsc from C. The languageB is called the
base ofG andC is called the contexts ofG. Derivations inG are given byx⇒G y
if and only if there existsc ∈ C such thaty ∈ x Tc c. The reflexive, transitive
closure of⇒G is denoted by⇒∗G. The language ofG is the set of all words which
are derivable from a word in the base ofG:

L(G) = {w ∈ Σ∗ : ∃x ∈ B such thatx⇒∗G w}.

Recently, Okhotin and K. Salomaa [80] have investigated uniform CST gram-
mars. A CST grammarG = (Σ, B,C,T ) is said to beuniform if Tc = Tc′ for all
c, c′ ∈ C. In this case, we denote the uniform CST byG = (Σ, B,C,T) for some
T ⊆ Σ∗. Okhotin and K. Salomaa demonstrate several results relating to uniform
CST grammars:

Theorem 11.1. There exists a language L⊆ Σ∗ where |Σ| ≥ 2 that cannot be
generated by any uniform CST grammar.

Theorem 11.1 does not depend in any way on the complexity of the set of
trajectories: the languageL cannot be generated by a uniform CST grammarG
regardless of the complexity ofT. However, Okhotin and K. Salomaa show that
this same languageL can be generated by a non-uniform CSTG = (Σ, B,C,T )
where eachTc ∈ T is a context-sensitive set of trajectories.

Theorem 11.2. Non-uniform CST grammars with context-sensitive sets of tra-
jectories are strictly more powerful than uniform CST grammars with context-
sensitive sets of trajectories.

The following questions remain open [80]:

Open Problem 11.3.Are non-uniform CST grammars with context-free (resp.
regular) sets of trajectories more powerful than uniform CST grammars with
context-free (resp., regular) sets of trajectories?

We also note that Mateescu has also extended the notion of co-operating dis-
tributed grammars (CD grammars) to encompass the notion of trajectories [76].
A CD grammar on trajectoryT is a six-tupleΓ = (V,Σ,S,P0,P1,T) whereV is
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a finite set of non-terminals,Σ is a finite alphabet,S ∈ V is a distinguished start
state,P0,P1 ⊆ V × (V ∪ Σ)∗ are two finite sets of productions, andT ⊆ {0,1}∗ is
the set of trajectories.

Let⇒i denote the relation defined by the CFGΓi = (V,Σ,S,Pi), for i = 0,1.
Then a wordw ∈ Σ∗ is generated byΓ if there existt ∈ T of lengthn andαi ∈

(V ∪ Σ)∗ for 1 ≤ i ≤ n such that ift = t1t2 · · · tn with ti ∈ {0,1} then for all
1 ≤ i ≤ n − 1 αi ⇒ti αi+1, with S = α1 andw = αn. The usual notion of a CD
grammar corresponds toT = 0∗1∗. The notion of CD grammars on trajectories
is also generalized to grammars withn sets of productionsP0,P1, . . . ,Pn−1, and a
set of trajectoriesT ⊆ {0, . . . ,n− 1}∗.

12 Conclusion

The notion of trajectories can seem deceptively simple: languages are used to
parameterize language operations. This provides a basis for uniform results on
language operations. However, in the ten years since their introduction, trajecto-
ries have seen much use beyond modelling language operations; we have surveyed
these areas. The use of trajectories in many, varied areas is a testament to the el-
egance of the concept. We are confident that interest in trajectories will remain
high as researchers continue to find new applications for the concept.

Acknowledgments

I am grateful to Kai Salomaa for reading a version of this survey.

References

[1] A, V.,  P, G. On a family of linear grammars.Inf. and Cont. 7(1964),
283–291.

[2] A, V.,  P, G. Generalizations of regular events.Inf. and Cont. 8
(1965), 56–63.
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