
Journal of Automata, Languages and Combinatorics 7 (2002) 4, –
c© Otto-von-Guericke-Universität Magdeburg

STATE COMPLEXITY OF PROPORTIONAL REMOVALS
1

Michael Domaratzki

School of Computing, Queen’s University

Kingston, ON K7L 3N6 Canada

e-mail: domaratz@cs.queensu.ca

ABSTRACT

We examine the state complexity of proportional removals such as 1

2
(L). For 1

2
(L),

we show a bound which is tight in the case that L is a unary language, and an nearly
optimal bound for arbitrary languages. We also compute the average state complexity
for 1

2
(L) if L is unary. We study other proportional removals and give bounds for

certain reset automata.

Keywords: State complexity, reset automata, proportional removals

1. Introduction and Motivation

The state complexity of a regular language L is the number of states in the minimal
deterministic finite automaton (DFA) recognizing L. There has been much interest
lately in the study of state complexity of operations which preserve regularity (e. g.
[2, 9]). These papers are generally interested in proving upper bounds on the state
complexity of operations on regular languages, including the particular case of unary
regular languages. In this paper, we examine proportional removals, that is, languages
of the form

{x ∈ Σ∗ | ∃y ∈ Σ∗ such that r(|x|, |y|) ∧ xy ∈ L} (1)

for some language L ⊆ Σ∗, and a binary relation r. There is a complete characteri-
zation, due to Seiferas and McNaughton [6], of the relations r which ensure that (1)
is a regular language, if L is regular. We obtain bounds for the equality relation, for
both unary and general languages, and show this bound is tight for unary languages.

2. Notation and Definitions

We assume the reader is familiar with basic concepts in automata theory and formal
languages. For any unfamiliar terminology, see Hopcroft and Ullman [4] or S. Yu [8].

1Full version of a submission presented at the Third International Workshop on Descriptional

Complexity of Automata, Grammars and Related Structures (Vienna, Austria, July 20 – 22, 2001).

2 M. Domaratzki

A deterministic finite automaton (DFA) is a quintuple M = (Q, Σ, δ, q0, F) where
Q is the set of states, Σ is the alphabet, and δ is the transition function δ : Q×Σ → Q.
The start state is q0 ∈ Q and the final states are F ⊆ Q. We extend δ to a function
from Q×Σ∗ to Q in the obvious way. A DFA is said to be complete if δ(q, a) is defined
for all q ∈ Q, a ∈ Σ. In what follows, we will assume that all DFAs are complete. A
DFA is said to be initially connected if, for all q ∈ Q, there exists a word w ∈ Σ∗ such
that δ(q0, w) = q, that is, every state q is reachable from the initial state by reading
some word w.

A string w ∈ Σ∗ is accepted by a DFA M = (Q, Σ, δ, q0, F) if δ(q0, w) ∈ F . Define
the language accepted by a DFA M by L(M) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. A DFA
M = (Q, Σ, δ, q0, F) is minimal for a regular language L if L(M) = L and for all DFAs
M ′ = (Q′, Σ, δ′, q′0, F

′) with L(M ′) = L, we have |Q| ≤ |Q′|. The state complexity of
a regular language L is denoted by sc(L) and is defined as the number of states in
the minimal DFA for L.

If Σ is an alphabet, we use the notation Σk = {x ∈ Σ∗ | |x| = k}.

We adopt the notation of Seiferas and McNaughton [6]: For any binary relation
r ⊆ N × N and any language L ⊆ Σ∗, let the language P (r, L) be defined as

P (r, L) = {x ∈ Σ∗ | ∃y ∈ Σ∗ such that r(|x|, |y|) ∧ xy ∈ L}.

For any set A ⊆ N, we say that A is ultimately periodic (u.p.) if there exist integers
n0 ≥ 0 and p > 0 such that for all n > n0, n ∈ A ⇐⇒ n + p ∈ A. If n0 and p are
chosen to be minimal among all integers satisfying those respective conditions, we say
that n0 is the preperiod of A, and p is the period of A. For any relation r ⊆ N × N

and any set A, define

r−1(A) = {i | ∃j ∈ A such that r(i, j)}.

We call r u.p.-preserving if A u.p. implies r−1(A) u.p. The following is the com-
plete characterization of relations r which preserve regularity, due to Seiferas and
McNaughton [6].

Theorem 1 For all languages L, the following are equivalent

1. L regular ⇒ P (r, L) is regular, and

2. r is u.p.-preserving. 2

We say that a DFA M = (Q, Σ, δ, q0, F) is unary if |Σ| = 1. We observe that for
any unary DFA, there is exactly one transition going out of any state. Thus, the
transition diagram of the DFA consists of a chain of states (the ‘tail’) and a simple
loop of states (the ‘loop’).

Let H(n) be defined by H(n) = e
√

n log n. This function is useful in the following
result of Chrobak [3].

Theorem 2 For any n state unary NFA M there is a unary DFA M ′ with a ‘tail’ of

O(n2) states and a ‘loop’ of size at most O(H(n)) such that L(M) = L(M ′). 2

State Complexity of Proportional Removals 3

3. State Complexity of 1

2
(L)

We begin with a particular removal, namely that given by the binary relation r =
{(n, n) | n ≥ 0}. We denote this special case by 1

2 (L):

1

2
(L) = {x ∈ Σ∗ | ∃y ∈ Σ∗ with |x| = |y| and xy ∈ L}.

Our main theorem is a general bound on the state complexity of 1
2 (L).

Theorem 3 Let L be a regular language with sc(L) = n. Then sc(1
2 (L)) =

O(nH(n)).

Proof. Let L be recognized by the DFA M with M = (Q, Σ, δ, q0, F) and Q =
{q0, q1, . . . , qn−1}. Define the NFA

M ′ = (Q ∪ {q′0}, {a}, δ
′, q′0, F

′)

with

δ′(q′0, ǫ) = {q | q ∈ F}

and

δ′(q, a) = {q′ | ∃b ∈ Σ such that δ(q′, b) = q}

for each q ∈ Q. For each i ≥ 0, we define sets Qi ⊆ Q as follows: Q0 = F and for
i > 0, Qi = δ′(q′0, a

i). Note that δ′(Qi, a) = Qi+1 and

Qj = {q | ∃w ∈ Σ∗ such that |w| = j and δ(q, w) ∈ F}. (2)

We may now define F ′ as

F ′ = Q2n .

We choose Q2n since there are 2n subsets of Q. Thus, if we consider the sequence
{Qi}i≥0, there are indices 0 ≤ j < k ≤ 2n − 1 such that Qj = Qk. Thus all
possible distinct sets Qi will be encountered by the time we consider F ′. Thus, in
determinizing M ′, all distinct subsets of Q which are states in M ′ will appear as a
state in the deterministic equivalent.

By Theorem 2, there is a unary DFA M ′′ = (Q′′, {a}, δ′′, q′′0 , F ′′) such that L(M ′′) =
L(M ′) and M ′′ has at most O(H(n)) states. Further, for all i ≥ 0 we can associate
Qi with the state q ∈ Q′′ such that δ′′(q′′0 , ai) = q. Thus, we number the states in Q′′

so that δ′′(q′′0 , ai) = qi is associated with Qi. Let M ′′ have r states in its tail and s
states in its loop.

We now define a DFA Mh, which we claim will recognize 1
2 (L). Let Mh =

(Qh, Σ, δh, q0,h, Fh), with

Qh = Q × {i | 0 ≤ i < r + s},

δh((q, i), b) =

{

(δ(q, b), i + 1), if i < r + s − 1;

(δ(q, b), r), if i = r + s − 1;

4 M. Domaratzki

and

q0,h = (q0, 0).

Thus we compute the action of M in the first component, and implement a periodic
counter in the second component, with preperiod r and period s. Finally,

Fh = {(qi, j) | qi ∈ Qj}.

We show that L(Mh) = 1
2 (L). Let x ∈ L(Mh), so that δh(q0,h, x) = (qi, j) ∈ F ′. Then

qi ∈ Qj = Q|x|. Thus, by (2), there exists z ∈ Σ∗ with |z| = |x| and δ(qi, z) ∈ F .

Thus, since δ(q0, x) = qi, we may conclude that x ∈ 1
2 (L), since δ(q0, xz) ∈ F .

Conversely, let x ∈ 1
2 (L). Then xy ∈ L for some y with |x| = |y|. Let δ(q0, x) = qj

for some j. So δ(qj , y) ∈ F . Thus qj ∈ Q|y| = Q|x|. Let i be the integer with
i ≡ |x| (mod r + s) with 0 ≤ i < r + s. Then qj ∈ Qi by our construction, and by
definition of δh, δh(q0,h, x) = (qj , i). Further, (qj , i) ∈ Fh since qj ∈ Qi, so x ∈ L(Mh).

We conclude that sc(1
2 (L)) ≤ |Q′| = n(r + s) = O(nH(n)). 2

Note: Theorem 3 was known to S. Yu, but was not published.

Let L be a unary language, with sc(L) = p + r, where p is the length of the ‘tail’
of the unary DFA recognizing L, and r is the length of the ‘loop’. Then we note that
M ′′ in the proof of Theorem 3 actually has tail of size p and loop of size r, since
we can take M ′′ = M . So, simulating the proof of Theorem 3, we get the following
corollary.

Corollary 4 Let L be a unary language with sc(L) = n. Then sc(1
2 (L)) ≤ n. 2

We can define a unary language Ln for each n ≥ 1 to show that this bound is tight.

Lemma 5 For all n ≥ 1 there exists a unary language Ln such that sc(Ln) =
sc(1

2 (Ln)) = n. 2

It is easy to see that for n ≥ 3, L = an−2(an)∗ will work for n odd, and L = (an−1)+

will work for n even. For n = 2, we can take L = a+ and for n = 1, we can take
L = a∗. Note that for both these languages, we have sc(L) = L.

Theorem 6 For infinitely many k, there exists a language Lk such that sc(Lk) =
O(n) but sc(1

2 (Lk)) > cH(n) for some constant c.

Proof. Let pi denote the ith prime with p1 = 2. We define ni =
∑i

j=2 pj and

mi =
∏i

j=2 pj. Then we will need the following known number-theoretic estimates.

Lemma 7 [1, p. 29] For all i ≥ 1, ni ∈ Θ((i log i)2

2 log i
). 2

Lemma 8 [1, Cor. 8.2.7] For all i ≥ 1, log(mi) = i log i(1 + o(1)). 2

State Complexity of Proportional Removals 5

Thus, we may conclude that mi = e
√

ni log ni(1+o(1)) for all i. Let k ≥ 3. We write
p for pk in what follows. Define the language Lk as follows.

Lk =

k−1
⋃

i=2

(0p)∗0p−pi10pi−1(0pi)∗.

We show that for all k ≥ 3, sc(Lk) = nk + 1 while sc(1
2 (Lk)) ≥ mk. This will show

the result.
To show that sc(Lk) = nk + 1 we will construct a DFA Mk with nk + 1 states

such that L(Mk) = Lk. This will establish sc(Lk) ≤ nk + 1, which will actu-
ally suffice for our argument (though it not hard to establish that Mk is minimal
and thus sc(Lk) = nk + 1). For each prime pi with i ≥ 2, let Ci be a cycle of
pi states, {qi,0, qi,1, . . . , qi,pi−1}, with transitions on 0 as follows: δ(qi,j , 0) = qi,j+1

where j + 1 is taken modulo pi. For each k define Qk =
⋃k

i=2 Ci. Finally, let Mk =
(Qk ∪ {qd}, {0, 1}, δ, qk,0, F) where δ includes all the cycle transitions on 0 defined
above, as well as the transitions δ(qk,p−pi

, 1) = qi,0 for all 2 ≤ i < k. The remaining
undefined transitions go to qd. Finally,

F = {qi,pi−1 | 2 ≤ i < k}.

We can verify that L(Mk) = Lk. Figure 1 shows a DFA M4 recognizing L4.

0

0

1

1

0

0
0

0

0

0

0

0

0

0

0

0

0

q

q

q q

q

4,3 4,4

2,2

3,0

q
4,0

4,6

q4,5

qq

4,2

4,1
q

q

3,1
q

3,2
q

3,3
q

3,4 q
2,0

2,1

Figure 1: A DFA M4 recognizing L4. Unspecified transitions go to a dead state, not shown.

6 M. Domaratzki

To show that sc(1
2 (Lk)) ≥ mk, we use the Myhill-Nerode Theorem. Consider the

strings wi = 0i for 0 ≤ i < mk.
The following lemma will be useful.

Lemma 9 For each prime pi with 2 ≤ i < k, the following hold:

(a) For each integer r ≥ 0 there is exactly one s with 0 ≤ s < pi such that

0pr+p−pi10s ∈
1

2
(Lk).

(b) For any integer s with 0 ≤ s < pi, the condition

0pr1+p−pi10s ∈
1

2
(Lk) ⇐⇒ 0pr2+p−pi10s ∈

1

2
(Lk)

holds if and only if r1 ≡ r2 (mod pi).

Proof. Fix pi. Let r be any integer. Then 0pr+p−pi10s ∈ 1
2 (Lk) iff there is some

integer t ≥ 0 such that 0pr+p−pi10s0pi−1−s0pit ∈ Lk and pr + p − pi + 1 + s =
pi − 1 − s + pit, or, equivalently iff there is some t ≥ 0 such that

pi(t + 2) = pr + p + 2 + 2s.

This implies

p + 2 + 2s + rp ≡ 0 (mod pi).

Now, we prove the converse also holds. Assume that

p + 2 + 2s + rp ≡ 0 (mod pi). (3)

Note that p > 0 and s ≥ 0. Thus p + 2 + 2s + rp ≥ 0. Then (3) implies that there
exists some t′ ≥ 0 such that

p + 2 + 2s + rp = t′pi.

But now

t′pi = p(r + 1) + 2 + 2s

≥ p(r + 1)

> pi(r + 1).

Since r ≥ 0, pi(r + 1) ≥ pi. Thus t′ > 1. Let t = t′ − 2 ≥ 0. Then we have

p + 2 + 2s + rp = (t + 2)pi.

Thus we have established the following:

p + 2 + 2s + rp ≡ 0 (mod pi) ⇐⇒ 0pr+p−pi10s ∈
1

2
(Lk) (4)

This establishes part (a) of the lemma: Choose s such that

p + 2 + 2s + rp ≡ 0 (mod pi)

State Complexity of Proportional Removals 7

and 0 ≤ s < pi. This s exists since the integers modulo pi form a field, and pi 6= 2.
Further, we can establish the statement (b) of the lemma using (4). Fix an integer

s with 0 ≤ s < pi. Then

r1 ≡ r2 (mod pi)

⇐⇒ (p + 2 + 2s ≡ −r1p (mod pi) ⇐⇒ p + 2 + 2s ≡ −r2p (mod pi))

⇐⇒
(

0pr1+p−pi10s ∈
1

2
(Lk) ⇐⇒ 0pr2+p−pi10s ∈

1

2
(Lk)

)

. 2

We may now prove that each of the strings 0i for 0 ≤ i < mk are in different
equivalence classes of the Myhill-Nerode relation. Consider two strings wi = 0i,
wj = 0j for some 0 ≤ i < j < mk. Write

i = pi′ + i′′

j = pj′ + j′′

where 0 ≤ i′, j′ < mk−1 = mk/p and 0 ≤ i′′, j′′ < p. We have two cases:

Case (a): i′′ 6= j′′. We will construct a string zi,j ∈ 0∗10∗ such that exactly one of
wizi,j and wjzi,j is a member of 1

2 (Lk). We have three subcases.

Case (a-i): There exist primes pα and pβ (0 ≤ α, β < k) such that i′′ = p−pα and

j′′ = p − pβ. Since i′′ 6= j′′, α 6= β. Assume without loss of generality that pα < pβ.
According to Lemma 9, let s1 be the unique integer (depending on i′) with

0 ≤ s1 < pα and

wi10s1 = 0i10s1 = 0pi′+p−pα10s1 ∈
1

2
(Lk).

Similarly, let s2 be the unique integer depending on j′ with 0 ≤ s2 < pβ and

wj10s2 = 0j10s2 = 0pj′+p−pβ 10s2 ∈
1

2
(Lk).

If s1 6= s2 we are done, since then we can choose zi,j = 10s1 . Since pα < pβ and thus
s1 < pα < pβ, s1 is not equivalent to s2 modulo pβ . Thus wjzi,j = wj10s1 6∈ 1

2 (Lk).
If s1 = s2, then we choose zi,j = 10s1+pα . It is simple to show that

wi10s1+pα = 0pi′+p−pα10s1+pα ∈
1

2
(Lk).

while since pα < pβ ,

wj10s1+pα = 0pj′+p−pβ 10s1+pα 6∈
1

2
(Lk).

Case (a-ii): There exists a prime pα such that i′′ = p − pα but for all primes pℓ

with 2 ≤ ℓ < k, j′′ 6= p− pℓ. The same case with the roles of i′′ and j′′ reversed holds
similarly to what follows.

In this case, we choose the unique si with 0 ≤ si < pα such that wi10si =
0pi′+p−pα10si ∈ 1

2 (Lk). Since j′′ 6= p − pℓ for all primes pℓ in the range 2 ≤ ℓ < k,
wj10s 6∈ 1

2 (Lk) for any s, since we cannot complete wj1 with any string of zeroes
to ensure it is in Lk. This completes our case, as we can separate wi and wj with
zi,j = 10si .

8 M. Domaratzki

Case (a-iii): For both i′′ and j′′ there is no prime pℓ with 2 ≤ ℓ < k such that

i′′ = p − pℓ or j′′ = p − pℓ. We can reduce this to case (a-i) or (a-ii): Let r be the
smallest integer such that i′′ + r ≡ −pα (mod p) for some prime pα < p; certainly
r must exist. Then wi0

r and wj0
r must reduce to one of the above cases, since if

we let u be the integer with 0 ≤ u < p such that u ≡ i′′ + r (mod p), then pα

satisfies u = p − pα. Thus, let z′i,j be the string such that wi0
rz′i,j ∈ 1

2 (Lk) and

wj0
rz′i,j 6∈ 1

2 (Lk). Then clearly we may choose zi,j = 0rz′i,j.

Case (b): i′′ = j′′. Then we must have that i′ 6= j′. Since 0 ≤ i′, j′ < mk−1, we must
have that there exists an ℓ with 1 ≤ ℓ < k such that i′ 6≡ j′ (mod pℓ), since if this
were not the case then i′ ≡ j′ (mod pℓ) for all 1 ≤ ℓ < k and so i′ ≡ j′ (mod mk−1),
which would imply i′ = j′, as we have noted that 0 ≤ i′, j′ < mk−1. Thus, let ℓ be
chosen so that i′ 6≡ j′ (mod pℓ).

Let ji be chosen such that 0 < ji < pℓ and

0pi′+p−pℓ10ji ∈
1

2
(Lk).

This is possible by Lemma 9. Also by Lemma 9, we know that since i′ 6≡ j′ (mod pℓ),

0pj′+p−pℓ10ji 6∈
1

2
(Lk).

Thus, if i′′(= j′′) ≤ p − pℓ, we may choose zi,j = 0(p−pℓ)−i′′10ji , as wizi,j ∈ 1
2 (Lk),

while wjzi,j 6∈ 1
2 (Lk). If p > i′′(= j′′) > p−pℓ, then note that i′+1 6≡ j′+1 (mod pℓ).

Thus, in a similar argument to that presented above, we may choose j′i such that

0p(i′+1)+p−pℓ10j′i ∈
1

2
(Lk).

and

0p(j′+1)+p−pℓ10j′i 6∈
1

2
(Lk).

Then we choose zi,j = 0p−i′′0p−pℓ10j′i . Thus wizi,j = 0p(i′+1)+p−pℓ10j′i ∈ 1
2 (Lk) and

wjzi,j = 0p(j′+1)+p−pℓ10j′i 6∈ 1
2 (Lk). This completes the proof. 2

4. State Complexity of Polynomial Removals

Let f ∈ Z[x] be a polynomial with integral coefficients. If f(n) ∈ N for all n ∈ N,
we denote this by f(N) ⊂ N. Recall that a function f is strictly monotonic if i > j
implies f(i) > f(j). Our main theorem is:

Theorem 10 Let f ∈ Z[x] be a strictly monotonic polynomial such that f(N) ⊂ N.

Then the relation rf = {(n, f(n)) | n ≥ 0} preserves regularity, and

sc(P (rf , L)) ≤ O(sc(L)H(sc(L))).

The following is an easy fact about polynomials with integer coefficients:

State Complexity of Proportional Removals 9

Fact 11 Let f ∈ Z[x] with f(N) ⊆ f(N). Then for all n1, n2 ∈ N with n2 > 0,
f(n1) ≡ f(n1 + n2) (mod n2). 2

Note that the previous fact is not true if we replace f in the statement by f ∈ Q[x]

and f integer-valued (i. e., f(k) ∈ Z for all k ∈ Z). For example, let f(n) = n(n−1)
2 .

Then f is integer valued, and f(4 + 2) = 15 ≡ 3 (mod 4) but f(2) = 1 ≡ 1 (mod 4).
We have the following definitions, which will allow us to characterize polynomials

which preserve regularity. They are from Seiferas and McNaughton [6] and Siefkes
[7]: A function f : N → N is u.p.-reducible if, for every modulus m, there is a
period rm such that the following congruence holds for all but finitely many n ∈ N:
f(n) ≡ f(n + rm) (mod m). A function f : N → N is essentially increasing if, for
every k, f(n) ≥ k for all but finitely many n ∈ N.

Theorem 12 [6, Thm. 3, p. 151] If f is essentially increasing and u.p.-reducible,

then f is u.p.-preserving. 2

The following corollary is immediate, considering Fact 11.

Corollary 13 If f ∈ Z[x] with f(N) ⊂ N and f strictly monotonic, then f is

u.p.-preserving. 2

The following fact is simply a consequence of defining the period of a set as the
smallest of all possible periods.

Fact 14 Let A be a u.p. set with period p, and preperiod n0. Let p′ be any integer

satisfying

a + p′ ∈ A ⇐⇒ a ∈ A

for all a ≥ n0. Then p|p′. 2

Fact 15 Let f ∈ Z[x] be a strictly monotonic polynomial with f(N) ⊂ N. Then

f(n) ≥ n for all n ∈ N. 2

We are ready for the proof of Theorem 10:

Proof. Let A be the ultimately periodic set constructed in the proof of Theorem 3
by the unary portion of the DFA for 1

2 (L).

By Corollary 13, f is u.p.-preserving. Thus r−1
f (A) is u.p. Let pf be the period of

r−1
f (A). We will show that if p is the period of A, then pf |p, and thus pf ≤ p. This

will give the result.
Let i ∈ r−1

f (A). Assume that i ≥ n0, where n0 is the preperiod of A. By definition

of r−1
f (A), there is a ji ∈ A such that ji = f(i) ≥ i.

By Fact 11, f(i) ≡ f(i + p) (mod p). Stated another way, this tells us that

f(i + p) = f(i) + ℓp.

for some integer ℓ. Since f(i + p) > f(i), we can further deduce that ℓ > 0. Thus,
f(i + p) ∈ A, because p is the period of A. We may conclude that i + p ∈ r−1

f (A) by

10 M. Domaratzki

definition, and so i ∈ r−1
f (A) ⇒ i + p ∈ r−1

f (A). We can similarly prove the reverse
implication. Thus, by Fact 14, pf |p. Since we assume that both p and pf are positive
integers, this gives us that pf ≤ p.

Thus, we can construct a DFA for P (rf , L) in the same manner of Theorem 3,
replacing a loop of period p by a loop of period pf . This gives the result. 2

5. Reset Automata

A reset automaton is a DFA M = (Q, Σ, δ, q0, F) such that there exists a word w ∈ Σ∗

and a state qs ∈ Q such that for all q ∈ Q, δ(q, w) = qs. We call any such w a reset
word, and qs the reset state.

We consider the state complexity of proportional removals on reset automata with
accepting reset state as an demonstration of a class of automata for which the state
complexity of proportional removals is exponentially more efficient than the general
case.

Recall our definition of the sets Qi:

Qi = {q ∈ Q | ∃w ∈ Σi with δ(q, w) ∈ F}. (5)

We will relate these Qi to reset automata. First we note that if the Qi eventually
reach the entire set Q of states, then the state complexity of 1

2 (L) is low.

Lemma 16 Let M = (Q, Σ, δ, q0, F) be a DFA. If Qr = Q for some r then

Qr+1 = Q. 2

Lemma 17 If Qℓ = Q for some ℓ ≥ 0, then sc(1
2 (L)) ≤ O(sc(L)3).

Proof. Let sc(L) = n. Let M ′′ be the deterministic unary component of the con-
struction given in Theorem 3. Then M ′′ has a tail of r = O(n2) states, and a loop of
length s = O(H(n)). Consider t = r+s. By Lemma 16, since Qℓ = Q for some ℓ ≥ 0,
we have Qt = Q. By another application of Lemma 16, Qs = Q, since Qt+1 = Qs

by definition of the unary component given in Theorem 3, and the loop structure of
the unary DFA. Then we can conclude that Qi = Q for all s ≤ i ≤ t = r + s. Thus,
we may replace all s such states with a single state st which loops to itself on all
transitions. This reduces the number of states in M ′′ to t and thus an upper bound
on the number of states in a DFA recognizing 1

2 (L) is n · O(n2) = O(n3). 2

The following lemma follows directly from the definition of reset automata.

Lemma 18 Let M = (Q, Σ, δ, q0, F) be a reset automaton. If qs ∈ F then Qr = Q
for some r. 2

Thus, combining Lemmas 18 and 17, we have the following theorem.

Theorem 19 Let M = (Q, Σ, δ, q0, F) be a reset automaton with reset state qs ∈ F ,

and let L = L(M). Let n = |Q|. Then sc(1
2 (L)) ≤ O(n3). 2

State Complexity of Proportional Removals 11

6. Average state complexity of 1

2
(L)

Recently, Nicaud [5] has examined the average state complexity of operations on
regular languages. This turns out to be much harder than worst-case complexity, as
it is currently unknown how many non-isomorphic automata there are over a two-
letter alphabet. However, for unary automata, this is known. In this section, we
follow the work of Nicaud and give an average state complexity for the 1

2 (·) operation
on unary languages.

For any unary DFA M , let loop(M) denote the automaton formed by removing
the tail of M . An n-loop is a unary automaton which is a loop of n states. Let Un

denote the set of complete, deterministic and initially connected unary DFAs with n
states. We may enumerate such unary automata using the following notation. Let
M(n, k, F) denote the automaton ({0, . . . , n − 1}, {a}, 0, δ, F) with δ(i, a) = i + 1 if
0 ≤ i < n − 1 and δ(n − 1, a) = k.

Theorem 20 The average complexity of the 1
2 (·) operation on an n-state unary au-

tomaton is equal to (5
8n + c)(1 + λ(n)) for some function λ satisfying λ(n) → 0 as

n → ∞ and some constant c.

This tells us that in the average case we differ from the worst case by only a constant
factor, but we are closer to the intuition that 1

2 (L) should only take half as many states
as L. We first state a few preliminary lemmas which are direct interpretations of the
action of 1

2 (·) on unary languages.

Lemma 21 Let M = (Q, {a}, δ, q0, F) be the minimal unary DFA for L, and suppose

that M has k ≥ 0 states in its tail. Then any automaton recognizing 1
2 (L) needs at

most ⌈k
2⌉ states in its tail. 2

Lemma 22 Let M = (Q, {a}, δ, q0, F) be the minimal unary DFA for L, and suppose

that M has r ≥ 0 states in its loop. Then any automaton recognizing 1
2 (L) needs at

most r states in its loop if r is odd, and r/2 states in its loop if r is even. 2

These lemmas are easily proved by direct observation. For each n-loop L, define
k(L) as

k(L) = min{k | δ(F, ak) = F}

k(L) exists since n is an integer satisfying the above condition. Consider the following
lemma of Nicaud [5, Lemma 2].

Lemma 23 For each n-loop L, the minimal automaton of L has k(L) states and

k(L)|n. In particular, an n-loop is minimal iff k(L) = n. 2

From this we may observe the following lemma.

Lemma 24 Let M be an automaton with n = |loop(M)|. If n is even (resp. odd)
and loop(M) is minimal, then for all M ′ with L(M ′) = 1

2 (L(M)), |loop(M ′)| ≥ n
2

(resp. ≥ n). 2

12 M. Domaratzki

We also have the following lemma due to Nicaud [5, Thm. 1].

Lemma 25 There are exactly L(n) =
∑

d|n µ(n/d)2d minimal n-loops. Further,

there exists a function λ(n) such that L(n) = 2n(1+λ(n)) and λ(n) → 0 as n → ∞.2

We may now prove the statement of Theorem 20:

Proof. We are interested in examining

1

|Un|

∑

M∈Un

sc
(1

2
(L(M))

)

. (6)

By [5] or by direct observation, we know |Un| = n2n. We first show an upper bound
for (6). Let [n] denote the set {0, 1, . . . , n − 1}. Consider that

∑

M∈Un

sc(
1

2
(L(M))) =

n−1
∑

k=0

∑

F⊆[n]

sc
(1

2
(L(M(n, k, F)))

)

=

n−1
∑

k=0
k−n odd

∑

F⊆[n]

sc
(1

2
(L(M(n, k, F)))

)

+

n−1
∑

k=0
k−n even

∑

F⊆[n]

sc
(1

2
(L(M(n, k, F)))

)

≤
n−1
∑

k=0
k−n odd

∑

F⊆[n]

(

n −
k

2
+ 1

)

+
n−1
∑

k=0
k−n even

∑

F⊆[n]

(n

2
+ 1

)

.

Since there are 2n possible choices for F ⊆ [n], we may replace this accordingly:

∑

M∈Un

sc
(1

2
(L(M))

)

≤

n−1
∑

k=0
k−n odd

(

n −
k

2
+ 1

)

2n +

n−1
∑

k=0
k−n even

(n

2
+ 1

)

2n.

Thus we have that

1

|Un|

∑

M∈Un

sc
(1

2
(L(M))

)

≤
3

4
+

5

8
n

which establishes the upper bound. For the lower bound, we follow the idea of Nicaud
[5]. First, we will construct a set G(ℓ) of ℓ-loops which are minimal. Then we note
that by Lemma 24

∑

M∈Un

sc
(1

2
(L(M))

)

≥

n
∑

ℓ=1

∑

L∈G(ℓ)

∑

M∈Un

loop(M)=L

h(ℓ),

State Complexity of Proportional Removals 13

where h : N → N is the function defined by h(r) = r if r is odd and h(r) = r/2 if r
is even. Further, for every ℓ-loop L with 1 ≤ ℓ ≤ n, there are exactly 2n−ℓ n-state
automata whose loop is L. Thus

∑

M∈Un

sc
(1

2
(L(M))

)

≥ 2n

n
∑

ℓ=1

|G(ℓ)|2−ℓh(ℓ).

Thus, we must simply construct a set G(ℓ) which is large enough so that

2n

n
∑

ℓ=1

|G(ℓ)|2−ℓh(ℓ) =
(5

8
n2 + cn

)

(1 + λ(n))

for some λ with λ(n) → 0 as n → ∞ and some constant c. But from Lemma 25, we
know that we can choose G(ℓ) to be the set of all minimal ℓ-loops, whereby we will
get |G(ℓ)| = 2ℓ(1 + λ(ℓ)) for a function λ satisfying those constraints. Thus,

2n

n
∑

ℓ=1

|G(ℓ)|2−ℓh(ℓ) = 2n

n
∑

ℓ=1

h(ℓ)(1 + λ(ℓ)).

But we can easily observe that for all n, we get
n

∑

ℓ=1

h(ℓ) =
5

8
n2 + O(n)

This gives the result. 2

7. Conclusions and Further Work

In this paper we have considered the state complexity of the operation 1
2 (·). We have

shown an upper bound of ne
√

n log n for arbitrary languages, and a lower bound which
is matching up to a factor of n. In the unary case, the matching upper and lower
bounds are n. In section 5, we have given a condition on automata such that the
upper bound for 1

2 (·) is O(n3).
In section 4, we considered the state complexity of polynomial removals. However,

as we noted above, the result of Seiferas and McNaughton [6] gives a much broader
classification of relations which preserve regularity. It remains open whether or not
one can give an expression for the worst case state complexity of a relation {(n, f(n)) |
n ≥ 0} in terms of an arbitrary function f .

Câmpeanu et al. have considered the state complexity of operations on finite lan-
guages [2]. The state complexity of proportional removals on finite languages remains
open.

Acknowledgements

Thanks to Jeff Shallit for proposing this problem and for carefully reading this paper.
The author would also like to thank both the referees of DCAGRS 2001 and the
referees of J.ALC for their many helpful suggestions which improved the presentation
of the results in this paper.

14 M. Domaratzki

References

[1] E. Bach, J. Shallit, Algorithmic Number Theory, Volume I: Efficient Algo-

rithms. MIT Press, Cambridge, Mass., 1996.

[2] C. Câmpeanu, K. Culik II, K. Salomaa, S. Yu, State complexity of basic op-
erations on finite languages. In: Proc. 4rd Workshop on Implementing Automata,

1999. LNCS 2214, Springer-Verlag, 2001, 60–70.

[3] M. Chrobak, Finite automata and unary languages. Theoretical Computer Sci-

ence 47 (1986), 149–158.

[4] J. E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, Reading, Mass., 1979.

[5] C. Nicaud, Average state complexity of operations on unary automata. In:
M. Kutylowski, L. Pacholski, T. Wierzbicki (eds.), Proc. 24th Int. Symp.

on Mathematical Foundations of Computer Science, 1999. LNCS 1672, Springer-
Verlag, 1999, 230–240.

[6] J. I. Seiferas, R. McNaughton, Regularity-preserving relations. Theoretical

Computer Science 2 (1976) 147–154.

[7] D. Siefkes, Decidable extensions of monadic second order successor arith-
metic. In: Automatentheorie und formale Sprachen. Bibliographisches Institut,
Mannheim, 1970, 441–472.

[8] S. Yu, Regular languages. In: G. Rozenberg, A. Salomaa (eds.), Handbook

of Formal Language, Vol. 1. Springer-Verlag, Berlin, 1997, 46–110.

[9] S. Yu, Q. Zhuang, K. Salomaa, The state complexities of some basic opera-
tions on regular languages. Theoretical Computer Science 125 (1994), 315–328.

(Received: November 6, 2001; revised: September 12, 2002)

