
Chapter 2

Preliminary Definitions

We now review some notions that will be used in this thesis, as well as the main definition of shuffle

on trajectories, which will be used throughout this thesis. Readers familiar with the concepts below

should feel free to consult this chapter only as necessary.

2.1 Formal Language Theory

For additional background in formal languages and automata theory, please see Yu [201] or Hopcroft

and Ullman [68]. Let 6 be a finite set of symbols, called letters. The set 6 is an alphabet. Then 6∗

is the set of all finite sequences of letters from 6, which are called words. The empty word ǫ is the

empty sequence of letters. Given two words w = w1w2 · · ·wn and x = x1 · · · xm where xi , w j ∈ 6

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, their concatenation wx is the word w1w2 · · ·wnx1x2 · · · xm . The

length of a word w = w1w2 · · ·wn ∈ 6∗, where wi ∈ 6, is n, and is denoted |w|. Note that ǫ is the

unique word of length 0. A language L is any subset of 6∗. If w ∈ 6∗, we will denote the language

consisting only of w by w instead of {w}. For a language L ⊆ 6∗, by |L| we denote its cardinality

as a set.

Let L ⊆ 6∗ be a language. By L, we mean 6∗ − L , the complement of L . Let L1, L2 be

languages. By L1L2 we mean the concatenation of L1 and L2, given by L1L2 = {xy : x ∈ L1, y ∈

8

CHAPTER 2. PRELIMINARY DEFINITIONS 9

L2}. If L is a language and n ≥ 0, then the set Ln is defined recursively as follows: L0 = {ǫ},

Ln+1 = Ln L for all n ≥ 0. We denote L∗ = ∪n≥0Ln and L+ = ∪n≥1Ln . If L1, . . . , Lk ⊆ 6∗ are

languages, we use the notation
∏k

i=1 L i = L1L2 · · · Lk . If L is a language and k is a natural number,

then we denote L≤k = ∪k
i=0 L i .

Given two languages L1, L2 ⊆ 6∗, the left quotient of L2 by L1 is denoted L1 \ L2 and is given

by

L1 \ L2 = {x ∈ 6∗ : ∃y ∈ L1 such that yx ∈ L2}.

Similarly, the right quotient (or simply quotient, if there is no confusion) of L2 by L1 is denoted

L2/L1 and is given by

L2/L1 = {x ∈ 6∗ : ∃y ∈ L1 such that xy ∈ L2}.

The shuffle operation is defined as follows: if x, y ∈ 6∗ are words, then the shuffle of x and y,

denoted x y is defined by

x y = {
n

∏

i=1

xi yi : x =
n

∏

i=1

xi , y =
n

∏

i=1

yi ; xi , yi ∈ 6∗ ∀1 ≤ i ≤ n}.

If L1, L2 are languages, then L1 L2 is given by L1 L2 = {x y : x ∈ L1, y ∈ L2}.

We denote by N the set of natural numbers: N = {0, 1, 2, . . . }. If we wish to refer to the positive

numbers, we will use the notation N+ = {1, 2, . . . , }. Let I ⊆ N. If there exist n0, p ∈ N, p > 0,

such that for all x ≥ n0, x ∈ I ⇐⇒ x + p ∈ I , then we say that I is ultimately periodic (u.p.).

For n, m ∈ N, we use the notation m|n to denote that m is a divisor of n, that is, there exists k ∈ N

such that n = km.

Given a set X , we use the notation 2X = {Y : Y ⊆ X}. Given alphabets 6,1, a morphism

is a function h : 6∗ → 1∗ satisfying h(xy) = h(x)h(y) for all x, y ∈ 6∗. Given a morphism h :

6∗→ 1∗ and a language L ⊆ 6∗, then the image of L under h is given by h(L) = {h(x) : x ∈ L},

while if L ′ ⊆ 1∗, the inverse image of L ′ under h is defined by h−1(L ′) = {x ∈ 6∗ : h(x) ∈ L ′}.

A substitution is a function h : 6∗ → 21∗ satisfying h(xy) = h(x)h(y) for all x, y ∈ 6∗. Given

a substitution h : 6∗ → 21∗ and a language L ⊆ 6∗, then the image of L under h is given

CHAPTER 2. PRELIMINARY DEFINITIONS 10

by h(L) = ∪x∈Lh(x). We say that a substitution is regular if h(a) ∈ REG for all a ∈ 6 (see

Section 2.2 below for the definitions of the regular languages and REG).

Given a word w ∈ 6∗ and a ∈ 6, |w|a is the number of occurrences of a in w. For instance, if

w = abbaa, then |w|a = 3 and |w|b = 2. If w ∈ 6∗ is a word, alph(w) = {a ∈ 6 : |w|a > 0} . If

L ⊆ 6∗, alph(L) = ∪w∈Lalph(w).

For an alphabet 6 = {a1, a2, . . . , an} with a specified order a1 < a2 < · · · < an , the Parikh

mapping is given by 9 : 6∗→ Nn, as follows:

9(w) = (|w|ai
)n

i=1.

It is extended to 9 : 26∗ → 2Nn

as expected. For instance, if 6 = {a, b} with a < b, and

x = abbaa, then 9(x) = (2, 3). If L = {anbnan : n ≥ 0}, then 9(L) = {(2n, n) : n ≥ 0}.

The inverse mapping is given by 9−1 : 2Nn → 26∗ is given by 9−1(S) = {u ∈ 6∗ : 9(u) ∈ S}

for all S ⊆ Nn. A language L ⊆ 6∗ is said to be commutative if L = 9−1(9(L)). Thus, L is

commutative if rearranging the letters from any word in L always yields a word in L . For instance,

the language L = {aab, aba, baa, ab, ba} is commutative. For any language L , com(L) is the

commutative closure of L , i.e., com(L) = {v ∈ 6∗ : ∃u ∈ L such that 9(u) = 9(v)}. For

instance, com({abc}) = {abc, acb, bac, bca, cab, cba}.

We say that a language L ⊆ 6∗ is bounded if there exist w1, w2, . . . , wk ∈ 6∗ such that

L ⊆ w∗1w
∗
2 · · ·w∗k . If L is not bounded we say that it is unbounded. The languages L1 = {anb2ncn :

n ≥ 0} and L2 = (ab)∗ + (cd)∗ are bounded, as L1 ⊆ a∗b∗c∗ and L2 ⊆ (ab)∗(cd)∗. The language

L3 = {a, b}∗ is known to be unbounded.

2.2 Regular Languages

We now describe finite automata and regular languages. A deterministic finite automaton (DFA) is a

five-tuple M = (Q,6, δ, q0, F) where Q is a finite set of states, 6 is an alphabet, δ : Q ×6→ Q

is a transition function, q0 ∈ Q is a distinguished start state, and F ⊆ Q is the set of final states. We

CHAPTER 2. PRELIMINARY DEFINITIONS 11

extend δ to Q ×6∗ in the usual way: if q ∈ Q and w ∈ 6∗, then define δ(q, w) = q if w = ǫ and

δ(q, w) = δ(δ(q, w′), a)

if w = w′a for some w′ ∈ 6∗ and a ∈ 6.

A word w ∈ 6∗ is accepted by M if δ(q0, w) ∈ F . The language accepted by M , denoted

L(M), is the set of all words accepted by M . A language is called regular if it is accepted by some

DFA.

A nondeterministic finite automaton (NFA) is a five-tuple M = (Q,6, δ, q0, F) where Q,6, q0

and F are as in the deterministic case, while δ : Q × (6 ∪ {ǫ}) → 2Q is the nondeterministic

transition function. Again, δ is extended to Q × 6∗ in the natural way. To define the action of δ

formally, we require a few notions. First define a binary relation Rǫ ⊆ Q2. The relation is given by

qi Rǫq j if q j ∈ δ(qi , ǫ). Let R∗ǫ be the reflexive, transitive closure of Rǫ . Define cl : Q → 2Q by

cl(q) = {q ′ : q R∗ǫ q ′}.

Thus, cl(q) is the set of all states that are reachable from q by following some path of ǫ-transitions

in M . Further, let cl(S) = ∪q∈Scl(q) for all S ⊆ Q. We may now define δ as a function from

Q ×6∗ to 2Q : if q ∈ Q then δ(q, ǫ) = cl(q) and for all a ∈ 6 and w ∈ 6∗,

δ(q, wa) = cl

⋃

q ′∈δ(q,w)

δ(q ′, a)

 .

A word w is accepted by M if δ(q0, w)∩ F 6= ∅. It is known that the language accepted by an NFA

is regular. We denote the class of regular languages by REG.

For a DFA or NFA M , we say that M is complete if δ is a complete function, i.e., if δ(q, a) is

defined for all q ∈ Q and a ∈ 6.

We can draw a DFA or NFA as a directed graph using the following conventions:

(a) states are drawn as vertices, labelled with their name;

(b) transitions are drawn as directed edges, labelled with the letter of the transition. Thus, if

δ(q1, a) = q2, there is a directed edge (q1, q2) with label a;

CHAPTER 2. PRELIMINARY DEFINITIONS 12

(c) final states are indicated as vertices with double circles;

(d) the start state is indicated with an unlabelled arrow entering it.

For example, the DFA given in Figure 2.1 has start state 1, final state set {2} and transitions δ(1, b) =

δ(2, b) = 1 and δ(1, a) = δ(2, a) = 2.

1 2 a
a

b

b

Figure 2.1: A DFA, illustrated.

We also introduce the Myhill-Nerode congruence on 6∗. Given a language L ⊆ 6∗, we denote

the Myhill-Nerode congruence with respect to L on 6∗ by ≡L . Given x, y ∈ 6∗, x ≡L y if and

only if, for all z ∈ 6∗,

xz ∈ L ⇐⇒ yz ∈ L .

We note that ≡L is an equivalence relation and that a language L is regular if and only if ≡L has

finite index [68, Thm. 3.9].

Finally, we define regular expressions. Let 6 be an alphabet. A regular expression is a word

over the alphabet {∅, ǫ, (,), ∗,+} ∪6 defined as follows:

(a) the following are regular expressions: ǫ,∅ and a for all a ∈ 6;

(b) if r1, r2 are regular expressions, so are (r1r2) and (r1 + r2);

(c) if r1 is a regular expression, so is (r∗1).

Given a regular expression r , it defines a language L(r) as follows:

(a) L(ǫ) = {ǫ}, L(∅) = ∅ and L(a) = {a};

(b) L((r1 + r2)) = L(r1) ∪ L (r2);

CHAPTER 2. PRELIMINARY DEFINITIONS 13

(c) L((r1r2)) = L(r1)L(r2);

(d) L((r∗1)) = L(r1)
∗.

Parentheses in regular expressions may be omitted, subject to the following precedence rules: ∗

has the highest precedence, then concatenation, then +. It is known that regular expressions define

exactly the regular languages.

2.3 Grammars

We now turn to three classes of languages defined by grammars: context-free languages (CFLs),

linear context-free languages (LCFLs) and context-sensitive languages (CSLs). These classes are

denoted CF, LCF, and CS, respectively. While we describe them formally, it will suffice to note the

following well-known inclusions, all of which are proper:

REG (LCF (CF (CS. (2.1)

For each of CF, LCF, CS, a grammar is a four-tuple G = (V,6, P, S), where V is a finite set

of non-terminals, 6 is a finite alphabet, P ⊆ ((V ∪ 6)∗V (V ∪ 6)∗) × (V ∪ 6)∗ is a finite set of

productions, and S ∈ V is a distinguished start non-terminal. If (α, β) ∈ P , we usually denote this

by α→ β.

Such a grammar is a context-free grammar (CFG) if P ⊆ V × (V ∪ 6)∗, a linear context-free

grammar (LCFG) if P ⊆ V×(6∗V 6∗∪6∗), and a context-sensitive grammar (CSG) if (α, β) ∈ P

implies α = ηAζ and β = ηγ ζ for some η, ζ, γ ∈ (V ∪6)∗, with γ 6= ǫ and A ∈ V .

IF G = (V,6, P, S) is a grammar (CFG, LCFG or CSG), then given two words α, β ∈ (V ∪

6)∗, we denote α ⇒G β if α = α1α2α3, β = α1β2α3 for α1, α2, α3, β2 ∈ (V ∪ 6)∗ and α2 →

β2 ∈ P . Let⇒∗G denote the reflexive, transitive closure of⇒G . Then the language generated by a

grammar G = (V,6, P, S) is given by

L(G) = {x ∈ 6∗ : S ⇒∗G x}.

If a language is generated by a CFG (resp., LCFG, CSG), then it is a CFL (resp., LCFL, CSL).

CHAPTER 2. PRELIMINARY DEFINITIONS 14

2.4 Complexity Theory

We now consider Turing machines. Our presentation is largely based on Hopcroft and Ullman [68,

Ch. 7]. A Turing machine (TM) is a seven-tuple M = (Q,6, Ŵ, δ, q0, B, F) where Q is a finite set

of states, Ŵ is a finite tape alphabet, B ∈ Ŵ is the blank symbol, 6 ⊆ Ŵ − B is the input alphabet,

δ is the transition function given by δ : Q × Ŵ → Q × Ŵ × {L , R}, q0 ∈ Q is the start state, and

F ⊆ Q is the set of final states. This model of TM is deterministic. A nondeterministic variant is

also possible.

Given a TM M , an instantaneous description (ID) of M is a word w1qw2 ∈ Ŵ∗QŴ∗. We

interpret the ID as meaning that the TM is in state q with tape contents w1w2 and the head currently

positioned on the first character of w2. We define a relation⇒M on the set of IDs as follows: given

IDs w1q1w2, u1q2u2,

w1q1w2 ⇒M u1q2u2 ⇐⇒

u1 = w1γ,w2 = βu2, and δ(q1, β) = (q2, γ , R),

or w1 = u1γ,w2 = αw′2, u2 = γβw′2 and δ(q1, α) = (q2, β, L).

Let⇒∗M be the transitive and reflexive closure of⇒M . The language accepted by M , denoted L(M)

is

L(M) = {w ∈ 6∗ : q0w⇒∗M α1qα2 such that q ∈ F, α1, α2 ∈ Ŵ∗}.

Given a language L , if there exists a TM M such that L = L(M), we say that L is recursively

enumerable (r.e.). We denote the set of r.e. languages by RE.

Say that a TM M halts on input x if it eventually reaches an ID which has no next move, i.e.,

the current ID has no successors under⇒M . We may assume without loss of generality that when

a word is accepted by M , M halts. However, if an input word is not accepted, we note that M may

not halt.

If L is accepted by a TM M such that M halts on all inputs, we say that L is recursive. The

set of all recursive languages is denoted by REC. The inclusions (2.1) may be extended as follows

(again, the inclusions below are proper):

CS (REC (RE.

CHAPTER 2. PRELIMINARY DEFINITIONS 15

Nondeterminism does not affect the classes REC and RE.

We now refine the class of languages computed by a Turing machine. Given a TM M , we

say that M uses space c on input w if M scans at most c tape cells during the computation on w,

i.e., max{|v| : q0w ⇒∗M vqu, w, v, u ∈ Ŵ∗} ≤ c. Let n be the length of the input to a TM

(i.e., the length of the word w such that q0w is the initial ID of the TM). If a deterministic (resp.,

nondeterministic) TM uses at most O(s(n)) space on any input of length n, then we say that the

language L(M) is in DSPACE(s) (resp., NSPACE(s)). It is known that CS = NSPACE(n), i.e., the

context-sensitive languages correspond exactly to the class of languages accepted in linear space by

a nondeterministic TM. We similarly define the classes DTIME(f) and NTIME(f).

The following classes are also useful to us:

P =
⋃

k≥1

DTIME(nk);

NP =
⋃

k≥1

NTIME(nk).

Given a function g : 6∗ → 6∗, we say that g is computable in DSPACE(s) (resp., NSPACE(s),

DTIME(f), NTIME(f)) if there exists a TM M operating in DSPACE(s) (resp., NSPACE(s), DTIME(f),

NTIME(f)) such that for all w ∈ 6∗, q0w⇒∗M u1qu2 with q ∈ F and u1u2 = g(w). Further, g(w)

is the only such tape contents which results from halting on input w.

A function f : N → N is said to be space-constructible if there exists a TM M such that

L(M) ∈ NSPACE(f) and, for all n ≥ 0, there exists some x ∈ 6n such that M uses exactly f (|x|)

space on input x .

Given two languages L ′, L , we say that L ′ is reducible to L if there exists a function g : 6∗→

6∗ such that x ∈ L ′ if and only if g(x) ∈ L . If g is computable in DSPACE(log), then we say that

L ′ is log-space reducible to L .

Let C be a class of languages. The language L is C-hard if L ′ is reducible to L for all L ′ ∈ C.

The language L is C-complete if L ∈ C and L is C-hard. For both P and NP, completeness can be

defined with respect to log-space reductions.

CHAPTER 2. PRELIMINARY DEFINITIONS 16

2.5 Decidability

In this section, we briefly describe the concept of decidability and undecidability, and recall the Post

correspondence problem (PCP) and several meta-theorems for proving undecidability.

We will often consider problems when discussing undecidability. A problem P is simply a

predicate, in the following sense: “given an input x , does P(x) hold?” For example, if P is the

problem of primality, and x is an integer (encoded over our alphabet 6), P(x) holds if and only

if x is a prime number. Thus, if x is suitably encoded over an alphabet 6, P naturally defines a

language over 6∗, namely, those x such that P(x) holds. Let L P be this corresponding language

(we sometimes simply identify P with the corresponding language, and do not use the notation L P).

We say that a problem P is decidable if L P ∈ REC. Otherwise, P is said to be undecidable.

The Post correspondence problem (PCP) is a basic undecidable problem which is often useful

in many language-theoretic situations. An instance of PCP is

M = (u1, u2, . . . , un; v1, v2, . . . , vn)

where n ≥ 1 and ui , vi ∈ 6∗ for 1 ≤ i ≤ n. A solution to M is a list i1, i2, . . . , im such that m ≥ 1,

1 ≤ i j ≤ n for all 1 ≤ j ≤ m and
m

∏

j=1

ui j
=

m
∏

j=1

vi j
.

The following result states that finding solutions to a PCP instance is undecidable [68, Thm. 8.8]:

Theorem 2.5.1 Given an alphabet 6 and a PCP instance M = (u1, . . . , un; v1, . . . , vn), where

n ≥ 1 ui , vi ∈ 6∗ for 1 ≤ i ≤ n, it is undecidable whether there is a solution for M.

We will also use the following undecidability result:

Theorem 2.5.2 Let 6 be an alphabet with |6| ≥ 2 and G = (V,6, P, S) be an LCFG. It is

undecidable whether L(G) = 6∗.

In what follows, a predicate on 26∗ is simply a class of languages satisfying some property.

By a predicate on a class of languages C, we simply mean the restriction of the predicate from 26∗

CHAPTER 2. PRELIMINARY DEFINITIONS 17

to C. If P is a predicate and a language L ⊆ 6∗ satisfies P , we will denote this fact by P(L).

For example, if PR is the predicate defined by the regular languages, then PR(L) implies that L is

regular. A predicate P on C is non-trivial if P /∈ {∅, C}.

Meta-theorems are powerful tools for proving undecidability. In this thesis, we will appeal to

the following meta-theorem, due to Hunt and Rosenkrantz [70, Thm. 2.10], which will allow us to

prove undecidability results for LCF.

Theorem 2.5.3 Let P be a predicate on LCF over 6∗ such that P(6∗) holds and either of the sets

{L ′ : L ′ = x \ L , x ∈ 6+, L ∈ LCF and P(L)}

or

{L ′ : L ′ = L/x, x ∈ 6+, L ∈ LCF and P(L)}

is a proper subset of LCF. Then given an LCFG G, it is undecidable whether P(L(G)) holds.

The following is a corollary of Theorem 2.5.3. It is also a particular case of Greibach’s Theorem

(see, e.g., Hopcroft and Ullman [68, Thm. 8.14]).

Corollary 2.5.4 Let P be a non-trivial predicate on LCF over 6∗ such that P(6∗) holds and P is

preserved under quotient. Then given an LCFG G, it is undecidable whether P(L(G)) holds.

2.6 Families of Languages

We will require some definitions and notations relating to classes of languages. Let C1, C2 be classes

of languages. Then let

C1 ∧ C2 = {L1 ∩ L2 : L i ∈ Ci , i = 1, 2};

co-C1 = {L : L ∈ C1}.

Our notation ∧ comes from Ginsburg [51], and should not be confused with C1 ∩ C2 = {L : L ∈

C1 and L ∈ C2}.

CHAPTER 2. PRELIMINARY DEFINITIONS 18

Recall that a cone (or full trio) is a class of languages closed under morphism, inverse morphism

and intersection with regular languages [148, Sect. 3].

We will also use the notion of immune languages. Let C be a class of languages. A language L

is said to be C-immune if L is infinite and for all infinite languages L ′ ⊆ L , L ′ /∈ C. Immunity was

introduced for classes of languages by Flajolet and Steyaert [49]; we also refer the interested reader

to Balcázar et al. [14] for an introduction to immunity as it relates to complexity theory.

2.7 Shuffle on Trajectories

The shuffle on trajectories operation is a method for specifying the ways in which two input words

may be merged, while preserving the order of symbols in each word, to form a result. Each trajectory

t ∈ {0, 1}∗ with |t|0 = n and |t|1 = m specifies the manner in which we can form the shuffle on

trajectories of two words of length n (as the left input word) and m (as the right input word). The

word resulting from the shuffle along t will have a letter from the left input word in position i if the

i-th symbol of t is 0, and a letter from the right input word in position i if the i-th symbol of t is 1.

We now give the definition of shuffle on trajectories, originally due to Mateescu et al. [147].

Shuffle on trajectories is defined by first defining the shuffle of two words x and y over an alphabet

6 on a trajectory t , a word over {0, 1}. We denote the shuffle of x and y on trajectory t by x t y.

If x = ax ′, y = by′ (with a, b ∈ 6) and t = et ′ (with e ∈ {0, 1}), then

x et ′ y =

a(x ′ t ′ by′) if e = 0;

b(ax ′ t ′ y
′) if e = 1.

If x = ax ′ (a ∈ 6), y = ǫ and t = et ′ (e ∈ {0, 1}), then

x et ′ ǫ =

a(x ′ t ′ ǫ) if e = 0;

∅ otherwise.

If x = ǫ, y = by′ (b ∈ 6) and t = et ′ (e ∈ {0, 1}), then

ǫ et ′ y =

b(ǫ t ′ y
′) if e = 1;

∅ otherwise.

CHAPTER 2. PRELIMINARY DEFINITIONS 19

We let x ǫ y = ∅ if {x, y} 6= {ǫ}. Finally, if x = y = ǫ, then ǫ t ǫ = ǫ if t = ǫ and ∅ otherwise.

It is not difficult to see that if t =
∏n

i=1 0 ji 1ki for some n ≥ 0 and ji, ki ≥ 0 for all 1 ≤ i ≤ n,

then we have that

x t y ={
n

∏

i=1

xi yi : x =
n

∏

i=1

xi , y =
n

∏

i=1

yi ,

with |xi | = ji , |yi | = ki for all 1 ≤ i ≤ n}

if |x| = |t|0 and |y| = |t|1 and x t y = ∅ if |x| 6= |t|0 or |y| 6= |t|1.

We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃

t∈T

x t y.

Further, for L1, L2 ⊆ 6∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

2.7.1 Examples

We now consider some examples of shuffle on trajectories. Let x = abc and y = de. If t = 00011,

then x t y = abcde. If t = 00111, then x t y = ∅. Thus, we can see that if T = 0∗1∗, we have

that

L1 T L2 = L1L2,

i.e., T = 0∗1∗ gives the concatenation operation.

If x = abc, y = de, and t = 01001, then x t y = adbce. If t = 01010, then x t y =

adbec. Thus, we have that if T = (0+ 1)∗, then

L1 T L2 = L1 L2,

i.e., T = {0, 1}∗ gives the shuffle operation. This is the least restrictive set of trajectories.

If T = 0∗1∗0∗, then T is the insertion operation← (see, e.g, Kari [106]) which is defined by

x ← y = {x1 yx2 : x1, x2 ∈ 6∗, x1x2 = x} for all x, y ∈ 6∗. Some other examples of operations

defined by shuffle on trajectories are given in Figure 2.2 in the following section.

CHAPTER 2. PRELIMINARY DEFINITIONS 20

2.7.2 Algebraic Properties

We will require some algebraic properties of shuffle on trajectories throughout this thesis. These

properties have been studied by Mateescu et al. [147].

Let T ⊆ {0, 1}∗. We say that T is complete if, for all x, y ∈ 6∗, x T y 6= ∅, i.e., there exists

some z ∈ 6∗ such that z ∈ x T y. The set T is said to be deterministic if, for all x, y ∈ 6∗,

|x T y| ≤ 1. Say that T is associative (resp., commutative) if the corresponding operation T is

associative (resp., commutative), i.e., x T (y T z) = (x T y) T z for all x, y, z ∈ 6∗ (resp.,

x T y = y T x for all x, y ∈ 6∗). For characterizations and decidability of these properties,

we refer the reader to Mateescu et al. [147, Sect. 4]. We summarize several examples of shuffle on

trajectories and their algebraic properties in Figure 2.2.

Name T Complete? Determ.? Assoc.? Commutative?

Concatenation 0∗1∗
√ √ √ ×

Insertion 0∗1∗0∗
√ × × ×

Shuffle (0+ 1)∗
√ × √ √

Perfect Shuffle (01)∗ × √ × ×
Balanced Insertion {0i 12 j 0i : i, j ≥ 0} × √ √ ×

Bi-catenation 0∗1∗ + 1∗0∗
√ × × √

Figure 2.2: Some examples of shuffle on trajectories and their algebraic properties.

