
Chapter 3

Related Work

3.1 Introduction

In this chapter, we review the literature relevant to this thesis. Our focus is on word operations, such

as shuffle, insertion, and quotient, which are specific instances of the formalisms we present in this

thesis. We focus primarily on research which is either of theoretical interest, or relates directly to

the topics we investigate later in the thesis.

3.2 Shuffle

Shuffle is one of the most studied operations on formal languages which is not among the defining

operations of regular expressions. Ginsburg and Spanier introduce a definition of shuffle in 1965

[53] in their study of generalized sequential machines. This is the first reference to shuffle as an

operation on languages we have been able to find. The natural application of shuffle as a model

for interleaving processes yielded much research into shuffle and related operations. In an early

paper on shuffle, Ogden et al. show that there exist DCFLs L1, L2 such that L1 L2 is NP-complete

[156]. Hausler and Zeiger [63] give an interesting representation theorem for r.e. languages using

the homomorphic image of the intersection of a regular language and the shuffle of two fixed Dyck

21

CHAPTER 3. RELATED WORK 22

languages.

We now consider three specific areas of research on arbitrary shuffle: iterated shuffle, shuffle

decompositions and grammar formalisms involving shuffle.

3.2.1 Iteration

The iteration of shuffle has received much attention in the literature over the last thirty years. This

operation is defined much in the same way as Kleene closure: given a language L its shuffle closure

is defined as

()∗(L) =
⋃

i≥0

()i(L),

where ()0(L) = {ǫ}, ()i+1(L) = ()i (L) L for all i ≥ 0. Several notations are used in the

literature for denoting ()∗(L), including L⊗ and L†.

Much of the interest in shuffle closure comes from the theory of concurrency and formal soft-

ware engineering research communities. For example, Shaw, in describing the shuffle closure oper-

ation in the context of flow expressions, notes that shuffle closure is a “concurrent analogue of [the

Kleene closure operation]”, which “is useful where there may be a variable number of interleaves

of some flow [of control], for example in describing systems in which processes or resources may

be dynamically created and destroyed. [182, p. 243]”. Riddle also performed early research into

software engineering using the shuffle closure operation [170]. While the shuffle closure operation

is fundamental to this research, various authors (including both Shaw and Riddle) also incorpo-

rate synchronization methods for research into software engineering. More recently, Igarashi and

Kobayashi [71] cite shuffle expressions as a valid manner in specifying trace sets for use in their

formal analysis of resource usage.

Other research into iterated shuffle has proceeded from a purely theoretical standpoint. Warmuth

and Haussler [198] show the following elegant result:

Theorem 3.2.1 Let 6 = {a, b, c}. Given words u, v ∈ 6∗, it is NP-complete to determine whether

u ∈ ()∗(v).

CHAPTER 3. RELATED WORK 23

Imreh et al. [74] have written on the shuffle closure of commutative regular languages. In

particular, they give two characterizations of when the shuffle closure of a commutative regular

language is again regular.

3.2.2 Decomposition

The shuffle decomposition problem has received much attention recently. For shuffle on trajectories,

the problem was introduced by Mateescu et al. [147], who asked, given a language L , is it possible to

write L = L1 T L2 for some L1, L2, T , where the complexity of L1, L2, T are “somehow smaller

[147, p. 38]” than the complexity of L (e.g., each are situated lower in the Chomsky hierarchy

than L). They called such a simpler expression for L a parallelization of L , and noted that some

languages, such as the non-context free languages L = {ww : w ∈ 6∗} and L = {anbn2
: n ≥ 0}

do not have parallelizations into context-free languages.

Câmpeanu et al. [21] have studied the problem of deciding whether a regular language R has

a parallelization R = L1 L2, i.e., the case when T = (0 + 1)∗. If such a parallelization exists,

and L1, L2 6= {ǫ}, such an expression is called a (non-trivial) shuffle decomposition. Despite much

effort, Câmpeanu et al. [21] were not able to resolve whether it is decidable, given a regular language

R, whether R has a non-trivial shuffle decomposition. For certain subclasses of regular languages,

Câmpeanu et al. were able to positively decide whether a language from that subclass has a non-

trivial shuffle decomposition.

Ito [75] has also examined the shuffle decomposition problem for regular languages. Let I(n,6)

be the class of all regular languages over 6 which are accepted by some DFA with at most n states.

The main result of Ito [75] is the following:

Theorem 3.2.2 Given a regular language R ⊆ 6∗ and n ∈ N, it is decidable whether there exist

L1, L2 with L1 ∈ I(n,6) and L2 6= {ǫ} such that R = L1 L2.

The general problem of determining whether a regular language has a non-trivial shuffle decom-

position is still open. We will examine the shuffle decomposition problem with respect to a set of

CHAPTER 3. RELATED WORK 24

trajectories T (i.e., deciding whether there exists L1, L2 such that R = L1 T L2) in Chapter 7.

Iwama [84] has considered shuffle decomposition in a different sense. Say that languages

(L1, . . . , Ln) are uniquely shuffle-decomposable if each word in z ∈ L1 L2 · · · Ln can be

represented uniquely as z ∈ x1 x2 · · · xn with xi ∈ L i for 1 ≤ i ≤ n. Given regular

languages (L1, . . . , Ln), Iwama gives an algorithm to decide whether they are uniquely shuffle-

decomposable.

3.2.3 Grammar Formalisms

In the theory of concurrency and software engineering, several models have been proposed which

adjoin grammars and regular expressions with shuffle and iterated shuffle.

Several papers have considered the class of languages defined by regular expressions adjoined

with shuffle and iterated shuffle. This class of languages, under various names, has been extensively

studied, and we can only give a list of the work done so far, including that of Gisher [55], Araki et

al. [8], Araki and Tokura [7], Jȩdrezejowicz [87, 88, 89, 90, 91, 92], Janzten [86], Jȩdrzejowicz and

Szipietowski [93], and many others.

Guo et al. [56] have introduced synchronization expressions, which are regular expressions

augmented with a restricted form of shuffle. Synchronization expressions were developed as a

model for specifying the synchronization which occurs between processes in a parallel system. The

notion of synchronization expressions has been further examined by Salomaa and Yu [177, 178] and

Clerbout et al. [26, 27, 172].

The concept of shuffle-star height (analogous to the usual (Kleene-) star height) has been im-

plicitly studied by Gisher [55] and subsequently by Jȩdrezejowicz [88, 89, 90], where it was first

shown that there exist languages of shuffle-star height n for all n ≥ 0, over an alphabet of size 3n

[89]. Jȩdrezejowicz [90] later extended this to show that there exist languages of shuffle-star height

n for all n ≥ 0 over an alphabet of size seven. Jȩdrezejowicz leaves open the problem of whether

the alphabet size seven is optimal, as well as the problem of characterizing all morphisms which

preserve shuffle-star height [90, Rem. 5.2].

CHAPTER 3. RELATED WORK 25

Araki and Tokura [7] investigate decision problems for regular expressions augmented with

shuffle and shuffle-closure, and show, e.g., that the membership and emptiness problems for these

expressions are decidable, while their equivalence and containment problems are undecidable. Fur-

ther decidability problems are studied by Jȩdrezojowicz [91].

Shoudai [183] describes a P-complete language using shuffle expressions.

3.3 Insertion and Deletion Operations

We now consider results on insertion and deletion operations. The insertion operations we consider

are those modelled by shuffle on trajectories, and thus have special relevance to the work in this

thesis. We do not survey research on insertion operations which are not modelled by shuffle on tra-

jectories, e.g., the work of Kari [107] on controlled insertion and deletion. The deletion operations

we will survey are primarily those which can be modelled by deletion on trajectories, which we

introduce in Chapter 5.

3.3.1 Insertion Operations

Besides shuffle and concatenation, the (sequential) insertion operation is perhaps the most natural

operation which inserts all of the symbols of one word into another. It is defined as follows:

u← v = {u1vu2 : u1u2 = u}.

We noted in Section 2.7.1 that insertion is a particular case of shuffle on trajectories. Kari has stud-

ied the properties of insertion [104, 106], including the solutions of language equations involving

insertion. We generalize these results in Chapter 7.

The bi-catenation operation is defined as follows: u ⊙ v = {uv, vu}. The bi-catenation oper-

ation was defined by Shyr and Yu [187], and further studied by Hsiao et al. as a particular case

of their general study of binary word operations [69]. Shyr and Yu are motivated by considering

bi-catenation as a restriction of shuffle, and related code-theoretic properties.

CHAPTER 3. RELATED WORK 26

Kari and Thierrin [114, 115] have defined the operation of k-insertion as follows: given k ≥ 0,

the k-insertion of u, v ∈ 6∗ is defined as

u ←k v = {u1vu2 : u = u1u2, |u2| ≤ k}.

We note that k-insertion can be modelled by shuffle on trajectories, and also that

u← v =
⋃

k≥0

u←k v.

The k-insertion operation is motivated by Kari and Thierrin as follows:

Even though insertion generalizes catenation, catenation cannot be obtained as a partic-

ular case of it, as we cannot force the insertion to take place at the end of the word. The

k-insertion provides the control needed to overcome this drawback. The k-insertion is

thus more nondeterministic than catenation, but more restrictive than insertion. [115,

p. 479]

Kari and Thierrin [114] study the k-insertion (and corresponding k-deletion) closure of a lan-

guage. They also define the notion of k-prefix codes [114], which are a particular case of T -codes

introduced in Chapter 6. However, we note that k-prefix codes are one of the few cases of research

into codes where a novel definition is based primarily on a new language operation, rather than a

new binary relation on words.

Berard [16] has introduced both the literal and initial literal shuffle operations. The motivation

is modelling concurrent processes; literal shuffle models synchronized transmission where “each

transmitter emits, in turn, one elementary signal [16, p. 51]”. Both literal and initial literal shuffle

are particular cases of shuffle on trajectories, and are given by T = (0∗ + 1∗)(01)∗(0∗ + 1∗) and

T = (01)∗(0∗ + 1∗), respectively. Literal shuffle has been further studied by Tanaka [191] on the

closure of the class of prefix codes under literal shuffle, and by Ito and Tanaka [81] who consider

the density of initial literal shuffles. Moriya and Yamasaki [154] have studied literal shuffle on

ω-words.

CHAPTER 3. RELATED WORK 27

3.3.2 Deletion Operations

Many deletion operations which are specific instances of the deletion along trajectories model we

suggest in Chapter 5 have been considered in the literature. This shows the usefulness of the deletion

along trajectories model.

The most studied deletion operations are the left- and right-quotient operations. The first formal

study of quotient appears to be by Ginsburg and Spanier [52], who show three fundamental results

on right-quotient: that the right-quotient of a CFL by a regular language (or of a regular language by

a CFL) is a CFL, that CF is not closed under quotient, and given two CFLs L1, L2, it is undecidable

whether L1/L2 is a CFL. Ginsburg and Spanier attribute the notion of quotient to the “SHARE

Theory of Information Handling Committee [52, p.487]”.

Latteux et al. [130] show that a restricted class of CFLs, called the one-counter languages,

are closed under quotient, and that every recursively enumerable language can be expressed as the

quotient of two LCFLs.

Another well-studied deletion operation is known as scattered deletion. Given two words x, y ∈

6∗, their scattered deletion, denoted x ; y, is given by

x ; y =

{

n+1
∏

i=1

xi : x = (

n
∏

i=1

xi yi)xn+1, y =

n
∏

i=1

yi with xi , y j ∈ 6∗

}

.

We extend ; to languages as expected. The scattered deletion operation, a natural operation on

words, has a long history in the literature. For instance, the scattered deletion operation is an implicit

operation in the theory of flow expressions (see, e.g., Shaw [182]).

Kari (as Sântean [179]) appears to be the first author to have formally studied the scattered

deletion operation (under the name literal subtraction) and established several closure properties.

This investigation is continued by Kari in a subsequent paper [105].

Also investigated by Kari [105] are several other deletion operations, some of which are mod-

elled by our framework (e.g., sequential deletion), and others which are not (e.g., controlled dele-

tion, parallel deletions and deletion with permuted components). Closure properties of each of these

operations are investigated.

CHAPTER 3. RELATED WORK 28

The sequential deletion operation is given by x → y = {x1x2 : x1 yx2 = x}. Kari et al. [111]

explore results on the cardinality of w → L , for w ∈ 6∗ and L ⊆ 6∗, as well as the decidability

of the following problem: given a finite set F , do there exist w ∈ 6∗ and L ⊆ 6∗ such that

F = w→ L?

Language equations involving deletion have been studied by Kari [106]. Recently, Kari and

Sosı́k have continued the investigation of language equations involving scattered deletion, quotient

and sequential deletion [113].

Meduna [153] has introduced an interesting deletion operation, called middle quotient, defined

as follows:

L1|L2 = {w ∈ 6∗ : ∃v ∈ L2 such that vwv ∈ L1}.

The main motivation for introducing this operation is that for any recursively enumerable language

L , there exist linear CFLs L1, L2 such that L = L1|L2 [153].

A popular topic in the theory of formal languages is proportional removals. Given a binary

relation r ⊆ N
2, the proportional removal of a language L ⊆ 6∗ with respect to r is the language

P(r, L) = {x ∈ 6∗ : ∃y ∈ 6∗ such that xy ∈ L and (|x|, |y|) ∈ r}.

Proportional removals have been studied by Stearns and Hartmanis [189], Amar and Putzolu [4, 5]

Seiferas and McNaughton [180], Kosaraju [120, 121, 122], Kozen [123], Zhang [205], the author

[35], and others. We study proportional removals extensively in Chapter 5.

Berstel et al. [17] consider filtering, which is a deletion operation specified by a sequence of

natural numbers s ⊆ N. We will see that filtering is a specific case of deletion along trajectories.

Necessary and sufficient conditions on a sequence of natural numbers preserving regularity are given

by Berstel et al. [17].

3.3.3 Interaction

Kari [102] has studied conditions on which the operations of insertion and deletion are reversible

and deterministic. In particular, given the inverse operations (intuitively, but also in a sense we will

CHAPTER 3. RELATED WORK 29

define in Chapter 5) of (sequential) insertion and deletion, Kari examines under what conditions on

words u, v the language (u← v)→ v consists of only one word.

3.3.4 Iteration

Iterated insertion and deletion operations have been studied by Ito et al. [78, 79], and Kari and

Thierrin [117]. The iterated insertion operations considered are sequential insertion, shuffle and

k-insertion; the corresponding iterated deletion operations are also considered. In each case, the

authors consider the residual of a language L under the studied operation, and show its relation

to the closure of L under the corresponding insertion operation. We generalize these notions for

shuffle and deletion along trajectories in Chapter 8.

Ito and Silva [80] have examined closure properties of iterated scattered and sequential deletion.

Two open problems proposed by Ito and Silva have been solved by the author and Okhotin [42].

Ito et al. [82] have examined shuffle-closed languages, strongly shuffle-closed languages and ex-

tended shuffle bases. Characterizations of (strongly) shuffle-closed commutative regular languages

are obtained. The notion of extended bases has been developed in the more general setting of binary

word operations by Hsiao et al. [69].

Kari and Thierrin have generalized the notion of primitivity from Kleene closure to iterated

shuffle and insertion [118]. In a broader setting, Hsiao et al. [69] have considered iteration and

primitivity of arbitrary word operations. However, the setting is so general that obtaining results

often requires many assumptions, and results such as closure properties and decidability cannot be

obtained.

An interesting application of results on iteration of insertion and deletion operations was noted

by Parkes and Thomas [161, 162]. In particular, the word problem for the syntactic monoid of a

regular language R can be expressed as the intersection of the insertion- and deletion-closure of

R, which were introduced by Ito et al. [78]. Similar observations were made by Tully [194], but

phrased in more group-theoretic terms. Ramesh Kumar and Rajan [169] have further explored the

concepts introduced by Tully.

CHAPTER 3. RELATED WORK 30

3.3.5 Decomposition and Related Language Equations

The problem of decomposition of languages for insertion operations has not been widely studied,

except for the case of concatenation. Given a regular language R, the problem of determining

whether there exist L1, L2 such that R = L1L2 has been considered by Conway [28], Kari [106],

and Kari and Thierrin [117]. This problem is decidable. Choffrut and Karhumäki [25] and Polák

[167] have considered more general systems of equations and inequalities (see also Baader and

Küsters [11] and Baader and Narendran [13], who reduce solving similar systems of equations to

solving a single language equation). The equations considered by Choffrut and Karhumäki and

Polák include the decomposition equation R = X1 X2 studied previously by Conway, Kari and Kari

and Thierrin, but also include equations of the form R = r(X1, . . . , Xn), where R is a regular

language and r(X1, . . . , Xn) is a regular expression over the variables X1, . . . , Xn .

Given a language R, we say that it is prime if R = L1L2 implies that {L1, L2} = {{ǫ}, R}.

Salomaa and Yu [176] show that the problem of deciding whether a regular language is prime is

decidable; see also Mateescu et al. [151]. Wood [199] has given conditions on R which ensure that

a decomposition R = L1L2 is unique.

3.4 Shuffle on Trajectories

As already mentioned, shuffle on trajectories was defined by Mateescu et al. [147]. Harju et al. [61]

consider the syntactic monoids recognizing a language constructed from regular languages with

shuffle on trajectories. We examine the complementary question for deletion along trajectories in

Section 5.3.1. We now describe other areas of research related to shuffle on trajectories.

3.4.1 Infinite Words

While we do not deal with infinite words in this thesis, the concept of shuffle on trajectories for

infinite words has received attention in the literature. Mateescu et al. [147] introduced the notion

of shuffle on trajectories for infinite words along with shuffle on trajectories for finite words, and

CHAPTER 3. RELATED WORK 31

examined similar algebraic properties for infinite trajectories as for finite trajectories. Trajectories

for infinite words are called ω-trajectories. Kadrie et al. [101] have defined a binary relation defined

on 6ω and briefly examined its properties (we consider the analog for finite words in Chapter 6).

3.4.2 Fairness

Defining a fair operation, that is, one which allows both input languages to have a corresponding

letter be “shuffled in” during some reasonable time frame, has been the subject of research related

to shuffle on trajectories.

Mateescu et al. [147] use the concept of fairness as an example of the usefulness of the model

of shuffle on trajectories. They define explicit sets of trajectories and ω-trajectories which have the

desired fairness properties. Mateescu et al. [152] have extended this to study fairness of multiple

languages, which requires defining an extended shuffle on trajectories operation to operation on n

languages instead of two. Mateescu and Mateescu [145] have examined the fair and associative

trajectories on ω-words.

3.4.3 Related Concepts

The notion of shuffle on trajectories has been used in other interesting settings, including grammars,

combinatorics and timed automata. We survey these now.

Grammar Formalisms

Martin-Vide et al. [142] introduce the notion of contextual grammars on trajectories. These are an

extension of the notion of a contextual grammar by the addition of a set of trajectories.

In particular a contextual grammar with contexts shuffled on trajectories (abbreviated CST) is a

four-tuple G = (6, B, C, T) where 6 is an alphabet, B, C are finite languages over 6, called the

base and contexts, respectively, and T = (Tc)c∈C is a family of trajectories indexed by elements of

C , i.e., for each c ∈ C , Tc ⊆ {0, 1}∗.

CHAPTER 3. RELATED WORK 32

The generation of words in G is accomplished as follows: let x, y ∈ 6∗. Then we use the

notation x ⇒G y to denote the fact that there exists c ∈ C such that y ∈ x Tc
c. Let ⇒∗G be

the reflexive and transitive closure of ⇒G . Then the language generated by G = (6, B, C, T) is

denoted L(G) and is given by

L(G) = {w ∈ 6∗ : ∃x ∈ B such that x ⇒∗G w}.

Martin-Vide et al. give the following example: let G = (6, B, C, T) be given by 6 = {a, b},

B = {ǫ}, C = {aa, bb} and T = (Taa, Tbb), where Taa = Tbb = {01n01n : n ≥ 0}. Then

L(G) = {ww : w ∈ {a, b}∗}.

Martin-Vide et al. investigate the relationship between CST and other contextual grammar

classes. They also examine the relationship between the complexity of the members of T as lan-

guages and the generative capacity of G.

Mateescu has also extended the notion of co-operating distributed grammars (CD grammars)

to encompass the notion of trajectories [143]. A CD grammar on trajectory T is a six-tuple Ŵ =

(V,6, S, P0, P1, T) where V is a finite set of non-terminals, 6 is a finite alphabet, S ∈ V is a

distinguished start state, P0, P1 ⊆ V × (V ∪6)∗ are two finite sets of productions, and T ⊆ {0, 1}∗

is the set of trajectories.

Let⇒i denote the relation defined by the CFG G i = (V,6, S, Pi), as defined in Section 2.3, for

i = 0, 1. Then a word w ∈ 6∗ is generated by Ŵ if there exist t ∈ T of length n and αi ∈ (V ∪6)∗

for 1 ≤ i ≤ n such that if t = t1t2 · · · tn with ti ∈ {0, 1} then for all 1 ≤ i ≤ n− 1 αi ⇒ti αi+1, with

S = α1 and w = αn. The language generated by Ŵ, denoted L(Ŵ), is the set of all words generated

by Ŵ. The usual notion of a CD grammar corresponds to T = 0∗1∗. Other more complicated notions

of acceptance are also considered. The notion of CD grammars on trajectories is also generalized to

grammars with n sets of productions P0, P1, . . . , Pn−1, and a set of trajectories T ⊆ {0, . . . , n−1}∗.

CHAPTER 3. RELATED WORK 33

Timed Automata

Krishnan [124] has utilized the notion of trajectories in the context of discrete event systems and

timed automata. The concept of a trajectory is extended to the concept of a scheduler for real-time

events.

Combinatorics

The notion of shuffle on trajectories has been employed in an interesting combinatorial setting. In

particular, Vajnovski [195] has constructed a Gray code for the so-called Motzkin words; the use of

shuffle on trajectories in the construction is essential. We do not describe Gray codes or Motzkin

words here, the reader may consult [195] for definitions. Baril and Vajnovski [15] also define a

Gray code for derangements (permutations with no fixed points), again using shuffle on trajectories

in a combinatorial setting.

Vajnovski has also used the concept of shuffle on trajectories as a combinatorial constructor

for multiset permutations [196] (given n0, n1, n2, . . . , nk ≥ 0, a multiset permutation is a sequence

integers in which i appears ni times for all 0 ≤ i ≤ k). A combinatorial constructor enables one to

construct complex combinatorial objects (in this case, multiset permutations) out of simpler objects,

which is a common theme in combinatorial research. The construction of Vajnovski allows Gray

code generation of multiset permutations by a so-called loopless method [196], by using shuffle on

trajectories.

3.4.4 Splicing on Routes

The notion of shuffle on trajectories was extended by Mateescu [144] to encompass certain splicing

operations. This extension is called splicing on routes. We give the formal definition of splicing on

routes in Section 5.7. Splicing on routes is a proper extension of shuffle on trajectories, and also

encompasses several unary operations. We discuss the unary operations modelled by splicing on

routes in Section 5.7. Bel-Enguix et al. use the concept of splicing on routes to model dialog in

CHAPTER 3. RELATED WORK 34

natural language [12].

3.4.5 Concurrent Work

Independent to this thesis, the concept of deletion on trajectories has been introduced by Kari and

Sosı́k [112]. The authors develop the same framework, and investigate similar closure properties

and decidability of solutions to language equations in one variable. Algebraic properties not studied

in this thesis are also considered by Kari and Sosı́k. Unlike the case of shuffle on trajectories, these

algebraic characterizations for deletion along trajectories are satisfied only by trivial deletion oper-

ations. For example, a deletion operation ⋄ modelled by deletion along trajectories is commutative

if and only if L1 ⋄ L2 ⊆ {ǫ} for all languages L1, L2 [112].

Kari and Sosı́k [112] also introduce the notion of substitution and right-difference on trajecto-

ries. This concept is similar to shuffle and deletion along trajectories, but involves substitution of

words rather than interleaving of words. The reader is referred to Kari and Sosı́k for details. The

notion of substitution and right-difference on trajectories is further investigated and applied to the

modelling of noisy channels by Kari et al. [110].

The use of shuffle and deletion along trajectories has been employed by Kari et al. [108] to

investigate properties of bonding in DNA strands. The formalism defined by Kari et al. is called

bond-free properties. There are similarities between bond-free properties and the notion of T -codes

developed in Chapter 6. We discuss these similarities in greater detail in Chapter 6. Kari et al. [109]

have extended this work on bond-free properties, with particular emphasis on DNA strands satisfy

constraints based on the Hamming distance.

Deletion on trajectories has also been used as a tool to characterize when commutative languages

are regular by the author and others [41]. We do not examine this application in this thesis.

Work on decidability of language equations involving shuffle on trajectories has been continued

by the author and Salomaa [45]. In particular, it is shown that there exists a fixed linear context-

free set of trajectories T such that the following problem is undecidable: “given regular languages

R1, R2, R3, does R1 T R2 = R3 hold?” Similar results are given for language equations of the

CHAPTER 3. RELATED WORK 35

form R1 T X = R3 where R1, R3 are regular and X is unknown.

