
Chapter 4

Descriptional Complexity

4.1 Introduction

Descriptional complexity of formal languages deals with the problems of concise descriptions of

languages in terms of generative or accepting devices. For instance, the (deterministic) state com-

plexity of a regular language L is the minimal number of states in any deterministic finite automaton

accepting L [204]. Nondeterministic state complexity of a regular language is similarly defined

[48, 65, 66].

There is much interest in descriptional complexity as it relates to the efficiency of implementing

operations on languages. For instance, if f is a binary operation which preserves regular lan-

guages, then research in state complexity typically seeks to express the worst-case state complexity

of f (L1, L2) as a function of the state complexities of L1 and L2. Informally, we refer to this ex-

pression for the complexity of f (L1, L2) as the state complexity of f . For a survey of worst-case

state complexity for finite and regular languages, see Yu [202, 203]. We note that research into

average-case state complexity (instead of worst-case) of f has also been examined by Nicaud [155]

and the author [35].

For shuffle on trajectories, Mateescu et al. [147] and Harju et al. [61] both give proofs that, given

a regular set of trajectories T and regular languages L1, L2, the operation L1 T L2 always yields

36

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 37

a regular language. Thus, it is reasonable to consider the state complexity of shuffle on trajectories;

this is the goal of this chapter.

It is known that each set T ⊆ {0, 1}∗ defines a unique operation T (to see this, consider

that 0∗
T 1∗ = T). Therefore, the family of shuffle on trajectory operations is very complex,

and in this study we only begin to address the many questions which arise from studying the state

complexities of these operations. We incorporate other measures of complexity used in formal

languages and automata theory, including nondeterministic state complexity and language density

(for a definition of density of languages, see Section 4.3).

In particular, we establish a general upper bound, and improve it in the case when the set of

trajectories T has constant density. For sets of trajectories with density one, we obtain a lower bound

that is of the same order as the upper bound when the state complexity of the set of trajectories grows

with respect to the state complexity of the component languages.

We also consider a result of Yu et al. [204] on the state complexity of the concatenation opera-

tion. We show that the state complexity of L1L2 can be improved in the case that L2 can be easily

accepted by a NFA. However, this is not an improvement in the worst case.

4.2 General State Complexity Bounds

Given a regular language L , define the (deterministic) state complexity of L , denoted sc(L), by

sc(L) = min{|Q| : M = (Q,6, δ, q0, F) is a DFA accepting L}.

It is well known that for a regular language L , sc(L) is the index of ≡L , the Myhill-Nerode con-

gruence with respect to L . The nondeterministic state complexity of a regular language L is defined

similarly by

nsc(L) = min{|Q| : M = (Q,6, δ, q0, F) is an NFA accepting L}.

Nondeterministic state complexity has recently been studied by Holzer and Kutrib [65, 66] and

Ellul [48].

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 38

The following theorem [147, Thm. 5.1] states that regular sets of trajectories preserve regularity.

It serves as the starting point of this chapter:

Theorem 4.2.1 Let L1, L2 be regular languages over 6∗ and let T ⊆ {0, 1}∗ be a regular language.

Then L1 T L2 is a regular language.

The construction given by Mateescu et al. [147, Thm. 5.1] yields our most general upper bound

on the state complexity of shuffle on trajectories. We state our upper bound in terms of nondeter-

ministic state complexity:

Lemma 4.2.2 Let L1, L2 be regular languages over 6∗ and T ⊆ {0, 1}∗ be a regular set of trajec-

tories. Then

sc(L1 T L2) ≤ 2nsc(L1)nsc(L2)nsc(T).

Proof. We construct a NFA M ′ accepting L1 T L2. Let Mi = (Q i ,6, δi , qi , Fi) be minimal

NFAs accepting L i for i = 1 and 2, and let MT = (QT , {0, 1}, δT , qT , FT) be a minimal NFA

accepting T .

Let M ′ = (Q,6, δ, q0, F) be an NFA with Q = Q1 × Q2 × QT , q0 = [q1, q2, qT], F =

F1 × F2 × FT and δ given by

δ([qi , q j , qk], a) = {[q, q j , q ′] : q ∈ δ1(qi , a), q ′ ∈ δT (qk, 0)}

∪ {[qi , q, q ′] : q ∈ δ2(q j , a), q ′ ∈ δT (qk, 1)}

for all qi ∈ Q1, q j ∈ Q2, qk ∈ QT and a ∈ 6. Then it is easily verified that L(M ′) = L1 T L2.

Since M ′ is an NFA with nsc(L1)nsc(L2)nsc(T) states, the result easily follows, since any NFA

with n states can be simulated by a DFA with 2n states.

Thus, we have the following interesting corollary:

Corollary 4.2.3 Let L1, L2 be regular languages over 6∗ and T ⊆ {0, 1}∗ be a regular set of

trajectories. If

sc(L1 T L2) = 2sc(L1)sc(L2)sc(T)

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 39

then sc(L i) = nsc(L i) for i = 1, 2 and sc(T) = nsc(T).

Proof. As nsc(L) ≤ sc(L) for all regular languages L , the result is evident.

Using the idea of Lemma 4.2.2, we may slightly modify a result of Yu et al. [204] concerning

concatenation:

Theorem 4.2.4 Let L1, L2 ⊆ 6∗ be regular languages. Then

sc(L1L2) ≤ sc(L1)2
nsc(L2) − k2nsc(L2)−1,

where k is the number of final states in the minimal DFA accepting L1.

This is not an improvement in the worst case, but it again shows that if L1, L2 are languages

with sc(L1 L2) = sc(L1)2
sc(L2) − k2sc(L2)−1 then nsc(L2) = sc(L2). This applies to the lower

bound given by Yu et al.: Let MB = ({p0, p1, . . . , pn}, {a, b, c}, δB , p0, {pn−1}) be a DFA with δB

given by

δB(pi , a) = pi ;

δB(pi , b) = pi+1;

δB(pi , c) = p1;

where the indices are taken modulo n. Then if L = L(MB), sc(L) = nsc(L). Thus, the language

given by the above DFA cannot be accepted by an NFA with any less states.

Also note that Theorem 4.2.4 demonstrates that there exist sets of trajectories T for which

Lemma 4.2.2 is not optimal. In particular, concatenation is given by the set of trajectories T = 0∗1∗,

that is, T = ·, the concatenation operator. Since nsc(0∗1∗) = sc(0∗1∗)− 1 = 2 (see Figure 4.1),

Lemma 4.2.2 gives sc(L1L2) ≤ 4nsc(L1)nsc(L2). However, by Theorem 4.2.4, we get that

sc(L1 L2) ≤ sc(L1)2
nsc(L2) ≤ 2nsc(L1)+nsc(L2).

Thus, we have the following problem:

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 40

0

1

1

Figure 4.1: A two-state NFA accepting the set T = 0∗1∗ of trajectories.

Open Problem 4.2.5 For what regular sets of trajectories T ⊆ {0, 1}∗ does the construction given

by Lemma 4.2.2 give a construction which is best possible?

Consider unrestricted shuffle, given by the set of trajectories T = (0 + 1)∗. The bound of

Lemma 4.2.2 in this case is 2nsc(L1)nsc(L2). Câmpeanu et al. [22] have shown that there exist lan-

guages L1 and L2 accepted by incomplete DFAs having, respectively, n and m states such that any

incomplete DFA accepting L1 L2 has at least 2nm −1 states. This bound is optimal for incomplete

DFAs, however; for complete DFAs it gives only the lower bound 2(sc(L1)−1)(sc(L2)−1). However, we

regard this as near enough to our goal of Lemma 4.2.2 for our purposes, i.e., we regard T = (0+1)∗

as an example of a set of trajectories T satisfying Open Problem 4.2.5.

4.3 Slenderness and Trajectories

In this section, we consider the opposite question to Open Problem 4.2.5. That is, we are interested

in finding T ⊆ {0, 1}∗ such that Lemma 4.2.2 is not optimal, and in fact, is a very poor bound.

To define such T , we examine another descriptional complexity measure on languages, that of the

density. Informally, the density of a language measures the number of words of each length. We find

that sets of trajectories T with very small density yield operations T with small state complexity,

compared to Lemma 4.2.2.

We now give the definition of the density function of a language L ⊆ 6∗. For all n ≥ 0, define

pL : N → N as

pL(n) = |L ∩ 6n|.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 41

That is, pL(n) gives the number of words of length n in L . By the density of a language L , we

informally mean the asymptotic behaviour of pL . The following important result of Szilard et

al. [190, Thm. 3] characterizes the density of regular languages:

Theorem 4.3.1 A regular language R over 6 satisfies pR(n) ∈ O(nk), k ≥ 0 if and only if R can

be represented as a finite union of regular expressions of the following form:

xy∗
1 z1 · · · y∗

t zt

where x, y1, z1, · · · , yt , zt ∈ 6∗, and 0 ≤ t ≤ k + 1.

Call a language L slender if pL(n) ∈ O(1) [168]. If a regular language R has polynomial

density O(nk), let t be the smallest integer such that R = ∪t
i=1xi y∗

i,1zi,1 · · · y∗
i,ki

zi,ki
, 0 ≤ ki ≤ k +1,

i = 1, . . . , t . Then call t the UkL-index of L . If k = 0, we call t the USL-index of L (languages

with USL index t are called t-thin by Pǎun and Salomaa [168]; slender regular languages were also

characterized independently by Shallit [181, Lemma 3, p. 336]).

4.3.1 Perfect Shuffle

We first consider a common example of a slender set of trajectories, that of perfect (or balanced

literal) shuffle. Recall that perfect shuffle is given by the set of trajectories Tp = (01)∗; we denote

the perfect shuffle operation by p. Thus, for x, y ∈ 6∗, x = x1x2 · · · xm , y = y1y2 · · · yn, where

xi , y j ∈ 6, the perfect shuffle of x and y is

x p y =











x1 y1x2 y2 · · · xm ym if m = n;

∅ otherwise.

The following result can be obtained directly. However, we will defer the proof by stating that it is

an immediate corollary of Lemma 4.3.4, which appears below in Section 4.3.2:

Lemma 4.3.2 Let L1, L2 be regular languages with sc(L i) = ni for i = 1, 2. Then

sc(L1 p L2) ≤ 2n1n2.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 42

We can show this to be optimal for all n1, n2 over a two-letter alphabet.

Lemma 4.3.3 Let 6 = {a, b}. Let n1, n2 ≥ 0 be integers. Then there exist regular languages

L1, L2 ⊆ 6∗ with sc(L i) = ni for i = 1, 2 such that sc(L1 p L2) = 2n1n2.

Proof. Let L1 = {x ∈ {a, b}∗ : |x|a ≡ 0 (mod n1)} and L2 = {x ∈ {a, b}∗ : |x|b ≡ 0 (mod n2)}.

It is easily verified that sc(L1) = n1 and sc(L2) = n2. We claim that sc(L1 p L2) ≥ 2n1n2.

We consider words of the form a2i b j for 0 ≤ i < n1 and 0 ≤ j ≤ 2n2 − 1. For any pairs

[i1, j1] 6= [i2, j2], we have that a2i1 b j1 6≡L a2i2 b j2 (where L = L1 p L2). To show this, we show

that any two distinct words w1 = a2i1 b j1 and w2 = a2i2 b j2 can be distinguished with the word

u = a2(n1−i1)b2n2− j1 . We establish now that w1 6≡L w2 by showing that w1u ∈ L while w2u 6∈ L .

Case (i): j1, j2 both odd. Let 0 ≤ j ′
1, j ′

2 < n2 be integers such that j1 = 2 j ′
1 + 1 and j2 = 2 j ′

2 + 1.

Consider w1u = a2i1 b2 j ′
1+1a2(n1−i1)b2(n2− j ′

1)−1. Then w1u = v1 p v2 where

v1 = ai1 b j ′
1+1an1−i1 bn2− j ′

1−1;

v2 = ai1 b j ′
1an1−i1 bn2− j ′

1.

Thus |v1|a = n1 and |v2|b = n2 and so w1u ∈ L .

As for w2u = a2i2 b2 j ′
2+1a2(n1−i1)b2(n2− j ′

1)−1, we have w2u = v3 p v4 where

v3 = ai2 b j ′
2+1an1−i1 bn2− j ′

1−1;

v4 = ai2 b j ′
2an1−i1 bn2− j ′

1.

Then note that |v3|a = n1−i1+i2 and |v4|b = n2− j ′
1+ j ′

2. Since 0 ≤ i1, i2 < n1 and 0 ≤ j ′
1, j ′

2 < n2,

and under the assumptions that one of i1 6= i2 and j1 6= j2 is true, we have either v3 6∈ L1 or v4 6∈ L2.

Thus, w2u 6∈ L .

Case (ii): j1, j2 both even. Let 0 ≤ j ′
1, j ′

2 < n2 be integers such that j1 = 2 j ′
1 and j2 = 2 j ′

2.

Consider w1u = a2i1 b2 j ′
1a2(n1−i1)b2(n2− j ′

1). Again, decomposing w1u as w1u = v1 p v2 yields

v1 = v2 = ai1 b j ′
1an1−i1 bn2− j ′

1.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 43

Thus, as |v1|a = n1 and |v2|b = n2 we have v1 ∈ L1, v2 ∈ L2 and w1u ∈ L .

Considering w2u = a2i2 b2 j ′
2a2(n1−i1)b2(n2− j ′

1), we can write w2u = v3 p v4 where

v3 = v4 = ai2 b j ′
2an1−i1 bn2− j ′

1

and so |v3|a = n1 − i1 + i2 and |v4|b = n2 − j ′
1 + j ′

2. Our assumption that one of i1 6= i2 and j1 6= j2

is true implies that v3 = v4 6∈ L1 ∩ L2. Thus, w2u 6∈ L .

Case (iii): j1 even and j2 odd. Let 0 ≤ j ′
1, j ′

2 < n2 be integers such that j1 = 2 j ′
1 and j2 = 2 j ′

2 + 1.

Now w1u = a2i1 b2 j ′
1a2(n1−i1)b2(n2− j ′

1). As in case (ii), we have seen that w1u ∈ L . Consider

w2u = a2i2 b2 j ′
2
+1a2(n1−i1)b2(n2− j ′

1
). Thus |w2u| ≡ 1 (mod 2) and there do not exist words v3, v4

such that v3 p v4 = w2u.

Case (iv): j1 odd and j2 even. Let 0 ≤ j ′
1, j ′

2 < n2 be integers such that j1 = 2 j ′
1 + 1 and j2 = 2 j ′

2.

Consider w1u = a2i1 b2 j ′
1
+1a2(n1−i1)b2(n2− j ′

1
)−1. Then as we have seen in case (i), w1u ∈ L . However,

consider w2u = a2i1 b2 j ′
1a2(n1−i1)b2(n2− j ′

1)−1. As |w2u| ≡ 1 (mod 2), there do not exist words v3, v4

such that w2u = v3 p v4.

In the unary case, for any two words ai , a j , we have

ai
p a j =











ai+ j = a2i if i = j ;

∅ otherwise.

Thus, we see that for unary languages L1, L2 ⊆ a∗,

L1 p L2 = h(L1 ∩ L2)

where h : a∗ → a∗ is the morphism defined by h(a) = a2. Thus, we can show that for unary

languages

sc(L1 p L2) = 2sc(L1 ∩ L2).

The state complexity of intersection on unary languages is well-studied [155, 163, 202]. For in-

stance, if gcd(n1, n2) = 1, we can take L1 = (an1)∗ and L2 = (an2)∗ [184]. Thus, for these

languages sc(L1 p L2) = 2n1n2. However, if gcd(n1, n2) > 1, the situation is more interesting.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 44

For this case, see Pighizzini and Shallit [163]. We also note the work of Nicaud on the average state

complexity of intersection [155].

4.3.2 Bounds on Slender Trajectories

We may now relate slenderness of sets of trajectories to state complexity. Our first result handles

the case where T = uv∗.

In what follows, if u is a word of length n, then u(i) represents the (i + 1)-st letter of u for all

0 ≤ i ≤ n − 1. Further, let n = {0, 1, 2, . . . , n − 1}.

Lemma 4.3.4 Let T = uv∗ where u, v ∈ {0, 1}∗. Let L i be regular languages over 6, with

sc(L i) = ni , i = 1, 2. Let L = L1 T L2. Then

sc(L) ≤ |uv|n1n2. (4.1)

Proof. For i = 1, 2, let L i be accepted by a DFA Mi = (Q i ,6, δi , qi , Fi) with |Q i | = ni . We

describe M = (Q,6, δ, q0, F) such that L(M) = L1 T L2.

Let n = |uv|. We let Q = Q1 × Q2 × n, q0 = [q1, q2, 0], and give δ by

δ([qi , q j , k], a) =



































[δ1(qi , a), q j , k + 1] if (uv)(k) = 0 and k < n − 1;

[δ1(qi , a), q j , |u|] if (uv)(k) = 0 and k = n − 1;

[qi , δ2(q j , a), k + 1] if (uv)(k) = 1 and k < n − 1;

[qi , δ2(q j , a), |u|] if (uv)(k) = 1 and k = n − 1.

Finally we let F = F1 × F2 × {|u|}. It is easily verified that L(M) accepts the desired language.

We now give a bound for sets of trajectories T = uv∗w with w 6= ǫ.

Lemma 4.3.5 Let T = uv∗w where u, v,w ∈ {0, 1}∗ and w 6= ǫ. Let L i be regular languages over

6, with sc(L i) = ni , i = 1, 2. Let L = L1 T L2. Then

sc(L) ≤ n1n2



|u| + 1 + |v|
(n1n2)

⌈

|w|
|v|

⌉

+1
− n1n2

n1n2 − 1



 . (4.2)

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 45

Proof. For i = 1, 2, let L i be accepted by a DFA Mi = (Q i ,6, δi , qi , Fi) with |Q i | = ni . We

describe M = (Q,6, δ, q0, F) such that L(M) = L1 T L2.

Let n = |u|, m = |v| and s = |w|. Let b /∈ 6 be a fixed new letter. We choose

Q = Q1 × Q2 × {n ∪ {b}} ∪ Q1 × Q2 × m ×

⌈ s
m

⌉
⋃

i=1

(Q1 × Q2)
i . (4.3)

Further, we let q0 = [q1, q2, 0] ∈ Q1 × Q2 × n.

For notational convenience, we define a set of functions γα,β,a : Q1 × Q2 → Q1 × Q2 for all

0 ≤ α ≤ ⌈ s
m
⌉ − 1, 0 ≤ β < m, a ∈ 6, as follows

γα,β,a([p1, p2]) =











[δ1(p1, a), p2)] if w(m · α + β) = 0;

[p1, δ2(p2, a))] if w(m · α + β) = 1;

for all [p1, p2] ∈ Q1 × Q2. Further, we let γ ′
β,a : Q1 × Q2 → Q1 × Q2 be defined for all 0 ≤ β < m

and a ∈ 6 by

γ ′
β,a([qi , q j]) =











[δ1(qi , a), q j)] if v(β) = 0;

[qi , δ2(q j , a))] if v(β) = 1.

The full function δ is given by the following definitions. First, let [qi , q j , k] ∈ Q1 × Q2 × n.

Then,

δ([qi , q j , k], a) =



































[δ1(qi , a), q j , k + 1] if k < n − 1 and u(k) = 0;

[qi , δ2(q j , a), k + 1] if k < n − 1 and u(k) = 1;

[δ1(qi , a), q j , b] if k = n − 1 and u(k) = 0;

[qi , δ2(q j , a), b] if k = n − 1 and u(k) = 1.

(4.4)

If [qi , q j , b] ∈ Q1 × Q2 × {b},

δ([qi , q j , b], a) = [γ ′
0,a(qi , q j), 1, γ0,0,a(qi , q j)] ∈ Q1 × Q2 × m × Q1 × Q2. (4.5)

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 46

Now we can define δ on the set Q1 × Q2 × m ×
⋃⌈ s

m ⌉

i=1 (Q1 × Q2)
i . Let r ≤ ⌈ s

m
⌉.

δ([qi , q j , k, p
(1)
1 , p

(1)
2 , . . . , p

(r)
1 , p

(r)
2], a)

=



























































































[γ ′
k,a(qi , q j), k + 1, γ0,k,a(p

(1)
1 , p

(1)
2), . . . , γr−1,k,a(p

(r)
1 , p

(r)
2)],

if 0 < k < m − 1;

[γ ′
k,a(qi , q j), 0, γ0,k,a(p

(1)
1 , p

(1)
2), . . . , γr−1,k,a(p

(r)
1 , p

(r)
2)],

if k = m − 1;

[(γ ′
0,a(qi , q j), 1, γ0,k,a(qi , q j), γ1,k,a(p

(1)
1 , p

(1)
2), . . . , γr,k,a(p

(r)
1 , p

(r)
2)],

if k = 0, r < ⌈s/m⌉;

[(γ ′
0,a(qi , q j), 1, γ0,k,a(qi , q j), γ1,k,a(p

(1)
1 , p

(1)
2), . . . , γr−1,k,a(p

(r−1)
1 , p

(r−1)
2)],

if k = 0, r = ⌈s/m⌉.

The letter b distinguishes the case when we have not read any copies of v or w. We need a special

letter to indicate this is the situation.

Let f ∈ m be chosen so that f ≡ s (mod m). With this, we can define F by

F = Q1 × Q2 × f × (Q1 × Q2)
⌈s/m⌉−1 × F1 × F2.

Intuitively, we can explain the construction of M as follows. We note that the above parallel

branches [p
(j)
1 , p

(j)
2], simulating a computation along w, are always separated by exactly m input

letters. Thus in a state

[qi , q j , i, p
(1)
1 , p

(1)
2 , . . . , p

(r)
1 , p

(r)
2], r ≤ ⌈

s

m
⌉, (4.6)

the index i can keep track of the positions also of the r parallel branches along the suffix w of T :

the ℓ-th pair is reading the ((ℓ − 1) · m + i)-th letter of w.

When the index i goes from m − 1 to zero, for each 1 ≤ j ≤ r − 1 the j -th pair of states

[p
(j)
1 , p

(j)
2] is shifted into the (j + 1)-st position (at the same time performing the appropriate state

transition simulating M1 or M2). The first pair [p
(1)
1 , p

(1)
2] will then be added (based on the states

[qi , q j]) to simulate the new computation that branches out from the loop v and into the suffix w.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 47

The r-th computation is terminated when it reaches the end of w, that is, after s computation steps.

Thus, we can have at most ⌈s/m⌉ active computations on the suffix w of the trajectory.

Note that the transition function of M can implicitly code the word w as follows. When applying

the transition function to a pair [p
(j)
1 , p

(j)
2], 1 ≤ j ≤ r , and knowing the index i (in the notations of

(4.6)), the indices i and j exactly specify the position in the word w. Thus M knows whether this

position in w is a 0 or a 1 and can simulate a computation step of M1 or M2, respectively. This is

implied by the definition of the functions γα,β,a.

The following corollary follows easily by induction, noting that

L1 T1∪T2
L2 = (L1 T1

L2) ∪ (L1 T2
L2).

Corollary 4.3.6 Let T ⊆ {0, 1}∗ be a slender regular language with USL-index t, and write

T =

t
⋃

i=1

uiv
∗
i wi .

Then there exists a function K , depending only on the integers |ui |, |vi |, |wi |, 1 ≤ i ≤ t , such that

sc(L1 T L2) ≤ K (sc(L1)sc(L2))
t+s

where

s =

t
∑

i=1

⌈

|wi |

|vi |

⌉

.

Our aim is to obtain a lower bound for the shuffle operation on trajectories with USL index

1. It seems likely that the bound (4.2) cannot be reached for any fixed set of trajectories (and for

all values of sc(L i),i = 1, 2). In particular, if |w| is fixed and sc(L i) can grow arbitrarily, then it

seems impossible that the
⌈

|w|

|v |

⌉

parallel computations on the suffix w could simultaneously reach

all combinations of states of the DFAs for L1 and L2. Note that if the computation of M contains

parallel branches that simulate the computations of Mi (1 ≤ i ≤ 2), in states Pi ⊆ Q i , then all the

states of Pi need to be reachable from a single state of Mi with inputs of length at most |w|.

For the above reason, we consider a lower bound for sets of trajectories uv∗w where the length

of v and of w can depend on the sizes of the minimal DFAs for the component languages L1 and

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 48

L2. Furthermore, to simplify the notations below we give lower bound results for sets of trajectories

of the form v∗w, i.e., u = ǫ. It would be straightforward to modify the construction for prefixes u

of arbitrary length to include the additive term n1n2 · (|u| + 1) from (4.2).

Lemma 4.3.7 Let 6 = {a, b, c}. For any n1, n2 ∈ N there exist regular languages L i ⊆ 6∗ with

sc(L i) = ni , i = 1, 2, and a set of trajectories T = v∗w, where v,w ∈ {0, 1}∗, such that

sc(L1 T L2) ≥ (n1n2)
⌈

|w|
|v|

⌉+1
.

The ratio |w|/|v| above can be chosen to be arbitrarily large.

Proof. Let L1, L2 be defined as L1 = {w ∈ 6∗ : |w|a ≡ 0 (mod n1)} and, L2 = {w ∈ 6∗ : |w|b ≡

0 (mod n2)}. Clearly sc(L i) = ni , i = 1, 2. Denote

n = max(n1, n2) − 1 and m = 2n.

For the set of trajectories we choose

T = ((01)m)∗(10)mk, k ≥ 1. (4.7)

Note that sc(T) = 2m(k + 1). Define L = L1 T L2. The set S ⊆ 6(2k+1)m is defined to consist of

all words

S = {w1 · · · wk+1 :

wi ∈ {a, c}m
p{b, c}m, 1 ≤ i ≤ k, wk+1 ∈ {a, c}n

p{b, c}n}. (4.8)

If w ∈ S, then we denote by w1, w2, . . . , wk+1 the unique components of w as described by (4.8).

For w ∈ S and 1 ≤ i ≤ k + 1, we define the following quantities

A(w, a, i) = (

i
∑

j=1

|w j |a) mod n1, A(w, b, i) = (

i
∑

j=1

|w j |b) mod n2.

Claim 4.3.8 Let w,w′ ∈ S. If there exists 1 ≤ i ≤ k + 1 such that

[A(w, a, i), A(w, b, i)] 6= [A(w′, a, i), A(w′, b, i)] (4.9)

then w 6≡L w′.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 49

Proof. Assume i exists such that (4.9) holds and let xi ∈ ni, i = 1, 2, be the integers such that

x1 ≡ −A(w, a, i) (mod n1) and x2 ≡ −A(w, b, i) (mod n2).

Choose

ui =











((bx2cn−x2) p(a
x1cn−x1))c2m(i−1) if i ≤ k,

((ax1cn−x1) p(b
x2cn−x2))c2mk if i = k + 1.

To establish our claim it is sufficient to show that

wui ∈ L and w′ui 6∈ L . (4.10)

Let w = w1 · · · wk+1, w
′ = w′

1 · · · w′
k+1 ∈ S be such that (4.9) holds for some index i . For

each 1 ≤ j ≤ k, let w j = � j p5 j and w′
j = �′

j p5
′
j where � j ,�

′
j ∈ {a, c}m , 5 j ,5

′
j ∈

{b, c}m , and let wk+1 = �k+1 p5k+1 and w′
k+1 = �′

k+1 p5
′
k+1 where �k+1,�

′
k+1 ∈ {a, c}n ,

5k+1,5
′
k+1 ∈ {b, c}n.

(i) First we consider the case where i ≤ k. Now |wui | = |w′ui | = 2m(k + i), so the only

possible trajectory t ∈ T which could correspond to these words is t = (01)m·i (10)m·k . Let t = t1t2

where t1 = (01)m·i and t2 = (10)m·k . Let α, α′, β, β ′ be the unique words such that α tβ = wui

and α′
tβ

′ = w′ui . In particular, let α = α1α2, α′ = α′
1α

′
2, β = β1β2 and β ′ = β ′

1β
′
2 such that

w1 · · · wi = α1 t1β1;

w′
1 · · · w′

i = α′
1 t1β

′
1;

wi+1 · · · wk+1ui = α2 t2β2;

w′
i+1 · · · w′

k+1ui = α′
2 t2β

′
2.

Then note that necessarily

α1 = �1�2 · · · �i ;

β1 = 5152 · · · 5i ;

α′
1 = �′

1�
′
2 · · · �′

i ;

β ′
1 = 5′

15
′
2 · · · 5′

i .

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 50

and

β2 = �i+1�i+2 · · · �k+1bx2cn−x2 cm(i−1);

α2 = 5i+15i+2 · · · 5k+1ax1cn−x1 cm(i−1);

β ′
2 = �′

i+1�
′
i+2 · · · �′

k+1bx2cn−x2 cm(i−1);

α′
2 = 5′

i+15
′
i+2 · · · 5′

k+1ax1cn−x1 cm(i−1).

Thus, we can now easily compute |α|a, |α
′|a, |β|b, |β

′|b.

|α|a = |α1|a + |α2|a

= A(w, a, i) + |α2|a

= A(w, a, i) + |5i+15i+2 · · · 5k+1|a + x1

= A(w, a, i) + x1 ≡ 0 (mod n1).

as 5 j ∈ {b, c}∗ and x1 ≡ −A(w, a, i) (mod n1). An identical analysis yields that |α′|a ≡

A(w′, a, i) − A(w, a, i) (mod n1). We can similarly examine β and β ′, to give

|β|b ≡ 0 (mod n2)

|β ′|b ≡ A(w′, b, i) − A(w, b, i) (mod n2)

The congruences |α|a ≡ 0 (mod n1), |β|b ≡ 0 (mod n2) give wui ∈ L . By (4.9), we conclude that

one of α′ 6∈ L1, β ′ 6∈ L2 holds, and thus w′ui 6∈ L .

(ii) Second we consider the case i = k + 1. Now |wui | = |w′ui | = 2m(2k + 1), so the

corresponding trajectory is t = t1t2 where t1 = (01)m(k+1) and t2 = (10)m·k . In this case recall

that uk+1 = ((ax1cn−x1) p(b
x2cn−x2))c2mk , and the suffix c2mk of uk+1 corresponds exactly to the

suffix t2 of the trajectory. Thus when the word wui (respectively, w′ui) is written in the form α tβ

(respectively, α′
tβ

′) all letters a in the word correspond to (“come from”) the component in L1

and all letters b correspond to the component in L2. By (4.9), we conclude that α ∈ L1 and β ∈ L2

but necessarily one of α′ 6∈ L1 or β ′ 6∈ L2 holds. The completes the proof that (4.10) holds.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 51

We now continue with the proof of Lemma 4.3.7. We claim that the map ϕ : S → (n1 × n2)
k+1,

given by

w 7→ [A(w, a, i), A(w, b, i)]k+1
i=1 , (4.11)

is surjective. To see this, note that if w ∈ S then A(w, a, i) and A(w, b, i) depend only on the

subwords w1, . . . , wi . Thus after w1, . . . , wi are chosen we can always select an arbitrary value for

[A(w, a, i + 1), A(w, b, i + 1)] since [|wi+1|a, |wi+1|b] can have any value in n1 × n2. (This holds

also in the case i = k.) Thus, ϕ is surjective, and by Claim 4.3.8, for distinct z, z′ ∈ (n1 × n2)
k+1,

the sets ϕ−1(z) and ϕ−1(z′) lie in different equivalence classes of ≡L . Thus, sc(L) ≥ (n1n2)
k+1.

In the notations of Lemma 4.3.7, the upper bound (4.2) is of the order |v| · (n1n2)
⌈

|w|
|v| ⌉+1

where

|v| can be chosen as a constant times max(n1, n2). In the proof of Lemma 4.3.7 we counted only

equivalence classes of ≡L that had representatives of length (2k +1)m. Using the same construction

we can get an improved lower bound by taking into account also equivalence classes with represen-

tatives of different lengths. This bound approaches the upper bound when |v| grows compared to

sc(L i), i = 1, 2.

Lemma 4.3.9 Let 6 = {a, b, c}. Let n1, n2 ∈ N be arbitrary and n = max(n1, n2) − 1. There exist

regular languages L i ⊆ 6∗ with sc(L i) = ni , i = 1, 2, and a set of trajectories T = v∗w, where

v,w ∈ {0, 1}∗, |v| ≥ 4n, such that

sc(L1 T L2) ≥ (|v| − 4n + 1)(n1n2)
⌈

|w|
|v| ⌉+1

+ |v|
(n1n2)

⌈
|w|
|v| ⌉−1

− 1

n1n2 − 1
. (4.12)

The quantity |v| and the ratio |w|/|v| above can be chosen to be arbitrarily large compared to

sc(L1) and sc(L2).

Proof. We use the notations from the proof of Lemma 4.3.7 with the only change that m ≥ 2n can

be arbitrary (instead of m = 2n).

For a word w with |w| ≤ 2m(k+1) and w = w1 · · · wi−1wi where |w j | = 2m, j = 1, . . . , i −1,

0 ≤ |wi | ≤ 2m, we say that the j th component of w is w j , j = 1, . . . , i .

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 52

Since T consists of only words with length a multiple of 2m, it follows that for any w,w′ ∈ 6∗

if |w| 6≡ |w′| (mod 2m) then w 6≡L w′. Note that any word in 6∗ can be completed to a word in L

by adding a suitable suffix. On the other hand, if w,w′ ∈ S and w 6≡L w′ then

wc j 6≡L w′c j for all 1 ≤ j ≤ 2m − 4n. (4.13)

Note that ϕ(w) 6= ϕ(w′) and the suffix c j does not change the numbers of occurrences of a’s and b’s

in the (k +1)-st component. Furthermore, we can always find a word u of length 2m −2n− j (≥ 2n)

such that wc ju ∈ L (or w′c j u ∈ L) which may be needed to establish the inequivalence of wc j and

w′c j if ϕ(w) and ϕ(w′) differ only in their first component.

Since we know that S contains (n1n2)
⌈

|w|
|v| ⌉+1

pairwise inequivalent words, the above observations

give us (2m − 4n + 1)(n1n2)
⌈

|w|
|v|

⌉+1
equivalence classes which is the first term of (4.12).

Let Si , 1 ≤ i ≤ k, denote the set of prefixes of S having length 2mi . Similarly as in the proof

of Lemma 4.3.7, we see that Si contains representatives of (n1n2)
i distinct equivalence classes of

≡L . Using a similar argument as above for (4.13) we see that if w,w′ ∈ Si , i < k, and w 6≡L w′

then wc j 6≡L w′c j for all 1 ≤ j < 2m. Note that since i < k the suffix c j does not belong to the

(k + 1)-st component and it can have any length up to 2m. Furthermore, each word

wc j , w ∈ Si, i ≤ k − 2, 0 ≤ j < 2m (4.14)

can be completed to a word in L using a suffix of length 2m(k − i) − j and not by any suffix of

shorter length. Thus any two words of different length as in (4.14) cannot be equivalent, and any

word as in (4.14) cannot be equivalent to any word as in (4.13). This yields

2m

k−2
∑

i=0

(n1n2)
i

equivalence classes which is the last term of (4.12).

As a consequence of Lemma 4.3.9 we have:

Theorem 4.3.10 The upper bound (4.2) is asymptotically optimal if sc(T) (that is, |v|) can be

arbitrarily large compared to sc(L i), i = 1, 2.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 53

In comparing Theorem 4.3.10 and Lemma 4.3.3, we note that Lemma 4.3.3 is a tighter bound,

and is better than Theorem 4.3.10 in the restricted sense that Lemma 4.3.3 takes a set of trajectories

(albeit a very specific and fixed set of trajectories) and defines languages for which we have match-

ing upper and lower bounds. This is subtly different from Theorem 4.3.10, which takes languages

and defines a set of trajectories for which the upper bound is obtained. The reasoning for this, we

recall, is discussed prior to the statement of Lemma 4.3.7.

4.4 Future Directions

4.4.1 Polynomial Density Trajectories

We may also consider the case of polynomial-density sets of trajectories, i.e., sets of trajectories T

with pT (n) ∈ O(nk) for k ≥ 1, by extending the ideas of Lemma 4.3.5. We can employ nondeter-

ministic state complexity when it is to our advantage. However, the upper bound which we obtain

is not much better than the bound of Lemma 4.2.2. We note that an extension to linear density

sets of trajectories would encompass the case of T = 0∗1∗. By Theorem 4.2.4, we know that this

linear density bound would not be as good an improvement over Lemma 4.2.2 compared to, e.g.,

Corollary 4.3.6.

4.4.2 Exponential Density Trajectories

Recall that the example of arbitrary shuffle, shown by Câmpeanu et al. to have state complexity no

better than our construction in Lemma 4.2.2, uses the set of trajectories T = (0 + 1)∗ of density

2n . We also note that, by Szilard et al. [190], the density of a regular language over 6 is either

O(p(n)), where p is a polynomial, or �(|6|n).

Thus, we may conjecture that a set of trajectories T yields an operation which is, in the worst

case, no better than Lemma 4.2.2 only in the case when pT (n) ∈ �(2n), i.e. T has exponential

density.

CHAPTER 4. DESCRIPTIONAL COMPLEXITY 54

4.4.3 Other Open Problems

Our constructions in Lemmas 4.3.7 and 4.3.9 use three-letter alphabets. Can these constructions

be improved to two-letter alphabets? The problem of restricting the alphabet size to be as small

as possible is often challenging. For example, in the case of concatenation, the state complexity

problem was solved for a three-letter alphabet by Yu et al. [204], but the case of a two-letter alphabet

was open until very recently [95, 94].

4.5 Conclusions

In this chapter we have examined the state complexity of shuffle on trajectories. This area has been

previously examined by Câmpeanu et al. [22] for the case of T = {0, 1}∗, and by Yu et al. [204] for

the case of T = 0∗1∗. In this chapter, we have considered state complexity of arbitrary shuffle on

trajectories.

We have also considered the specific case where the set T of trajectories is slender, i.e., contains

only a constant number of words of each length. In this case, we have shown that shuffle on the set T

of trajectories has a considerably lower state complexity than in the case of a general T ⊆ {0, 1}∗.

