Chapter 5

Deletion along Trajectories

5.1 Introduction

As we have seen, shuffle on trajectories is a powerful method for unifying operations which insert all the letters of one word into another. Concurrent to this research, Kari and others [106, 117] have done research into the inverses of insertion- and shuffle-like operations, which have yielded decidability results for language equations such as $X L=R$ where L, R are regular languages and X is unknown. The inverses of insertion- and shuffle-like operations are deletion-like operations such as deletion, quotient, scattered deletion and bi-polar deletion [106].

In this chapter, we introduce the notion of deletion along trajectories, which is the analogous notion to shuffle on trajectories for deletion-like operations. We show how it unifies operations such as deletion, quotient, scattered deletion and others. We investigate the closure properties of deletion along trajectories. We also show how each shuffle operation based on a set of trajectories T has an inverse operation (both right and left inverse, see Section 5.8), defined by a deletion along a renaming of T. This yields the result that it is decidable whether language equations of the form $L \omega_{T} X=R$ for regular languages L and R have a solution X, for any regular set T of trajectories.

We also investigate those T which are not regular but for which the deletion along the set of trajectories T preserves regularity. Theorems 5.4.1 and 5.4.2 explicitly define classes of sets of
trajectories, which include non-regular sets, which preserve regularity.

5.2 Definitions

We now give the main definition of this chapter, called deletion along trajectories, which models deletion operations controlled by a set of trajectories. Let $x, y \in \Sigma^{*}$ be words with $x=a x^{\prime}, y=b y^{\prime}$ $(a, b \in \Sigma)$. Let t be a word over $\{i, d\}$ such that $t=e t^{\prime}$ with $e \in\{i, d\}$. Then we define $x \leadsto{ }_{\sim} y$, the deletion of y from x along trajectory t, as follows:

$$
x \leadsto_{t} y= \begin{cases}a(x^{\prime} \leadsto \overbrace{t^{\prime}} b y^{\prime}) & \text { if } e=i ; \\ x^{\prime} \leadsto \overbrace{t^{\prime}} y^{\prime} & \text { if } e=d \text { and } a=b ; \\ \emptyset & \text { otherwise } .\end{cases}
$$

Also, if $x=a x^{\prime}(a \in \Sigma)$ and $t=e t^{\prime}(e \in\{i, d\})$, then

$$
x \sim_{t} \epsilon= \begin{cases}a\left(x^{\prime} \sim_{t^{\prime}} \epsilon\right) & \text { if } e=i \\ \emptyset & \text { otherwise }\end{cases}
$$

If $x \neq \epsilon$, then $x \sim_{\epsilon} y=\emptyset$. Further, $\epsilon \sim_{t} y=\epsilon$ if $t=y=\epsilon$. Otherwise, $\epsilon \sim_{t} y=\emptyset$.
Example 5.2.1: Let $x=a b c a b c, y=b a c$ and $t=(i d)^{3}$. Then we have that $x \overbrace{t} y=a c b$. If $t=i^{2} d^{3} i$ then $x \sim_{t} y=\emptyset$.

Let $T \subseteq\{i, d\}^{*}$. Then

$$
x \leadsto_{T} y=\bigcup_{t \in T} x \leadsto_{t} y .
$$

We extend this to languages as expected: Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ and $T \subseteq\{i, d\}^{*}$. Then

$$
L_{1} \leadsto_{T} L_{2}=\bigcup_{\substack{x \in L_{1} \\ y \in L_{2}}} x \leadsto_{T} y .
$$

Note that \neg_{T} is neither an associative nor a commutative operation on languages, in general. We consider the following examples of deletion along trajectories (for any operations not defined, we refer the reader to the appropriate paper cited below):
(a) if $T=i^{*} d^{*}$, then $\leadsto_{T}=/$, the right-quotient operation;
(b) if $T=d^{*} i^{*}$, then $\neg_{T}=\backslash$, the left-quotient operation;
(c) if $T=i^{*} d^{*} i^{*}$, then $\neg_{T}=\rightarrow$, the deletion operation (see, e.g., Kari $[103,106]$);
(d) if $T=(i+d)^{*}$, then $\sim_{T}=\sim$, the scattered deletion operation (see, e.g., Ito et al. [79]);
(e) if $T=d^{*} i^{*} d^{*}$, then $\sim_{T}=\rightleftharpoons$, the bi-polar deletion operation (see, e.g., Kari [106]);
(f) let $k \geq 0$ and $T_{k}=i^{*} d^{*} i^{\leq k}$. Then $\neg_{T_{k}}=\rightarrow^{k}$, the k-deletion operation (see, e.g., Kari and Thierrin [114]).

Also, we note the difference between deletion along trajectories from the operation splicing on routes defined by Mateescu [144], which is a generalization of shuffle on trajectories which allows discarding letters from either input word. Splicing on routes serves to generalize the crossover operation used in DNA computing by restricting the manner in which it may combine letters, in a manner similar to how shuffle on trajectories restricts the way in which the shuffle operator may combine letters (see Mateescu [144] for details and a definition of the crossover operation).

5.3 Closure and Characterization Results

The following lemma is proven by a direct construction:

Lemma 5.3.1 If T, L_{1}, L_{2} are regular, then $L_{1} \leadsto_{T} L_{2}$ is also regular.

Proof. Let M_{1}, M_{2}, M_{T} be DFAs for L_{1}, L_{2}, T, respectively, with

$$
\begin{aligned}
M_{j} & =\left(Q_{j}, \Sigma, \delta_{j}, q_{j}, F_{j}\right), \quad \text { for } j=1,2, \text { and } \\
M_{T} & =\left(Q_{T},\{i, d\}, \delta_{T}, q_{T}, F_{T}\right)
\end{aligned}
$$

Let $M=\left(Q_{1} \times Q_{2} \times Q_{T}, \Sigma, \delta,\left[q_{1}, q_{2}, q_{T}\right], F_{1} \times F_{2} \times F_{T}\right)$ be an NFA with δ given by

$$
\delta\left(\left[q_{j}, q_{k}, q_{\ell}\right], a\right)=\left\{\left[\delta_{1}\left(q_{j}, a\right), q_{k}, \delta_{T}\left(q_{\ell}, i\right)\right]\right\}
$$

for all $\left[q_{j}, q_{k}, q_{\ell}\right] \in Q_{1} \times Q_{2} \times Q_{T}$ and $a \in \Sigma$. Further,

$$
\delta\left(\left[q_{j}, q_{k}, q_{\ell}\right], \epsilon\right)=\left\{\left[\delta_{1}\left(q_{j}, a\right), \delta_{2}\left(q_{k}, a\right), \delta_{T}\left(q_{\ell}, d\right)\right]: a \in \Sigma\right\}
$$

for all $\left[q_{j}, q_{k}, q_{\ell}\right] \in Q_{1} \times Q_{2} \times Q_{T}$. We can verify that M accepts $L_{1} \sim_{T} L_{2}$.
We now show that if any one of L_{1}, L_{2} or T is non-regular, then $L_{1} \neg_{T} L_{2}$ may not be regular:

Theorem 5.3.2 There exist languages L_{1}, L_{2} and a set of trajectories $T \subseteq\{i, d\}^{*}$ satisfying each of the following:
(a) L_{1} is a $C F L, L_{2}$ is a singleton and T is regular, but $L_{1} \neg_{T} L_{2}$ is not regular;
(b) L_{1}, T are regular, and L_{2} is a $C F L$, but $L_{1} \neg_{T} L_{2}$ is not regular;
(c) L_{1} is regular, L_{2} is a singleton, and T is a $C F L$, but $L_{1} \leadsto_{T} L_{2}$ is not regular.

In each case, the CFL may be chosen to be an LCFL.

Proof. We first note the following identity:

$$
L \sim_{i^{*}}\{\epsilon\}=L .
$$

Thus, if we take any non-regular (linear) CFL L, we can establish (a).
For (b), we take the following languages:

$$
\begin{aligned}
L_{1} & =\left(a^{2}\right)^{*}\left(b^{2}\right)^{*}, \\
T & =(d i)^{*}, \\
L_{2} & =\left\{a^{n} b^{n}: n \geq 0\right\} .
\end{aligned}
$$

Note that L_{2} is a non-regular (linear) CFL. With these languages, we have that $L_{1} \neg_{T} L_{2}=L_{2}$.
Finally, to establish part (c), we take

$$
\begin{aligned}
L_{1} & =a^{*} \# b^{*}, \\
T & =\left\{i^{n} d i^{n}: n \geq 0\right\}, \\
L_{2} & =\{\#\} .
\end{aligned}
$$

We note that T is a non-regular linear CFL, and that

$$
L_{1} \leadsto_{T} L_{2}=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

This establishes the theorem.
In Section 5.4, we discuss non-regular sets of trajectories which preserve regularity. Recall that a weak coding is a morphism $\pi: \Sigma^{*} \rightarrow \Delta^{*}$ such that $\pi(a) \in \Delta \cup\{\epsilon\}$ for all $a \in \Sigma$. We have the following characterization of deletion along trajectories:

Theorem 5.3.3 Let Σ be an alphabet. There exist weak codings $\rho_{1}, \rho_{2}, \tau, \varphi$ and a regular language R such that for all $L_{1}, L_{2} \subseteq \Sigma^{*}$ and all $T \subseteq\{i, d\}^{*}$,

$$
L_{1} \leadsto_{T} L_{2}=\varphi\left(\rho_{1}^{-1}\left(L_{1}\right) \cap \rho_{2}^{-1}\left(L_{2}\right) \cap \tau^{-1}(T) \cap R\right) .
$$

Proof. Let $\hat{\Sigma}=\{\hat{a}: a \in \Sigma\}$ be a copy of Σ. Define the morphism $\rho_{1}:(\hat{\Sigma} \cup \Sigma \cup\{i, d\})^{*} \rightarrow \Sigma^{*}$ as follows: $\rho_{1}(\hat{a})=\rho_{1}(a)=a$ for all $a \in \Sigma$ and $\rho_{1}(i)=\rho_{1}(d)=\epsilon$. Define $\rho_{2}:(\hat{\Sigma} \cup \Sigma \cup\{i, d\})^{*} \rightarrow$ Σ^{*} as follows: $\rho_{2}(\hat{a})=a$ for all $a \in \Sigma, \rho_{2}(a)=\epsilon$ for all $a \in \Sigma$ and $\rho_{2}(d)=\rho_{2}(i)=\epsilon$.

Define $\tau:(\hat{\Sigma} \cup \Sigma \cup\{i, d\})^{*} \rightarrow\{i, d\}^{*}$ as follows: $\tau(\hat{a})=\tau(a)=\epsilon$ for all $a \in \Sigma, \tau(i)=i$ and $\tau(d)=d$. We define $\varphi:(\hat{\Sigma} \cup \Sigma \cup\{i, d\})^{*} \rightarrow \Sigma^{*}$ as $\varphi(\hat{a})=\epsilon$ for all $a \in \Sigma, \varphi(a)=a$ for all $a \in \Sigma$, and $\varphi(i)=\varphi(d)=\epsilon$. Finally, we note that the result can be proven by letting $R=(i \Sigma+d \hat{\Sigma})^{*}$.

Thus, we have the following corollary:
Corollary 5.3.4 Let \mathcal{C} be a cone. Let L_{1}, L_{2}, T be languages such that two are regular and the third is in \mathcal{C}. Then $L_{1} \neg_{T} L_{2} \in \mathcal{C}$.

Note that the closure of cones under quotient with regular sets [68, Thm. 11.3] is a specific instance of Corollary 5.3.4 Lemma 5.3.1 can also be proven by appealing to Theorem 5.3.3. We also note that the CFLs are a cone, thus we have the following corollary (a direct construction is also possible):

Corollary 5.3.5 Let T, L_{1}, L_{2} be languages such that one is a CFL and the other two are regular languages. Then $L_{1} \neg_{T} L_{2}$ is a $C F L$.

The following result shows that if any of the conditions of Corollary 5.3.5 are not met, the result might not hold:

Theorem 5.3.6 There exist languages L_{1}, L_{2} and a set of trajectories $T \subseteq\{i, d\}^{*}$ satisfying each of the following:
(a) L_{1}, L_{2} are (linear) CFLs and T is regular, but $L_{1} \leadsto_{T} L_{2}$ is not a CFL;
(b) L_{1}, T are (linear) CFLs, and L_{2} is a singleton, but $L_{1} \leadsto_{T} L_{2}$ is not a CFL;
(c) L_{1} is regular, L_{2}, T are (linear) CFLs, but $L_{1} \leadsto_{T} L_{2}$ is not a CFL.

Proof. (a) The result is immediate, since it is known (see, e.g., Ginsburg and Spanier [52, Thm. 3.4]) that the CFLs are not closed under right quotient (given by the set of trajectories $T=i^{*} d^{*}$). The languages described by Ginsburg and Spanier which witness this non-closure are linear CFLs.
(b) Let $\Sigma=\{a, b, c, \#\}$ and define $L_{1}, L_{2} \subseteq \Sigma^{*}$ and $T \subseteq\{i, d\}^{*}$ by

$$
\begin{aligned}
L_{1} & =\left\{a^{n} b^{n} \# c^{m}: n, m \geq 0\right\} \\
L_{2} & =\{\#\} \\
T & =\left\{i^{2 n} d i^{n}: n \geq 0\right\} .
\end{aligned}
$$

Note that L_{1}, T are indeed linear CFLs. Then we can verify that

$$
L_{1} \sim_{T} L_{2}=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\},
$$

which is not a CFL.
(c) Let $\Sigma=\{a, b, c, \#\}$. Then let

$$
\begin{aligned}
L_{1} & =\left(a^{2}\right)^{*}\left(b^{2}\right)^{*} \# c^{*} \\
L_{2} & =\left\{a^{n} b^{n} \#: n \geq 0\right\} \\
T & =\left\{(d i)^{2 n} d i^{n}: n \geq 0\right\}
\end{aligned}
$$

Then we can verify that $L_{1} \neg_{T} L_{2}=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$, which is not a CFL. This completes the proof.

Note that the CSLs are not a cone, since it is known that they are not closed under arbitrary morphism (see, e.g., Mateescu and Salomaa [148, Thm. 2.12] for the closure properties of the CSLs). Thus, Corollary 5.3.4 does not apply to the CSLs. In fact, it is also known that the CSLs are not closed under (left or right) quotient with regular languages.

5.3.1 Recognizing Deletion Along Trajectories

We now consider the problem of giving a monoid recognizing deletion along trajectories, when the languages and set of trajectories under consideration are regular. Harju et al. [61] give a monoid which recognizes $L_{1} \mathrm{w}_{T} L_{2}$ when L_{1}, L_{2} and T are regular.

For a background on recognition of formal languages by monoids, please consult Pin [164]. A monoid is a semigroup with unit element. Let $L \subseteq \Sigma^{*}$ be a language. We say that a monoid M recognizes L if there exists a morphism $\varphi: \Sigma^{*} \rightarrow M$ and a subset $F \subseteq M$ such that $L=\varphi^{-1}(F)$.

The following is a characterization of the regular languages due to Kleene (see, e.g., Pin [164, p. 17]):

Theorem 5.3.7 A language is regular if and only if it is recognized by a finite monoid.

Consider arbitrary regular languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ and $T \subseteq\{i, d\}^{*}$. Then our goal is to construct a monoid recognizing $L_{1} \leadsto_{T} L_{2}$.

Let M_{1}, M_{2}, M_{T} be finite monoids recognizing L_{1}, L_{2}, L_{T}, with morphisms $\varphi_{j}: \Sigma^{*} \rightarrow M_{j}$ for $j=1,2, \varphi_{T}:\{i, d\}^{*} \rightarrow M_{T}$ and subsets F_{1}, F_{2}, F_{T}, respectively.

As in Harju et al. [61], we consider the monoid $\mathcal{P}\left(M_{1} \times M_{2} \times M_{T}\right)$ consisting of all subsets of $M_{1} \times M_{2} \times M_{T}$. The monoid operation is given by $A B=\{x y: x \in A, y \in B\}$ for all $A, B \in \mathcal{P}\left(M_{1} \times M_{2} \times M_{T}\right)$, and the product of elements of $M_{1} \times M_{2} \times M_{T}$ is defined componentwise.

We can now establish that $\mathcal{P}\left(M_{1} \times M_{2} \times M_{T}\right)$ recognizes $L_{1} \neg_{T} L_{2}$. We first define a subset $D \subseteq M_{1} \times M_{2} \times M_{T}$ which will be useful:

$$
D=\left\{\left[\varphi_{1}(x), \varphi_{2}(x), \varphi_{T}\left(d^{|x|}\right)\right]: x \in \Sigma^{*}\right\} .
$$

Then we define $\varphi: \Sigma^{*} \rightarrow \mathcal{P}\left(M_{1} \times M_{2} \times M_{T}\right)$ by giving its action on each element $a \in \Sigma$:

$$
\varphi(a)=\left\{\left[\varphi_{1}(x a), \varphi_{2}(x), \varphi_{T}\left(d^{|x|} i\right)\right]: x \in \Sigma^{*}\right\} .
$$

Then, we note that for all $y \in \Sigma^{*}$,

$$
\begin{equation*}
\varphi(y) D=\left\{\left[\varphi_{1}(\alpha), \varphi_{2}(\beta), \varphi_{T}(t)\right]: y \in \alpha \sim_{t} \beta, \alpha, \beta \in \Sigma^{*}, t \in\{i, d\}^{*}\right\} . \tag{5.1}
\end{equation*}
$$

Thus, it suffices to take

$$
F=\left\{K \in \mathcal{P}\left(M_{1} \times M_{2} \times M_{T}\right): K D \cap\left(F_{1} \times F_{2} \times F_{T}\right) \neq \emptyset\right\} .
$$

Thus, considering (5.1), we have that

$$
L_{1} \leadsto_{T} L_{2}=\varphi^{-1}(F) .
$$

This establishes the following result:

Lemma 5.3.8 Let L_{j} be a regular language recognized by M_{j} for $j=1,2$ and $T \subseteq\{i, d\}^{*}$ be a regular set of trajectories recognized by the monoid M_{T}. Then $\mathcal{P}\left(M_{1} \times M_{2} \times M_{T}\right)$ recognizes $L_{1} \sim_{T} L_{2}$.

Thus, Lemma 5.3.8 gives another proof of Lemma 5.3.1.

5.3.2 Equivalence of Trajectories

We briefly note that two sets of trajectories over $\{i, d\}$ define the same deletion operation if and only if they are equal. More precisely, if $T_{1}, T_{2} \subseteq\{i, d\}^{*}$, say that T_{1} and T_{2} are equivalent if $L_{1} \neg_{T_{1}} L_{2}=L_{1} \sim_{T_{2}} L_{2}$ for all languages L_{1}, L_{2}.

Lemma 5.3.9 Let $T_{1}, T_{2} \subseteq\{i, d\}^{*}$. Then T_{1} and T_{2} are equivalent if and only if $T_{1}=T_{2}$.

Proof. If $T_{1}=T_{2}$ then clearly T_{1} and T_{2} are equivalent. If T_{1} and T_{2} are not equal, then without loss of generality, let $t \in T_{1}-T_{2}$. Let $n=|t|_{i}$ and $m=|t|_{d}$. Then it is not hard to see that $i^{n} \in\{t\} \neg_{T_{1}}\left\{d^{m}\right\}$, but that $i^{n} \notin\{t\} \neg_{T_{2}}\left\{d^{m}\right\}$, i.e., T_{1} and T_{2} are not equivalent.

Thus, the decidability of the equivalence problem for $T_{1}, T_{2} \subseteq\{i, d\}^{*}$ is well known. For instance, it is decidable whether T_{1}, T_{2} are equivalent if, e.g., T_{1}, T_{2} are DCFLs, but undecidable if T_{1} is regular and T_{2} is an arbitrary CFL.

5.4 Regularity-Preserving Sets of Trajectories

Consider the following result of Mateescu et al. [147, Thm. 5.1]: if $L_{1} \omega_{T} L_{2}$ is regular for all regular languages L_{1}, L_{2}, then T is regular. This result is clear upon noting that for all $T, 0^{*} \mathrm{w}_{T} 1^{*}=T$.

However, in this section, we note that the same result does not hold if we replace "shuffle on trajectories" by "deletion along trajectories". In particular, we demonstrate a class of sets of trajectories \mathcal{H}, which contains non-regular languages, such that for all regular languages R_{1}, R_{2}, and for all $H \in \mathcal{H}, R_{1} \neg_{H} R_{2}$ is regular. We also characterize all $H \subseteq i^{*} d^{*}$ which preserve regularity (i.e., such that $R_{1} \neg_{H} R_{2}$ is regular for all regular languages R_{1}, R_{2}), and give some examples of non-CF trajectories which preserve regularity.

As motivation, we begin with a basic example. Let Σ be an alphabet. Let $H=\left\{i^{n} d^{n}: n \geq 0\right\}$. Note that

$$
R_{1} \leadsto_{H} R_{2}=\left\{x \in \Sigma^{*}: \exists y \in R_{2} \text { such that } x y \in R_{1} \text { and }|x|=|y|\right\} .
$$

We can establish directly (by constructing an NFA) that for all regular languages $R_{1}, R_{2} \subseteq \Sigma^{*}$, the language $R_{1} \neg_{H} R_{2}$ is regular. However, H is a non-regular CFL.

We remark that $R_{1} \neg_{H} R_{2}$ is similar to proportional removals studied by Stearns and Hartmanis [189], Amar and Putzolu [4, 5] Seiferas and McNaughton [180], Kosaraju [120, 121, 122], Kozen [123], Zhang [205], the author [35], Berstel et al. [17], and others. In particular, we note the case of $\frac{1}{2}(L)$, given by

$$
\frac{1}{2}(L)=\left\{x \in \Sigma^{*}: \exists y \in \Sigma^{*} \text { such that } x y \in L \text { and }|x|=|y|\right\} .
$$

Thus, $\frac{1}{2}(L)=L \sim_{H} \Sigma^{*}$. The operation $\frac{1}{2}(L)$ is one of a class of operations which preserve regularity. Seiferas and McNaughton completely characterize those binary relations $r \subseteq \mathbb{N}^{2}$ such
that the operation

$$
P(L, r)=\left\{x \in \Sigma^{*}: \exists y \in \Sigma^{*} \text { such that } x y \in L \text { and } r(|x|,|y|)\right\}
$$

preserves regularity.
Recall that a binary relation r on a set S is any subset of S^{2}. Call a binary relation $r \subseteq \mathbb{N}^{2}$ u.p.-preserving if A u.p. implies

$$
r^{-1}(A)=\{i: \exists j \in A \text { such that } r(i, j)\}
$$

is also u.p. ${ }^{1}$. Then, the binary relations r such that $P(\cdot, r)$ preserves regularity are precisely the u.p.-preserving relations [180].

We note the inclusion

$$
L_{1} \leadsto \sim_{H} L_{2} \subseteq \frac{1}{2}\left(L_{1}\right) \cap L_{1} / L_{2}
$$

holds for $H=\left\{i^{n} d^{n}: n \geq 0\right\}$. However, equality does not hold in general. Consider the languages $L_{1}=\left\{0^{2}, 0^{4}\right\}, L_{2}=\left\{0^{3}\right\}$. Then note that $0 \in \frac{1}{2}\left(L_{1}\right) \cap L_{1} / L_{2}$. However, $0 \notin L_{1} \neg_{H} L_{2}$. Thus, we note that $L_{1} \sim_{H} L_{2} \neq \frac{1}{2}\left(L_{1}\right) \cap L_{1} / L_{2}$ in general.

We now consider arbitrary relations $r \subseteq \mathbb{N}^{2}$ for which

$$
H_{r}=\left\{i^{n} d^{m}: r(n, m)\right\} \subseteq i^{*} d^{*}
$$

preserves regularity. By modifying the construction of Seiferas and McNaughton, we obtain the following result:

Theorem 5.4.1 Let $r \subseteq \mathbb{N}^{2}$ be a binary relation and $H_{r}=\left\{i^{n} d^{m}: r(n, m)\right\}$. The operation $\sim_{H_{r}}$ is regularity-preserving if and only if r is u.p.-preserving.

Proof. Assume that $\sim_{H_{r}}$ preserves regularity. Then $L \overbrace{H_{r}} \Sigma^{*}$ is regular for all regular languages L. But $L \sim_{H_{r}} \Sigma^{*}=P(L, r)$. Thus, r must be u.p.-preserving [180].

[^0]For the reverse implication, we modify the construction of Seiferas and McNaughton [180, Thm. 1]. Let L_{1}, L_{2} be regular languages. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ be the minimal complete DFA for L_{1}. Then, for each $q \in Q_{1}$, we let $L_{1}^{(q)}$ be the language accepted by the DFA $M_{1}^{(q)}=$ $\left(Q_{1}, \Sigma, \delta_{1}, q_{0},\{q\}\right)$. Let R_{q} be the language accepted by the DFA $N_{1}^{(q)}=\left(Q_{1}, \Sigma, \delta_{1}, q, F_{1}\right)$. Note that $L_{1}^{(q)}=\left\{w \in \Sigma^{*}: \delta\left(q_{0}, w\right)=q\right\}$ and $R_{q}=\left\{w \in \Sigma^{*}: \delta(q, w) \in F_{1}\right\}$.

As M_{1} is complete, $\Sigma^{*}=\bigcup_{q \in Q_{1}} L_{1}^{(q)}$. Thus,

$$
L_{1} \leadsto_{H_{r}} L_{2}=\bigcup_{q \in Q_{1}}\left(L_{1} \rightsquigarrow_{H_{r}} L_{2}\right) \cap L_{1}^{(q)} .
$$

It suffices to demonstrate that $\left(L_{1} \sim_{H_{r}} L_{2}\right) \cap L_{1}^{(q)}$ is regular. But we note that

$$
\begin{aligned}
\left(L_{1} \rightsquigarrow_{H_{r}} L_{2}\right) \cap L_{1}^{(q)} & =\left\{x \in L_{1}^{(q)}: \exists y \in L_{2} \text { such that } x y \in L_{1} \text { and } r(|x|,|y|)\right\} \\
& =\left\{x \in L_{1}^{(q)}: \exists y \in\left(R_{q} \cap L_{2}\right) \text { such that } r(|x|,|y|)\right\} \\
& =\left\{x \in \Sigma^{*}: \exists y \in\left(R_{q} \cap L_{2}\right) \text { such that } r(|x|,|y|)\right\} \cap L_{1}^{(q)} \\
& =\left\{x \in \Sigma^{*}:|x| \in r^{-1}\left(\left\{|y|: y \in\left(R_{q} \cap L_{2}\right)\right\}\right)\right\} \cap L_{1}^{(q)} .
\end{aligned}
$$

It is easy to see that if L is regular, $\{|y|: y \in L\}$ is a u.p. set. As r is u.p.-preserving, $r^{-1}(\{|y|: y \in$ $\left.\left.R_{q} \cap L_{2}\right)\right\}$) is also u.p.

Note that, in general, $L_{1} \sim_{H_{r}} L_{2} \neq P\left(L_{1}, r\right) \cap L_{1} / L_{2}$. Consider the following particular examples of regularity-preserving trajectories:
(a) Consider the relation $e=\left\{\left(n, 2^{n}\right): n \geq 0\right\}$. Then H_{e} preserves regularity (see, e.g., Zhang [205, Sect. 3]). However, H_{e} is not CF. The set H_{e} is, however, a linear conjunctive language (see Okhotin [160] for the definition of conjunctive and linear conjunctive languages, and for the proof that H_{e} is linear conjunctive).
(b) Consider the relation $f=\{(n, n!): n \geq 0\}$. Then H_{f} preserves regularity (see again Zhang [205, Thm. 5.1]). However, H_{f} is not a CFL, nor a linear conjunctive language [160].

Thus, there are non-CF trajectories which preserve regularity. Kozen states that there are even H_{r} which preserve regularity but are "highly noncomputable" [123, p. 3].

We can extend the class of non-regular sets of trajectories T such that $L_{1} \leadsto_{T} L_{2}$ is regular for all regular languages L_{1}, L_{2} by considering T such that $T \subseteq\left(d^{*} i^{*}\right)^{m} d^{*}$ for some $m \geq 1$ (The choice of $T \subseteq\left(d^{*} i^{*}\right)^{m} d^{*}$ rather than, e.g., $T \subseteq\left(i^{*} d^{*}\right)^{m}$ or $T \subseteq\left(d^{*} i^{*}\right)^{m}$ is arbitrary. The same type of formulation and arguments can be applied to these similar types of sets of trajectories). To consider such non-regular T, it will be advantageous to adopt the notations of Zhang [205] on boolean matrices. We summarize these notions below; for a full review, the reader may consult the original paper.

For any finite set Q, let $\mathcal{M}(Q)$ denote the set of square Boolean matrices indexed by Q. Let $\mathcal{V}(Q)$ denote the set of Boolean vectors indexed by Q. For an automaton over a set of states Q, we will associate with it matrices from $\mathcal{M}(Q)$ and vectors from $\mathcal{V}(Q)$.

In particular, let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Then for each $a \in \Sigma$, let $\nabla_{a} \in \mathcal{M}(Q)$ be the matrix defined by transitions on a, that is, $\nabla_{a}\left(q_{1}, q_{2}\right)=1$ if and only if $\delta\left(q_{1}, a\right)=q_{2}$. Let $\nabla=$ $\sum_{a \in \Sigma} \nabla_{a}$ (where addition is taken to be Boolean addition, i.e., $0+0=0,0+1=1+0=1+1=1$). Thus, $\nabla\left(q_{1}, q_{2}\right)=1$ if and only if there is some $a \in \Sigma$ such that $\delta\left(q_{1}, a\right)=q_{2}$. Note that taking powers of ∇ yields information on paths of different lengths: for all $i \geq 0, \nabla^{i}\left(q_{1}, q_{2}\right)=1$ if and only if there is a path of length i from q_{1} to q_{2}.

For any $Q^{\prime} \subseteq Q$, let $I_{Q^{\prime}} \in \mathcal{V}(Q)$ be the characteristic vector of Q^{\prime}, given by $I_{Q^{\prime}}(q)=1$ if and only if $q \in Q^{\prime}$. If Q^{\prime} is a singleton q, we denote $I_{\{q\}}$ by I_{q}. Note that if $Q_{1}, Q_{2} \subseteq Q$ and $i \geq 0$, then $I_{Q_{1}} \cdot \nabla^{i} \cdot I_{Q_{2}}^{t}=1$ if and only if there is a path of length i from some state in Q_{1} to some state in Q_{2} (here, I^{t} denotes the transpose of I).

Call a function $f: \mathbb{N} \rightarrow \mathbb{N}$ ultimately periodic with respect to powers of Boolean matrices [205], abbreviated m.u.p. (for "matrix ultimately periodic"), if, for all square Boolean matrices ∇, there exist natural numbers $e, p(p>0)$ such that for all $n \geq e$,

$$
\nabla^{f(n)}=\nabla^{f(n+p)}
$$

The functions n ! and 2^{n} are known to be m.u.p. [205].
Let $m \geq 1$. We will define a class of $T \subseteq\left(d^{*} i^{*}\right)^{m} d^{*}$ such that for all regular languages R_{1}, R_{2},
$R_{1} \sim_{T} R_{2}$ is regular. In particular, let $m \geq 1$, and let $f_{\ell}^{(j)}: \mathbb{N} \rightarrow \mathbb{N}$ be a m.u.p. function for each $1 \leq \ell \leq m+1$ and $1 \leq j \leq m$. Define $X_{\ell}: \mathbb{N}^{m} \rightarrow \mathbb{N}$ for $1 \leq \ell \leq m+1$ by

$$
\begin{equation*}
X_{\ell}\left(n_{1}, n_{2}, \ldots, n_{m}\right)=\sum_{j=1}^{m} f_{\ell}^{(j)}\left(n_{j}\right) \tag{5.2}
\end{equation*}
$$

We will use the abbreviation $\vec{n}=\left(n_{1}, n_{2}, \ldots, n_{m}\right)$. Finally, we define

$$
\begin{equation*}
T=\left\{\prod_{j=1}^{m}\left(d^{X_{j}(\vec{n})} i^{n_{j}}\right) d^{X_{m+1}(\vec{n})}: \vec{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m}\right\} . \tag{5.3}
\end{equation*}
$$

The set T satisfies our intuition that the ' i-portions' may not interact with each other, but may interact with any ' d-portion' they wish to. Our claim that these T preserve regularity is proven in the following theorem.

Theorem 5.4.2 Let $m \geq 1$, and $f_{\ell}^{(j)}$ be m.u.p. for $1 \leq \ell \leq m+1$ and $1 \leq j \leq m$. Let $T \subseteq$ $\left(d^{*} i^{*}\right)^{m} d^{*}$ be defined by (5.2) and (5.3). Then for all regular languages R_{1}, R_{2}, the language $R_{1} \neg_{T}$ R_{2} is regular.

In this section only, let $\mathbf{m}=\{0,1,2,3, \ldots, m\}$ for any $m \geq 1$.

Proof. Let $M_{i}=\left(Q_{i}, \Sigma, \delta_{i}, s_{i}, F_{i}\right)$ be a DFA accepting R_{i} for $i=1,2$. Let $M_{1,2}=\left(Q_{1} \times\right.$ $\left.Q_{2}, \Sigma, \delta_{0},\left[s_{1}, s_{2}\right], F_{1} \times F_{2}\right)$ where δ is given by $\delta_{0}\left(\left[q_{1}, q_{2}\right], a\right)=\left(\delta_{1}\left[q_{1}, a\right], \delta_{2}\left[q_{2}, a\right]\right)$ for all [$\left.q_{1}, q_{2}\right] \in Q_{1} \times Q_{2}$ and all $a \in \Sigma$. Note that $M_{1,2}$ accepts $R_{1} \cap R_{2}$. Let ∇ be the adjacency matrix for $M_{1,2}$. For each $1 \leq j \leq m$ and $1 \leq \ell \leq m+1$, let $e_{\ell}^{(j)}$ and $p_{\ell}^{(j)}$ be natural numbers such that $\nabla f_{\ell}^{(j)}(n)=\nabla f_{\ell}^{(j)}\left(n+p_{\ell}^{(j)}\right)$ for all $n \geq e_{\ell}^{(j)}$.

For all $1 \leq j \leq m$ and $1 \leq \ell \leq m+1$, let $g_{\ell}^{(j)}=e_{\ell}^{(j)}+p_{\ell}^{(j)}$ and define the set

$$
\mathfrak{M}(j, \ell)=\left\{\nabla_{\ell}^{f_{\ell}^{(j)}(i)}: 0 \leq i \leq g_{\ell}^{(j)}\right\} \times \mathbf{g}_{\ell}^{(\mathbf{j})} .
$$

We will define an NFA $M=(Q, \Sigma, \delta, S, F)$ which we claim accepts $R_{1} \neg_{T} R_{2}$. The NFA will be nondeterministic, and will also have multiple start states. It is well known that multiple start states do not affect the regularity of the language accepted (see, e.g., Yu [201, p. 54]); our presentation is chosen for ease of description.

We now proceed with defining M. Our state set Q is given by

$$
Q=\mathbf{m} \times\left(\prod_{\ell=1}^{m}\left(\prod_{j=1}^{m} \mathfrak{M}(j, \ell)\right) \times Q_{1}^{3} \times Q_{2}\right) \times \prod_{j=1}^{m} \mathfrak{M}(j, m+1) .
$$

Let $\mu_{j, \ell}=\left[\nabla^{f_{\ell}^{(j)}}(0), 0\right] \in \mathfrak{M}(j, \ell)$. Our set S of initial states is given by

$$
S=\{1\} \times\left(\prod_{\ell=1}^{m} \prod_{j=1}^{m} \mu_{j, \ell} \times\left\{[q, q]: q \in Q_{1}\right\} \times Q_{1} \times Q_{2}\right) \times \prod_{j=1}^{m} \mu_{j, m+1}
$$

To partially motivate this definition, the elements of the form Q_{1}^{3} will represent one path through M_{1} : the first element will represent our nondeterministic "guess" of where the path starts, the second state will actually trace the path through M_{1} (along a portion of our input word) and the third state represents our guess of where the path will end. Thus, during the course of our computation, the first and third elements are never changed; only the second is affected by the input word. The first and third elements are used to verify (once the computation has completed) that our guesses for the start and finish are correct, and that they correspond ("match up") with the guessed paths for the adjacent components. The elements of Q_{2} will represent our guesses of the intermediate points of the path through M_{2}; similarly to our guesses in Q_{1}, they will not change through the course of the computation.

Our set of final states F is given by those states of the form

$$
\{m\} \times\left[\left[\left[A_{\ell}^{(j)}, c_{\ell}^{(j)}\right]_{j=1}^{m} q_{\ell}^{(1)}, q_{\ell}^{(2)}, q_{\ell}^{(3)}, r_{\ell}\right]_{\ell=1}^{m},\left(A_{m+1}^{(j)}, c_{\ell}^{(j)}\right)_{j=1}^{m}\right],
$$

where the following conditions are met:
(F-i) for all $1 \leq \ell \leq m, I_{\left(q_{\ell-1}^{(3)}, r_{\ell-1}\right)} \cdot\left(\prod_{j=1}^{m} A_{\ell}^{(j)}\right) \cdot I_{\left(q_{\ell}^{(1)}, r_{\ell}\right)}^{t}=1$ (we let $q_{0}^{(3)}=s_{1}$, the start state of M_{1} and $r_{0}=s_{2}$ the start state of M_{2});
(F-ii) $I_{\left(q_{m}^{(3)}, r_{m}\right)} \cdot\left(\prod_{j=1}^{m} A_{m+1}^{(j)}\right) \cdot I_{F_{1} \times F_{2}}^{t}=1$;
(F-iii) for all $1 \leq \ell \leq m$, we have $q_{\ell}^{(2)}=q_{\ell}^{(3)}$.
We will see that the matrix $A_{\ell}^{(j)}$ will ensure there is a path of length $f_{\ell}^{(j)}\left(n_{j}\right)$ through $M_{1} \times M_{2}$. Thus, condition (F-i) will ensure that we have a path from our guessed end state of the previous i-portion
through to the guessed start state of the next i-portion. This will correspond to the presence of some word w of length $\sum_{j=1}^{m} f_{\ell}^{(j)}\left(n_{j}\right)$ which takes us M from the end state of the previous i-portion to the start of the next i-portion. The condition (F-ii) will ensure that the final d-portion ends in a final state in both M_{1} and M_{2}.

Condition (F-iii) verifies that the nondeterministic "guesses" for the end of each i-portion path is correct.

Finally, we may define the action of δ. We will adopt the convention of Zhang [205] and denote by $\langle c\rangle_{a}^{b}$ the quantity

$$
\langle c\rangle_{a}^{b}= \begin{cases}c & \text { if } c \leq a \\ a+((c-a) \bmod b) & \text { otherwise }\end{cases}
$$

Further, to describe the action of δ more easily, we introduce auxiliary functions $\Upsilon_{\ell, \alpha}$ for all $1 \leq \ell \leq m+1$ and $1 \leq \alpha \leq m$. In particular

$$
\Upsilon_{\ell, \alpha}: \prod_{j=1}^{m} \mathfrak{M}(j, \ell) \rightarrow \prod_{j=1}^{m} \mathfrak{M}(j, \ell)
$$

is given by

$$
\begin{aligned}
& \Upsilon_{\ell, \alpha}\left(\left[\nabla^{f_{\ell}^{(j)}\left(c_{\ell}^{(j)}\right)}, c_{\ell}^{(j)}\right]_{j=1}^{m}\right) \\
& \quad=\left[\left[\nabla^{f_{\ell}^{(j)}\left(c_{\ell}^{(j)}\right)}, c_{\ell}^{(j)}\right]_{j=1}^{\alpha-1}, \nabla^{f_{\ell}^{(\alpha)}\left(\left\langle c_{\ell}^{(\alpha)}+1\right\rangle_{\ell}^{(\alpha)}\right.},\left\langle c_{\ell}^{p_{\ell}^{(\alpha)}}+1\right\rangle_{e_{\ell}^{(\alpha)}}^{p_{\ell}^{(\alpha)}}\left[\nabla^{\left.f_{\ell}^{(j)}\right)\left(c_{\ell}^{(j)}\right)}, c_{\ell}^{(j)}\right]_{j=\alpha+1}^{m}\right] .
\end{aligned}
$$

Note that $\Upsilon_{\ell, \alpha}$ updates the α-th component, while leaving all other components unchanged.
Then we define δ by

$$
\begin{aligned}
& \delta\left(\left[\alpha,\left[\left[\nabla^{f_{\ell}^{(j)}\left(c_{\ell}^{(j)}\right)}, c_{\ell}^{(j)}\right]_{j=1}^{m}, p_{\ell}^{(1)}, p_{\ell}^{(2)}, p_{\ell}^{(3)}, r_{\ell}\right]_{\ell=1}^{m},\left[\nabla^{f_{m+1}^{(j)}\left(c_{m+1}^{(j)}\right)}, c_{m+1}^{(j)}\right]_{j=1}^{m}\right], a\right) \\
& =\left\{\left[\alpha+\beta,\left[\Upsilon_{\ell, \alpha+\beta}\left(\left[\nabla^{f_{\ell}^{(j)}}\left(c_{\ell}^{(j)}\right), c_{\ell}^{(j)}\right]_{j=1}^{m}\right), p_{\ell}^{(1)}, p_{\ell}^{(2)}, p_{\ell}^{(3)}, r_{\ell}\right]_{\ell=1}^{\alpha+\beta-1},\right.\right. \\
& \Upsilon_{\alpha+\beta, \alpha+\beta}\left(\left[\nabla^{f_{\alpha+\beta}^{(j)}\left(c_{\alpha+\beta}^{(j)}\right)}, c_{\alpha+\beta}^{(j)}\right]_{j=1}^{m}\right), p_{\alpha+\beta}^{(1)}, \delta_{1}\left(p_{\alpha+\beta}^{(2)}, a\right), p_{\alpha+\beta}^{(3)}, r_{\alpha+\beta} \\
& {\left[\Upsilon_{\ell, \alpha+\beta}\left(\left[\nabla^{f_{\ell}^{(j)}}\left(c_{\ell}^{(j)}\right), c_{\ell}^{(j)}\right]_{j=1}^{m}\right), p_{\ell}^{(1)}, p_{\ell}^{(2)}, p_{\ell}^{(3)}, r_{\ell}\right]_{\ell=\alpha+\beta+1}^{m},} \\
& \left.\left.\Upsilon_{m+1, \alpha+\beta}\left(\left[\nabla^{f_{m+1}^{(j)}\left(c_{m+1}^{(j)}\right)}, c_{m+1}^{(j)}\right]_{j=1}^{m}\right)\right]: 0 \leq \beta \leq m-\alpha\right\} .
\end{aligned}
$$

Note that, though the definition of δ is complicated, its action is straight-forward. The index α indicates the ' i-portion' which is currently receiving the input. Given that we are currently in the α-th i-portion, we may nondeterministically choose to move to any of the subsequent portions. The action of the function $\Upsilon_{\ell, \alpha}$ is to simulate the corresponding function f_{ℓ}^{α}.

We show that $L(M) \subseteq R_{1} \neg_{T} R_{2}$. If we arrive at a final state, by (F-i), for each $1 \leq \ell \leq m$ there is a word x_{ℓ} of length $X_{\ell}(\vec{n})$ which takes us from state $q_{\ell-1}^{(3)}$ to $q_{\ell}^{(1)}$ in M_{1} and also takes us from $r_{\ell-1}$ to r_{ℓ} in M_{2}. By the choice of S, δ and condition (F-iii), for each $1 \leq \ell \leq m$, there is a word w_{i} of length n_{i} which takes us from state $q_{\ell}^{(1)}$ to $q_{\ell}^{(3)}$. Further, the input word is of the form $w=w_{1} w_{2} \cdots w_{m}$. Finally, by (F-ii), there is a word x_{m+1} of length $X_{m+1}(\vec{n})$ which takes us from state q_{m} to a final state in M_{1} and from r_{m} to a final state in M_{2}. The situation is illustrated in Figure 5.1.

Figure 5.1: Construction of the words in M_{1} and M_{2} from the action of M.

Thus, we conclude that $x_{1} w_{1} \cdots x_{m} w_{m} x_{m+1} \in R_{1}, x_{1} \cdots x_{m+1} \in R_{2}$ and $\left|x_{\ell}\right|=X_{\ell}(\vec{n})$ for all $1 \leq \ell \leq m+1$. Thus, $w_{1} \cdots w_{m} \in R_{1} \neg_{T} R_{2}$. A similar argument, which is left to the reader, shows the reverse inclusion.

As an example, consider $m=1$ and let $f_{1}^{(1)}, f_{2}^{(2)}$ both be the identity function. Then the
conditions of Theorem 5.4.2 are met and $T=\left\{d^{n} i^{n} d^{n}: n \geq 0\right\}$. Consider then that

$$
R_{1} \sim_{T} \Sigma^{*}=\left\{x: \exists y, z \in \Sigma^{|x|} \text { such that } y x z \in R_{1}\right\} .
$$

This is the 'middle-thirds' operation, which is sometimes used as a challenge problem for undergraduates in formal language theory (see, e.g., Hopcroft and Ullman [68, Ex. 3.17]). We may immediately conclude that the regular languages are preserved under the middle-thirds operation.

We note that the condition that $\left(n_{1}, n_{2}, \ldots, n_{m}\right) \in \mathbb{N}^{m}$ in (5.3) can be replaced by the conditions that, for all $1 \leq j \leq m, n_{j} \in I_{j}$ for an arbitrary u.p. set $I_{j} \subseteq \mathbb{N}$. The construction adds considerable detail to the proof of Theorem 5.4.2, and is omitted. With this extension, we can also consider a class of examples given by Amar and Putzolu [5], which are equivalent to trajectories of the form

$$
A P\left(k_{1}, k_{2}, \alpha\right)=\left\{i^{m k_{1}} d^{m k_{2}+\alpha}: m \geq 0\right\}
$$

for fixed $k_{1}, k_{2}, \alpha \geq 0$ with $\alpha<k_{1}+k_{2}$. For any $k_{1}, k_{2}, \alpha \geq 0$, we can conclude that the operation \sim_{A} preserves regularity, where $A=A P\left(k_{1}, k_{2}, \alpha\right)$. This was established by Amar and Putzolu [5] by means of even linear grammars.

Pin and Sakarovitch use a very general and elegant method to prove that certain operations preserve regularity [165]. This method can be used to prove that certain operations which can be modeled by trajectories preserve regularity; it is not known whether the methods developed here can be extended to cover theses cases. For example, the let T_{ζ} be given by

$$
T_{\zeta}=\left\{d^{n k} i^{k} d^{n k}: k, n \geq 0,2 n+1 \text { is prime }\right\} .
$$

Then Pin and Sakarovitch prove that $L \overbrace{T_{\zeta}} \Sigma^{*}$ is regular for all regular languages L [165, p. 292] ${ }^{2}$.

[^1]
$5.5 i$-Regularity

Recall that a language $L \subseteq \Sigma^{*}$ is bounded if there exist $w_{1}, w_{2}, \ldots, w_{n} \in \Sigma^{*}$ such that $L \subseteq$ $w_{1}^{*} w_{2}^{*} \cdots w_{n}^{*}$. We say that L is letter-bounded ${ }^{3}$ if $w_{i} \in \Sigma$ for all $1 \leq i \leq n$.

We now define a class of letter-bounded sets of trajectories, called i-regular sets of trajectories, which will have strong closure properties. In particular, we can delete, along an i-regular set of letter-bounded trajectories, any language from a regular language and the resulting language will be regular. This will allow us in Section 7.3 to give positive decidability results for the related shuffle decomposition problem.

Let Δ_{m} be the alphabet $\Delta_{m}=\left\{\#_{1}, \#_{2}, \ldots, \#_{m}\right\}$ for any $m \geq 1$. We define a class of regular substitutions from $\left(d+\Delta_{m}\right)^{*}$ to $2^{(i+d)^{*}}$, denoted \mathfrak{S}_{m}, as follows: a regular substitution $\varphi:(d+$ $\left.\Delta_{m}\right)^{*} \rightarrow 2^{(i+d)^{*}}$ is in \mathfrak{S}_{m} if both
(a) $\varphi(d)=\{d\}$; and
(b) for all $1 \leq j \leq m$, there exist $a_{j}, b_{j} \in \mathbb{N}$ such that $\varphi\left(\#_{j}\right)=i^{a_{j}}\left(i^{b_{j}}\right)^{*}$.

For all $m \geq 1$, we also define a class of languages over the alphabet $d+\Delta_{m}$, denoted \mathfrak{T}_{m}, as the set of all languages $T \subseteq \#_{1} d^{*} \#_{2} d^{*} \cdots \#_{m-1} d^{*} \#_{m}$. Define the class of trajectories \mathfrak{I} as follows:

$$
\mathfrak{I}=\left\{T \subseteq\{i, d\}^{*}: \exists m \geq 1, T_{m} \in \mathfrak{T}_{m}, \varphi \in \mathfrak{S}_{m} \text { such that } T=\varphi\left(T_{m}\right)\right\}
$$

If $T \in \mathfrak{I}$, we say that T is i-regular. As we shall see, the condition that T be i-regular is sufficient for showing that $R \neg_{T} L$ is regular for all regular languages R and all languages L.

Theorem 5.5.1 Let $T \in \mathfrak{I}$. Then for all regular languages R and all languages $L, R \neg_{T} L$ is a regular language.

Proof. Let $T \in \mathfrak{I}$. Let $m \geq 1, T^{\prime} \in \mathfrak{T}_{m}$ and $\varphi \in \mathfrak{S}_{m}$ be such that $T=\varphi\left(T^{\prime}\right)$. Then we define $K(T) \subseteq \mathbb{N}^{m-1}$ as

$$
K(T)=\left\{\left(j_{1}, \ldots, j_{m-1}\right): \#_{1} d^{j_{1}} \#_{2} d^{j_{2}} \cdots \#_{m-1} d^{j_{m-1}} \#_{m} \in T^{\prime}\right\} .
$$

[^2]Let a_{j}, b_{j} be defined so that $\varphi\left(\#_{j}\right)=i^{a_{j}}\left(i^{b_{j}}\right)^{*}$ for all $1 \leq j \leq m$. Let $I_{j}=\left\{a_{j}+n b_{j}: n \geq 0\right\}$ for all $1 \leq j \leq m$.

Let R be regular and L be arbitrary. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA accepting R. For all $q_{j}, q_{k} \in Q$, let $R\left(q_{j}, q_{k}\right)=L\left(\left(Q, \Sigma, \delta, q_{j},\left\{q_{k}\right\}\right)\right)$. Note that

$$
R\left(q_{j}, q_{k}\right)=\left\{w \in \Sigma^{*}: q_{k} \in \delta\left(q_{j}, w\right)\right\} .
$$

For $I \subseteq \mathbb{N}$, let $R_{I}^{\prime}\left(q_{j}, q_{k}\right)=R\left(q_{j}, q_{k}\right) \cap\{x:|x| \in I\}$.
We now define the set $Q_{R}(T, L) \subseteq Q^{2 m-2}$:

$$
\begin{align*}
& Q_{R}(T, L)=\left\{\left(q_{1}, q_{2}, \ldots, q_{2 m-2}\right) \in Q^{2 m-2}\right. \\
& \left.\quad: \exists\left(k_{j}\right)_{j=1}^{m-1} \in K(T) \text { such that } L \cap \prod_{\ell=1}^{m-1} R_{\left\{k_{\ell}\right\}}^{\prime}\left(q_{2 \ell-1}, q_{2 \ell}\right) \neq \emptyset\right\} . \tag{5.4}
\end{align*}
$$

We claim that

$$
\begin{equation*}
R \leadsto_{T} L=\bigcup_{\substack{\left(q_{j}\right)_{j=1}^{2 m-2} \in \ell_{R}(T, L) \\ q_{f} \in F}}\left(\prod_{\ell=1}^{m-1} R_{I_{\ell}}^{\prime}\left(q_{2(\ell-1)}, q_{2 \ell-1}\right)\right) \cdot R_{I_{m}}^{\prime}\left(q_{2 m-2}, q_{f}\right) \tag{5.5}
\end{equation*}
$$

Let $x \in R \neg_{T} L$. Then we can write $x=x_{1} x_{2} \cdots x_{m}$ such that there exists some $z=$ $z_{1} z_{2} \cdots z_{m-1} \in L$ such that $y=x_{1} z_{1} x_{2} z_{2} \cdots x_{m-1} z_{m-1} x_{m} \in R$. Further, by the conditions on T, $\left(\left|z_{j}\right|\right)_{j=1}^{m-1} \in K(T)$ and $\left|x_{j}\right| \in I_{j}$ for all $1 \leq j \leq m$. We let $q \stackrel{x}{\vdash} q^{\prime}$ denote the fact that $\delta(q, x)=q^{\prime}$ in M. As $y \in R$, there are some $q_{1}, q_{2}, \ldots, q_{2 m-2}, q_{f} \in Q$ such that

$$
q_{0} \stackrel{x_{1}}{\vdash} q_{1} \stackrel{z_{1}}{\vdash} q_{2} \stackrel{x_{2}}{\vdash} \cdots \stackrel{x_{m-1}}{\vdash} q_{2 m-3} \stackrel{z_{m-1}}{\vdash} q_{2 m-2} \stackrel{x_{m}}{\vdash} q_{f}
$$

and $q_{f} \in F$. Then $z_{j} \in R_{\left\{\left|z_{j}\right|\right\}}^{\prime}\left(q_{2 j-1}, q_{2 j}\right)$ for all $1 \leq j \leq m-1, x_{j} \in R_{I_{j}}^{\prime}\left(q_{2(j-1)}, q_{2 j-1}\right)$ for all $1 \leq j \leq m-1$ and $x_{m} \in R_{I_{m}}^{\prime}\left(q_{2 m-2}, q_{f}\right)$. Further, note that

$$
z \in L \cap \prod_{\ell=1}^{m-1} R_{\{|z|\}}^{\prime}\left(q_{2 \ell-1}, q_{2 \ell}\right) .
$$

We conclude that $\left(q_{1}, q_{2}, \ldots, q_{2 m-2}\right) \in Q_{R}(T, L)$, as $\left(\left|z_{j}\right|\right)_{j=1}^{m-1} \in K(T)$, and thus x is contained in the right-hand side of (5.5).

For the reverse inclusion, let $\left(q_{1}, \ldots, q_{2 m-2}\right) \in Q_{R}(T, L)$ and $q_{f} \in F$. Let $\left(k_{1}, \ldots, k_{m-1}\right) \in$ $K(T)$ be a $(m-1)$-tuple which witnesses $\left(q_{1}, q_{2}, \ldots, q_{2 m-2}\right)$'s membership in $Q_{R}(T, L)$. Then we show that $\left(\prod_{\ell=1}^{m-1} R_{I_{\ell}}^{\prime}\left(q_{2(\ell-1)}, q_{2 \ell}\right)\right) R_{I_{m}}^{\prime}\left(q_{2 m-2}, q_{f}\right) \subseteq R \sim_{T} L$.

Let $z_{j} \in R_{\left\{k_{j}\right\}}^{\prime}\left(q_{2 j-1}, q_{2 j}\right)$ for all $1 \leq j \leq m-1$ be such that $z=z_{1} \cdots z_{m-1} \in L$. Such z_{j} exist by definition of $Q_{R}(T, L)$. Let $x_{j} \in R_{I_{j}}^{\prime}\left(q_{2(j-1)}, q_{2 j-1}\right)$ for all $1 \leq j \leq m-1$, and $x_{m} \in R_{I_{m}}^{\prime}\left(q_{2 m-2}, q_{f}\right)$ be arbitrary. Then

$$
q_{0} \stackrel{x_{1}}{\vdash} q_{1} \stackrel{z_{1}}{\vdash} q_{2} \stackrel{x_{2}}{\vdash} \stackrel{x_{m-1}}{\vdash} q_{2 m-3} \stackrel{z_{m-1}}{\vdash} q_{2 m-2} \stackrel{x_{m}}{\vdash} q_{f} .
$$

Thus, $y=x_{1} z_{1} \cdots x_{m-1} z_{m-1} x_{m} \in R$. Further, the length considerations are met by definition of I_{j} and $\left(k_{1}, k_{2}, \ldots, k_{m-1}\right) \in K(T)$. Thus $x \in y \neg_{T} z \subseteq R \neg_{T} L$.

Thus, since $Q_{R}(T, L)$ is finite, $R \neg_{T} L$ is a finite union of regular languages, and thus is regular.

Corollary 5.5.2 Let $T \subseteq\{i, d\}^{*}$ be a finite union of i-regular sets of trajectories. Then for all regular languages R and all languages L, the language $R \neg_{T} L$ is regular.

We note that if T is not i-regular, it may define an operation which does not preserve regularity in the sense of Theorem 5.5.1. In particular, from the proof of Theorem 5.3.2, we have that if $T=(d i)^{*}$,

$$
\left(a^{2}\right)^{*}\left(b^{2}\right)^{*} \neg_{T}\left\{a^{n} b^{n}: n \geq 0\right\}=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

a non-regular CFL. For $T=(i+d)^{*}$, we have that

$$
\left((a b)^{*} \#(a b)^{*} \neg_{T}\left\{a^{n} \# b^{n}: n \geq 0\right\}\right) \cap b^{*} a^{*}=\left\{b^{n} a^{n}: n \geq 0\right\} .
$$

Further, if T is letter-bounded but not i-regular, then T may not preserve regularity. Again, from the proof of Theorem 5.3.2, we have that if $T=\left\{i^{n} d i^{n}: n \geq 0\right\}$. Then $a^{*} \# b^{*} \neg_{T}\{\#\}=\left\{a^{n} b^{n}: n \geq\right.$ $0\}$. Note that in this case, the language $\{\#\}$ is a singleton. We also have that there is a non- i-regular set of trajectories,

$$
T=\left\{i^{n} d^{n} i^{n}: n \geq 0\right\}
$$

and a regular language R such that $R \leadsto_{T} \Sigma^{*}$ is not a regular language. In particular, we have the following example. Let $\Sigma=\{a, b, c\}$ and $R=a^{*} b c^{*}$. Then $R \neg_{T} \Sigma^{*}$ is not a regular language, as $\left(R \sim_{T} \Sigma^{*}\right) \cap a^{*} c^{*}=\left\{a^{n} c^{n}: n \geq 0\right\}$.

As an example of Theorem 5.5.1, consider $T=\left\{d^{n} i^{m} d^{n}: n, m \geq 0\right\}$. It is easily verified that $T \in \mathfrak{I}\left(\right.$ consider $T^{\prime}=\left\{\#_{1} d^{n} \#_{2} d^{n} \#_{3} \quad: n \geq 0\right\}$, and φ defined by $\varphi\left(\#_{1}\right)=\varphi\left(\#_{3}\right)=\{\epsilon\}$ and $\left.\varphi\left(\#_{2}\right)=i^{*}\right)$. Thus, the language $R \sim_{T} L$ is regular for all regular languages R and all languages L. For any language $L \subseteq \Sigma^{*}$, define $s q(L)=\left\{x^{2}: x \in L\right\}$. Consider then that

$$
R \sim_{T} s q(L)=\{w: v w v \in R, v \in L\} .
$$

This precisely defines the middle-quotient operation, which has been investigated by Meduna [153] for linear CFLs. Let $R \mid L$ denote the middle quotient of R by L, i.e., $R \mid L=R \neg_{T} s q(L)$. Thus, we can immediately conclude the following result, which was not considered by Meduna:

Theorem 5.5.3 Given a regular language R and arbitrary language L, the language $R \mid L$ is regular.

5.6 Filtering and Deletion along Trajectories

Recently, Berstel et al. [17] introduced the concept of filtering. Here we examine the notion of filtering, and show that it is a particular case of deletion along trajectories.

Given a sequence $s \subseteq \mathbb{N}$, and a word $w \in \Sigma^{*}$ with $w=w_{1} \cdots w_{n}, w_{i} \in \Sigma$, the filtering of w by s is given by $w[s]=w_{s_{0}} w_{s_{1}} \cdots w_{s_{k}}$ where k is such that $s_{k} \leq n<s_{k+1}$. For example, if $s=(1,2,4,7)$, then $a b c a c b[s]=a b a$. Filtering is extended monotonically to languages.

For every $s \subseteq \mathbb{N}$, let $\omega_{s}: \mathbb{N} \rightarrow\{i, d\}$ be given by $\omega_{s}(j)=i$ if $j \in s$ and $\omega_{s}(j)=d$ otherwise ${ }^{4}$. Let $T_{s} \subseteq\{0,1\}^{*}$ be defined by

$$
T_{s}=\left\{\prod_{j=0}^{n} \omega_{s}(j): n \geq 0\right\} .
$$

Then we clearly have that

$$
L[s]=L \overbrace{T_{s}} \Sigma^{*},
$$

[^3]for all sequences $s \subseteq \mathbb{N}$. Note that for all $s \subseteq \mathbb{N}$, T_{s} is prefix-closed (i.e., if $t_{1} \in T_{s}$ and t_{2} is a prefix of t_{1}, then $t_{2} \in T_{s}$).

For all sequences $s=\left(s_{j}\right)_{j \geq 1} \subseteq \mathbb{N}$, let $\partial s=\left((\partial s)_{j}\right)_{j \geq 1}$ be defined by $(\partial s)_{j}=s_{j+1}-s_{j}$ for $j \geq 1$. The sequence ∂s is called the differential sequence of s. A sequence $s \subseteq \mathbb{N}$ is said to be residually ultimately periodic if for each finite monoid F and each monoid morphism $\varphi: \mathbb{N} \rightarrow F$, $\varphi(s)$ is ultimately periodic.

Berstel et al. [17] characterize those sequences $s \subseteq \mathbb{N}$ which preserve regularity. In particular, a sequence s preserves regularity if and only if it is differentially residually ultimately periodic, i.e., the sequence ∂s is residually ultimately periodic.

5.7 Splicing on Routes

Splicing on routes was introduced by Mateescu [144] to model generalizations of the crossover splicing operation (see Mateescu [144] for a definition of the crossover splicing operation). Crossover splicing simulates the manner in which two DNA strands may be spliced together at multiple locations to form several new strands, see Mateescu for a discussion [144]. Splicing on routes has also been used to model dialogue in natural languages [12].

Splicing on routes generalizes the crossover splicing operation by specifying a set T of routes which restricts the way in which splicing can occur. The result is that specific sets of routes can simulate not only the crossover operation, but also such operations on DNA such as the simple splicing and the equal-length crossover operations (see Mateescu for details and definitions of these operations [144]). Splicing on routes is also a generalization of the shuffle on trajectories operation.

In this section, we consider the simulation of splicing on a route by shuffle and deletion along trajectories. We show that there exist three fixed weak codings $\pi_{1}, \pi_{2}, \pi_{3}$ such that for all routes t, we can simulate the splicing on t of two words w_{1}, w_{2} by a fixed combination of the shuffle and deletion of the same languages w_{1}, w_{2} along the trajectories $\pi_{1}(t), \pi_{2}(t), \pi_{3}(t)$. As a corollary, it is shown that every unary operation defined by splicing on routes can also be performed by a deletion
along trajectories.
We define the concept of splicing on routes, and note the difference between deletion along trajectories from splicing on routes, which allows discarding letters from either input word. In particular, a route is a word t specified over the alphabet $\{0, \overline{0}, 1, \overline{1}\}$, where, informally, 0,1 means insert the letter from the appropriate word, and $\overline{0}, \overline{1}$ means discard that letter and continue.

Formally, let $x, y \in \Sigma^{*}$ and $t \in\{0, \overline{0}, 1, \overline{1}\}^{*}$. We define the splicing of x and y, denoted $x \bowtie_{t} y$, recursively as follows: if $x=a x^{\prime}, y=b y^{\prime}(a, b \in \Sigma)$ and $t=c t^{\prime}(c \in\{0, \overline{0}, 1, \overline{1}\})$, then

$$
x \bowtie_{c t^{\prime}} y= \begin{cases}a\left(x^{\prime} \bowtie_{t^{\prime}} y\right) & \text { if } c=0 ; \\ \left(x^{\prime} \bowtie_{t^{\prime}} y\right) & \text { if } c=\overline{0} ; \\ b\left(x \bowtie_{t^{\prime}} y^{\prime}\right) & \text { if } c=1 ; \\ \left(x \bowtie_{t^{\prime}} y^{\prime}\right) & \text { if } c=\overline{1} .\end{cases}
$$

If $x=a x^{\prime}$ and $t=c t^{\prime}$, where $a \in \Sigma$ and $c \in\{0, \overline{0}, 1, \overline{1}\}$, then

$$
x \bowtie_{c t^{\prime}} \epsilon= \begin{cases}a\left(x^{\prime} \bowtie_{t^{\prime}} \epsilon\right) & \text { if } c=0 ; \\ \left(x^{\prime} \bowtie_{t^{\prime}} \epsilon\right) & \text { if } c=\overline{0} ; \\ \emptyset & \text { otherwise }\end{cases}
$$

If $y=b y^{\prime}$ and $t=c t^{\prime}$, where $a \in \Sigma$ and $c \in\{0, \overline{0}, 1, \overline{1}\}$, then

$$
\epsilon \bowtie_{c t^{\prime}} y= \begin{cases}b\left(\epsilon \bowtie_{t^{\prime}} y^{\prime}\right) & \text { if } c=1 \\ \left(\epsilon \bowtie_{t^{\prime}} y^{\prime}\right) & \text { if } c=\overline{1} \\ \emptyset & \text { otherwise }\end{cases}
$$

We have $x \bowtie_{\epsilon} y=\epsilon$ if $\{x, y\} \neq\{\epsilon\}$. Finally, we set $\epsilon \bowtie_{t} \epsilon=\epsilon$ if $t=\epsilon$ and \emptyset otherwise. We extend \bowtie_{t} to sets of trajectories and languages as expected:

$$
\begin{aligned}
x \bowtie_{T} y & =\bigcup_{t \in T} x \bowtie_{t} y \quad \forall T \subseteq\{0, \overline{0}, 1, \overline{1}\}^{*}, x, y \in \Sigma^{*} ; \\
L_{1} \bowtie_{T} L_{2} & =\bigcup_{\substack{x \in L_{1} \\
y \in L_{2}}} x \bowtie_{T} y .
\end{aligned}
$$

For example, if $x=a b c, y=c b c$ and $T=\{010011,0 \overline{1} 0 \overline{0} 11\}$, then $x \bowtie_{T} y=\{a c b c b c, a b b c\}$.

We now demonstrate that splicing on routes can be simulated by a combination of shuffle on trajectories and deletion along trajectories.

Theorem 5.7.1 There exist weak codings $\pi_{1}, \pi_{2}:\{0,1, \overline{0}, \overline{1}\}^{*} \rightarrow\{i, d\}^{*}$ and a weak coding $\pi_{3}:$ $\{0,1, \overline{0}, \overline{1}\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $t \in\{0, \overline{0}, 1, \overline{1}\}^{*}$, and for all $x, y \in \Sigma^{*}$, we have

$$
x \bowtie_{t} y=\left(x \leadsto_{\pi_{1}(t)} \Sigma^{*}\right) Ш_{\pi_{3}(t)}\left(y \sim_{\pi_{2}(t)} \Sigma^{*}\right)
$$

Proof. Let $\pi_{1}, \pi_{2}:\{0, \overline{0}, 1, \overline{1}\}^{*} \rightarrow\{i, d\}^{*}$ and $\pi_{3}:\{0, \overline{0}, 1, \overline{1}\} \rightarrow\{0,1\}^{*}$ be given by

$$
\begin{aligned}
& \pi_{1}(0)=i ; \pi_{1}(\overline{0})=d ; \pi_{1}(1)=\epsilon ; \pi_{1}(\overline{1})=\epsilon ; \\
& \pi_{2}(0)=\epsilon ; \pi_{2}(\overline{0})=\epsilon ; \pi_{2}(1)=i ; \pi_{2}(\overline{1})=d \\
& \pi_{3}(0)=0 ; \pi_{3}(\overline{0})=\epsilon ; \pi_{3}(1)=1 ; \pi_{3}(\overline{1})=\epsilon
\end{aligned}
$$

We first show the left-to-right inclusion. Let $z \in x \bowtie_{t} y$. The result is by induction on $|t|$. If $|t|=0$, then $x=y=z=\epsilon$. Thus, we can easily verify that $z \in\left(\epsilon \sim_{\epsilon} \epsilon\right) w_{\epsilon}\left(\epsilon \sim_{\epsilon} \epsilon\right)$.

Let $|t|>0$. Then $t=c t^{\prime}$ for $c \in\{0, \overline{0}, 1, \overline{1}\}$. We prove only the case where $c=0$ and $c=\overline{0}$. The other two cases are similar and are left to the reader.
(a) $c=0$. Then $x=a x^{\prime}$ and $z \in a\left(x^{\prime} \bowtie_{t^{\prime}} y\right)$ for some $x^{\prime} \in \Sigma^{*}$. Thus, $z=a z^{\prime}$ for some $z^{\prime} \in$ $\left(x^{\prime} \bowtie_{t^{\prime}} y\right)$. By induction, $z^{\prime} \in\left(x^{\prime} \leadsto_{\pi_{1}\left(t^{\prime}\right)} \Sigma^{*}\right) Ш_{\pi_{3}\left(t^{\prime}\right)}\left(y \leadsto_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}\right)$. Let $u \in x^{\prime} \leadsto_{\pi_{1}\left(t^{\prime}\right)} \Sigma^{*}$ and $v \in y \sim_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}$ be such that $z^{\prime} \in u Ш_{\pi_{3}\left(t^{\prime}\right)} v$.

Note that $\pi_{1}(t)=i \pi_{1}\left(t^{\prime}\right)$. Thus by definition of $\sim_{T}, a u \in x \sim_{\pi_{1}(t)} \Sigma^{*}$. Similarly, as $\pi_{2}(t)=$ $\pi_{2}\left(t^{\prime}\right), v \in y \leadsto_{\pi_{2}(t)} \Sigma^{*}$. Finally $\pi_{3}(t)=0 \pi_{3}\left(t^{\prime}\right)$. Thus, $a u Ш_{\pi_{3}(t)} v=a\left(u Ш_{\pi_{3}\left(t^{\prime}\right)} v\right) \ni a z^{\prime}=$ z. Thus, the result holds for $c=0$.
(b) $c=\overline{0}$. Then $x=a x^{\prime}$ and $z \in\left(x^{\prime} \bowtie_{t^{\prime}} y\right)$ for some $x^{\prime} \in \Sigma^{*}$. Thus, by induction $z \in$ $\left(x^{\prime} \leadsto_{\pi_{1}\left(t^{\prime}\right)} \Sigma^{*}\right) Ш_{\pi_{3}\left(t^{\prime}\right)}\left(y \sim_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}\right)$. Let $u \in x^{\prime} \leadsto_{\pi_{1}\left(t^{\prime}\right)} \Sigma^{*}$ and $v \in y \sim_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}$ be such that $z \in u Ш_{\pi_{3}\left(t^{\prime}\right)} v$.

Note in this case that $\pi_{1}(t)=d \pi_{1}\left(t^{\prime}\right)$. Thus, $u \in x \overbrace{\pi_{1}(t)} \Sigma^{*}$. Similarly, as $\pi_{2}(t)=\pi_{2}\left(t^{\prime}\right)$, $v \in y \sim_{\pi_{2}(t)} \Sigma^{*}$. Finally, $\pi_{3}(t)=\pi_{3}\left(t^{\prime}\right)$. Thus, $u Ш_{\pi_{3}(t)} v=u ш_{\pi_{3}\left(t^{\prime}\right)} v \ni z$. Thus, the result holds for $c=\overline{0}$.

We now prove the reverse inclusion. Let $z \in\left(x \neg_{\pi_{1}(t)} \Sigma^{*}\right) Ш_{\pi_{3}(t)}\left(y \leadsto_{\pi_{2}(t)} \Sigma^{*}\right)$. We show the result by induction on t. For $|t|=0, t=\epsilon$. Thus $\pi_{1}(t)=\pi_{2}(t)=\pi_{3}(t)=\epsilon$. By definition of ω_{t}, $L_{1} 山_{\epsilon} L_{2}$ is non-empty if and only if $\epsilon \in L_{1} \cap L_{2}$, which implies $z=\epsilon$. Thus, $\epsilon \in\left(x \neg_{\epsilon} \Sigma^{*}\right)$, and similarly for y in place of x. By definition of $\sim_{\overbrace{t}}$, this implies that $x=y=\epsilon$. Thus, $z \in x \bowtie_{t} y$, by definition. The inclusion is proven for $|t|=0$.

Let $|t|>0$. Thus, there is some $c \in\{0, \overline{0}, 1, \overline{1}\}$, and $t^{\prime} \in\{0, \overline{0}, 1, \overline{1}\}^{*}$ such that $t=c t^{\prime}$. We distinguish between four cases, for each choice of c in $\{0, \overline{0}, 1, \overline{1}\}$, however, we only prove the cases $c=0$ and $c=\overline{0}$. The other two cases are very similar, and are left to the reader.
(a) $c=0$. Note that $\pi_{1}(t)=i \pi_{1}\left(t^{\prime}\right), \pi_{2}(t)=\pi_{2}\left(t^{\prime}\right)$ and $\pi_{3}(t)=0 \pi_{3}\left(t^{\prime}\right)$. Let $u, v \in \Sigma^{*}$ be words such that $u \in x \sim_{\pi_{1}(t)} \Sigma^{*}, v \in y \sim_{\pi_{2}(t)} \Sigma^{*}$ and $z \in u Ш_{\pi_{3}(t)} v$.

As $\pi_{3}(t)=0 \pi_{3}\left(t^{\prime}\right)$, we have, by definition of w_{t}, that $u=a u^{\prime}, z=a z^{\prime}$ and $z^{\prime} \in u^{\prime} w_{\pi_{3}\left(t^{\prime}\right)} v$ for some $a \in \Sigma$ and $u^{\prime}, z^{\prime} \in \Sigma^{*}$. Now, as $a u^{\prime} \in x \sim_{i \pi_{1}\left(t^{\prime}\right)} \Sigma^{*}$, there exists $x^{\prime} \in \Sigma^{*}$ such that $x=a x^{\prime}$ and $u^{\prime} \in x^{\prime} \neg_{\pi_{1}\left(t^{\prime}\right)} \Sigma^{*}$. Also, note that $v \in y \neg_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}$. Thus, combining these yields that

$$
z^{\prime} \in\left(x^{\prime} \leadsto \pi_{1}\left(t^{\prime}\right) \Sigma^{*}\right) Ш_{\pi_{3}\left(t^{\prime}\right)}(y \overbrace{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}) .
$$

By induction, $z^{\prime} \in x^{\prime} \bowtie_{t^{\prime}} y$. Thus,

$$
z=a z^{\prime} \in a\left(x^{\prime} \bowtie_{t^{\prime}} y\right)=a x^{\prime} \bowtie_{0 t^{\prime}} y=x \bowtie_{t} y
$$

Thus, the inclusion is proven.
(b) $c=\overline{0}$. Then $\pi_{1}(t)=d \pi_{1}\left(t^{\prime}\right), \pi_{2}(t)=\pi_{2}\left(t^{\prime}\right)$ and $\pi_{3}(t)=\pi_{3}\left(t^{\prime}\right)$. Let $u, v \in \Sigma^{*}$ be such that $u \in x \sim_{\pi_{1}(t)} \Sigma^{*}, v \in y \sim_{\pi_{2}(t)} \Sigma^{*}$ and $z \in u Ш_{\pi_{3}(t)} v$.

As $u \in x \sim_{\pi_{1}(t)} \Sigma^{*}$, let $u_{0} \in \Sigma^{*}$ be such that $u \in x \sim_{\pi_{1}(t)} u_{0}$. As $\pi_{1}(t)=d \pi_{1}\left(t^{\prime}\right)$, there are some $b \in \Sigma, x^{\prime}, u_{0}^{\prime} \in \Sigma^{*}$ such that $x=b x^{\prime}, u_{0}=b u_{0}^{\prime}$ and $u \in x^{\prime} \overbrace{\pi_{1}\left(t^{\prime}\right)} u_{0}^{\prime}$. Thus, $u \in x^{\prime} \sim_{\pi_{1}\left(t^{\prime}\right)} \Sigma^{*}$. Note that $v \in y \leadsto_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}$. Thus, $z \in u Ш_{\pi_{3}\left(t^{\prime}\right)} v \subseteq\left(x^{\prime} \leadsto_{\pi_{1}\left(t^{\prime}\right)}\right.$ $\left.\Sigma^{*}\right) 山_{\pi_{3}\left(t^{\prime}\right)}\left(y \sim_{\pi_{2}\left(t^{\prime}\right)} \Sigma^{*}\right)$. By induction, $z \in x^{\prime} \bowtie_{t^{\prime}} y$. Thus, we can see that $\left(b x^{\prime} \bowtie_{t} y\right)=$ $x^{\prime} \bowtie_{t^{\prime}} y \ni z$. This proves the inclusion.

The result is now proven.

Corollary 5.7.2 There exist weak codings $\pi_{1}, \pi_{2}:\{0,1, \overline{0}, \overline{1}\}^{*} \rightarrow\{i, d\}^{*}$ and $\pi_{3}:\{0,1, \overline{0}, \overline{1}\}^{*} \rightarrow$ $\{0,1\}^{*}$ such that for all $T \subseteq\{0, \overline{0}, 1, \overline{1}\}^{*}$ and $L_{1}, L_{2} \subseteq \Sigma^{*}$,

$$
L_{1} \bowtie_{T} L_{2}=\bigcup_{t \in T}\left(L_{1} \leadsto_{\pi_{1}(t)} \Sigma^{*}\right) \varpi_{\pi_{3}(t)}\left(L_{2} \leadsto_{\pi_{2}(t)} \Sigma^{*}\right) .
$$

Unfortunately, the identity

$$
L_{1} \bowtie_{T} L_{2}=\left(L_{1} \sim_{\pi_{1}(T)} \Sigma^{*}\right) Ш_{\pi_{3}(T)}\left(L_{2} \leadsto_{\pi_{2}(T)} \Sigma^{*}\right)
$$

does not hold in general, even if L_{1}, L_{2} are singletons and $|T|=2$. For example, if $L_{1}=\{a b\}, L_{2}=$ $\{c d\}$ and $T=\{\overline{0} 01 \overline{1}, 0 \overline{01} 1\}$, then

$$
\begin{aligned}
L_{1} \bowtie_{T} L_{2} & =\{b c, a d\} \\
(L_{1} \leadsto \overbrace{\pi_{1}(T)} \Sigma^{*}) \uplus_{\pi_{3}(T)}\left(L_{2} \leadsto_{\pi_{2}(T)} \Sigma^{*}\right) & =\{a c, a d, b c, b d\} .
\end{aligned}
$$

However, if T is a unary set of routes, by which we mean that $T \subseteq\{0, \overline{0}\}^{*} \overline{1}^{*}$, then we have the following result, which is easily established:

Corollary 5.7.3 Let $T \subseteq\{0, \overline{0}\}^{*} \overline{1}^{*}$. Then for all $L \subseteq \Sigma^{*}$,

$$
L \bowtie_{T} \Sigma^{*}=L \leadsto_{\pi_{1}(T)} \Sigma^{*}
$$

We refer the reader to Mateescu [144] for a discussion of unary operations defined by splicing on routes. As an example, consider that with $T=\left\{0^{n} \overline{0}^{n}: n \geq 0\right\} \overline{1}^{*}, L \bowtie_{T} \Sigma^{*}=\frac{1}{2}(L)$, where $\frac{1}{2}(L)$ was given in Section 5.4.

5.8 Inverse Word Operations

In this section, we show that deletion along trajectories constitutes the inverse of shuffle on trajectories, in the sense introduced by Kari [106].

We now define a word operation for our purposes. Given an alphabet Σ^{*}, a word operation is any binary function $\diamond:\left(\Sigma^{*}\right)^{2} \rightarrow 2^{\Sigma^{*}}$. We usually denote a word operation as an infix operator. A word operation is extended to languages in a monotone way, as we have already seen for shuffle and deletion along trajectories: given $L_{1}, L_{2} \subseteq \Sigma^{*}$,

$$
L_{1} \diamond L_{2}=\bigcup_{\substack{x \in L_{1} \\ y \in L_{2}}} x \diamond y
$$

Note that unlike Hsiao et al. [69], we do not make any assumptions about the action of \diamond on ϵ as an argument.

5.8.1 Left Inverse

Given two binary word operations $\diamond, \star:\left(\Sigma^{*}\right)^{2} \rightarrow 2^{\Sigma^{*}}$, we say that \diamond is a left-inverse of $\star[106$, Defn. 4.1] if, for all $u, v, w \in \Sigma^{*}$,

$$
w \in u \star v \Longleftrightarrow u \in w \diamond v .
$$

For instance, the operations of concatenation and right-quotient are left-inverses of each other, as $w=u v$ iff $u \in w / v$.

Let $\tau:\{0,1\}^{*} \rightarrow\{i, d\}^{*}$ be the morphism given by $\tau(0)=i$ and $\tau(1)=d$. Then we have the following characterization of left-inverses:

Theorem 5.8.1 Let $T \subseteq\{0,1\}^{*}$ be a set of trajectories. Then \boldsymbol{w}_{T} and $\leadsto_{\tau(T)}$ are left-inverses of each other.

Proof. We show that for all $t \in\{0,1\}^{*}, w \in u \omega_{t} v \Longleftrightarrow u \in w \sim_{\tau(t)} v$. The proof is by induction on $|w|$. For $|w|=0$, we have $w=\epsilon$. Thus, by definition of w_{t} and \sim_{t}, we have that

$$
\epsilon \in u \boldsymbol{w}_{t} v \Longleftrightarrow u=v=t=\epsilon \Longleftrightarrow u \in\left(\epsilon \sim_{\tau(t)} v\right) .
$$

Let $w \in \Sigma^{*}$ with $|w|>0$ and assume that the result is true for all words shorter than w. Let $w=a w^{\prime}$ for $a \in \Sigma$.

First, assume that $a w^{\prime} \in u w_{t} v$. As $|t|=|w|$, we have that $t \neq \epsilon$. Let $t=e t^{\prime}$ for some $e \in\{0,1\}$. There are two cases:
(a) If $e=0$, then we have that $u=a u^{\prime}$ and that $w^{\prime} \in u^{\prime} w_{t^{\prime}} v$. By induction, $u^{\prime} \in w^{\prime} \sim_{\tau\left(t^{\prime}\right)} v$. Thus,

$$
\begin{aligned}
w \sim_{\tau(t)} v & =\left(a w^{\prime} \sim_{i \tau\left(t^{\prime}\right)} v\right) \\
& =a\left(w^{\prime} \sim_{\tau\left(t^{\prime}\right)} v\right) \ni a u^{\prime}=u .
\end{aligned}
$$

(b) If $e=1$, then we have that $v=a v^{\prime}$ and $w^{\prime} \in u \boldsymbol{w}_{t^{\prime}} v^{\prime}$. By induction, $u \in w^{\prime} \sim_{\tau\left(t^{\prime}\right)} v^{\prime}$. Thus,

$$
\begin{aligned}
w \neg_{\tau(t)} v & =\left(a w^{\prime} \neg_{d \tau\left(t^{\prime}\right)} a v^{\prime}\right) \\
& =\left(w^{\prime} \neg_{\tau\left(t^{\prime}\right)} v^{\prime}\right) \ni u .
\end{aligned}
$$

Thus, we have that in both cases $u \in w \sim_{\tau(t)} v$.
Now, let us assume that $u \in w \sim_{\tau(t)} v$. As $|t|=|\tau(t)|=|w| \geq 1$, let $t=e t^{\prime}$ for some $e \in\{0,1\}$. We again have two cases:
(a) If $e=0$, then $\tau(e)=i$. Then necessarily $u=a u^{\prime}$, and $u^{\prime} \in w^{\prime} \neg_{\tau\left(t^{\prime}\right)} v$. By induction $w^{\prime} \in u^{\prime} w_{t^{\prime}} v$. Thus,

$$
\begin{aligned}
u w_{t} v & =\left(a u^{\prime} w_{0 t^{\prime}} v\right) \\
& =a\left(u^{\prime} w_{t^{\prime}} v\right) \ni a w^{\prime}=w .
\end{aligned}
$$

(b) If $e=1$, then $\tau(e)=d$. Then necessarily $v=a v^{\prime}$, and $u \in\left(w^{\prime} \neg_{\tau\left(t^{\prime}\right)} v^{\prime}\right)$. By induction, $w^{\prime} \in u w_{t^{\prime}} v^{\prime}$. Thus,

$$
\begin{aligned}
u ш_{t} v & =\left(u ш_{1 t^{\prime}} a v^{\prime}\right) \\
& =a\left(u Ш_{t^{\prime}} v^{\prime}\right) \ni a w^{\prime}=w .
\end{aligned}
$$

Thus $w \in u \boldsymbol{w}_{t} v$. This completes the proof.
We note that Theorem 5.8.1 agrees with the observations of Kari [106, Obs. 4.7].

5.8.2 Right Inverse

Given two binary word operations $\diamond, \star:\left(\Sigma^{*}\right)^{2} \rightarrow 2^{\Sigma^{*}}$, we say that \diamond is a right-inverse $[106$, Defn. 4.1] of \star if, for all $u, v, w \in \Sigma^{*}$,

$$
w \in u \star v \Longleftrightarrow v \in u \diamond w
$$

Let \diamond be a binary word operation. The word operation \diamond^{r} given by $u \diamond^{r} v=v \diamond u$ is called reversed \diamond [106].

Let $\pi:\{0,1\}^{*} \rightarrow\{i, d\}^{*}$ be the morphism given by $\pi(0)=d$ and $\pi(1)=i$. We can repeat the above arguments for right-inverses instead of left-inverses:

Theorem 5.8.2 Let $T \subseteq\{0,1\}^{*}$ be a set of trajectories. Then $Ш_{T}$ and $\left(\sim_{\pi(T)}\right)^{r}$ are right-inverses of each other.

Proof. Let $\operatorname{sym}_{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be the morphism defined by $\operatorname{sym}_{s}(0)=1$ and $\operatorname{sym}_{s}(1)=0$. Then it is easy to note (cf., Mateescu et al. [147, Rem. 4.9(i)]) that

$$
x \in u Ш_{t} v \Longleftrightarrow x \in v Ш_{\operatorname{sym}_{s}(t)} u
$$

Thus, using Theorem 5.8.1, we note that

$$
\begin{aligned}
x \in u Ш_{t} v & \Longleftrightarrow x \in v Ш_{\operatorname{sym}_{s}(t)} u \\
& \Longleftrightarrow v \in x \sim_{\tau\left(\operatorname{sym}_{s}(t)\right)} u \\
& \Longleftrightarrow v \in u\left(\sim_{\tau\left(\operatorname{sym}_{s}(t)\right)}\right)^{r} x .
\end{aligned}
$$

Thus, the result follows on noting that $\pi \equiv \tau \circ \operatorname{sym}_{s}$.

This again agrees with the observations of Kari [106, Obs. 4.4].
We also consider the right-inverse of \sim_{T} for all $T \subseteq\{i, d\}^{*}$. However, unlike the left-inverse of \neg_{T}, the right-inverse of \neg_{T} is again a deletion operation. Let $\operatorname{sym}_{d}:\{i, d\}^{*} \rightarrow\{i, d\}^{*}$ be the morphism given by $s y m_{d}(i)=d$ and $s y m_{d}(d)=i$.

Theorem 5.8.3 Let $T \subseteq\{i, d\}^{*}$ be a set of trajectories. The operation \sim_{T} has right-inverse
$\sim_{s y m_{d}(T)}$.

Proof. By Theorems 5.8.2 and 5.8.1, we note that

$$
\begin{aligned}
x \in y \sim_{t} z & \Longleftrightarrow y \in x \amalg_{\tau^{-1}(t)} z \\
& \Longleftrightarrow z \in y \sim_{\pi_{\left(\tau^{-1}(t)\right)}} x
\end{aligned}
$$

The result follows on noting that $\pi \circ \tau^{-1} \equiv \operatorname{sym}_{d}$.
We note that Theorem 5.8.3 agrees with the observations of Kari [106, Obs. 4.4].

5.9 Conclusions

We have defined deletion along trajectories, and examined its closure properties. Deletion along trajectories is shown to be a useful generalization of the many deletion-like operations which have been studied in the literature. The closure properties of deletion along trajectories differ from that of shuffle on trajectories in that there exist non-regular and non-CF sets of trajectories which define deletion operations which preserve regularity.

We have also demonstrated that shuffle on trajectories and deletion along trajectories form mutual inverses of each other in the sense of Kari [106]. In Chapter 7, we will use the fact that shuffle and deletion along trajectories are mutual inverses of each other to solve language equations involving these operations. In Chapter 6, we will use the inverse characterizations to allow us to prove positive decidability results.

[^0]: ${ }^{1}$ Recall that u.p. (ultimately periodic) was defined in Section 2.1.

[^1]: ${ }^{2}$ Note that the definition of T_{ζ} given here matches that given by Pin and Sakarovitch [165]. In a preliminary version [166], a different deletion operation is defined which can be modeled by a set of trajectories to which Theorem 5.5.1 below can be applied.

[^2]: ${ }^{3}$ The term strictly bounded is sometimes used for this situation, e.g, Dassow et al. [32]. However, other sources, e.g., Harju and Karhumäki [60] and Mateescu et al. [150] use the same term differently.

[^3]: ${ }^{4}$ That is, ω_{s} is the characteristic ω-word of s over $\{i, d\}$.

