
Chapter 5

Deletion along Trajectories

5.1 Introduction

As we have seen, shuffle on trajectories is a powerful method for unifying operations which insert

all the letters of one word into another. Concurrent to this research, Kari and others [106, 117]

have done research into the inverses of insertion- and shuffle-like operations, which have yielded

decidability results for language equations such as X L = R where L , R are regular languages and

X is unknown. The inverses of insertion- and shuffle-like operations are deletion-like operations

such as deletion, quotient, scattered deletion and bi-polar deletion [106].

In this chapter, we introduce the notion of deletion along trajectories, which is the analogous

notion to shuffle on trajectories for deletion-like operations. We show how it unifies operations

such as deletion, quotient, scattered deletion and others. We investigate the closure properties of

deletion along trajectories. We also show how each shuffle operation based on a set of trajectories

T has an inverse operation (both right and left inverse, see Section 5.8), defined by a deletion along

a renaming of T . This yields the result that it is decidable whether language equations of the form

L T X = R for regular languages L and R have a solution X , for any regular set T of trajectories.

We also investigate those T which are not regular but for which the deletion along the set of

trajectories T preserves regularity. Theorems 5.4.1 and 5.4.2 explicitly define classes of sets of

55

CHAPTER 5. DELETION ALONG TRAJECTORIES 56

trajectories, which include non-regular sets, which preserve regularity.

5.2 Definitions

We now give the main definition of this chapter, called deletion along trajectories, which models

deletion operations controlled by a set of trajectories. Let x, y ∈ 6∗ be words with x = ax ′, y = by′

(a, b ∈ 6). Let t be a word over {i, d} such that t = et ′ with e ∈ {i, d}. Then we define x ;t y,

the deletion of y from x along trajectory t , as follows:

x ;t y =























a(x ′
;t ′ by′) if e = i ;

x ′
;t ′ y′ if e = d and a = b;

∅ otherwise.

Also, if x = ax ′ (a ∈ 6) and t = et ′ (e ∈ {i, d}), then

x ;t ǫ =











a(x ′
;t ′ ǫ) if e = i ;

∅ otherwise.

If x 6= ǫ, then x ;ǫ y = ∅. Further, ǫ ;t y = ǫ if t = y = ǫ. Otherwise, ǫ ;t y = ∅.

Example 5.2.1: Let x = abcabc, y = bac and t = (id)3. Then we have that x ;t y = acb. If

t = i2d3i then x ;t y = ∅. 2

Let T ⊆ {i, d}∗. Then

x ;T y =
⋃

t∈T

x ;t y.

We extend this to languages as expected: Let L1, L2 ⊆ 6∗ and T ⊆ {i, d}∗. Then

L1 ;T L2 =
⋃

x∈L1
y∈L2

x ;T y.

Note that ;T is neither an associative nor a commutative operation on languages, in general. We

consider the following examples of deletion along trajectories (for any operations not defined, we

refer the reader to the appropriate paper cited below):

CHAPTER 5. DELETION ALONG TRAJECTORIES 57

(a) if T = i∗d∗, then ;T = /, the right-quotient operation;

(b) if T = d∗i∗, then ;T = \, the left-quotient operation;

(c) if T = i∗d∗i∗, then ;T =→, the deletion operation (see, e.g., Kari [103, 106]);

(d) if T = (i + d)∗, then ;T =;, the scattered deletion operation (see, e.g., Ito et al. [79]);

(e) if T = d∗i∗d∗, then ;T =⇋, the bi-polar deletion operation (see, e.g., Kari [106]);

(f) let k ≥ 0 and Tk = i∗d∗i≤k . Then ;Tk
=→k , the k-deletion operation (see, e.g., Kari and

Thierrin [114]).

Also, we note the difference between deletion along trajectories from the operation splicing on

routes defined by Mateescu [144], which is a generalization of shuffle on trajectories which allows

discarding letters from either input word. Splicing on routes serves to generalize the crossover

operation used in DNA computing by restricting the manner in which it may combine letters, in a

manner similar to how shuffle on trajectories restricts the way in which the shuffle operator may

combine letters (see Mateescu [144] for details and a definition of the crossover operation).

5.3 Closure and Characterization Results

The following lemma is proven by a direct construction:

Lemma 5.3.1 If T ,L1, L2 are regular, then L1 ;T L2 is also regular.

Proof. Let M1, M2, MT be DFAs for L1, L2, T , respectively, with

M j = (Q j ,6, δ j , q j , F j), for j = 1, 2, and

MT = (QT , {i, d}, δT , qT , FT).

Let M = (Q1 × Q2 × QT ,6, δ, [q1, q2, qT], F1 × F2 × FT) be an NFA with δ given by

δ([q j , qk, qℓ], a) = {[δ1(q j , a), qk, δT (qℓ, i)]}

CHAPTER 5. DELETION ALONG TRAJECTORIES 58

for all [q j , qk, qℓ] ∈ Q1 × Q2 × QT and a ∈ 6. Further,

δ([q j , qk, qℓ], ǫ) = {[δ1(q j , a), δ2(qk, a), δT (qℓ, d)] : a ∈ 6}

for all [q j , qk, qℓ] ∈ Q1 × Q2 × QT . We can verify that M accepts L1 ;T L2.

We now show that if any one of L1, L2 or T is non-regular, then L1 ;T L2 may not be regular:

Theorem 5.3.2 There exist languages L1, L2 and a set of trajectories T ⊆ {i, d}∗ satisfying each

of the following:

(a) L1 is a CFL, L2 is a singleton and T is regular, but L1 ;T L2 is not regular;

(b) L1, T are regular, and L2 is a CFL, but L1 ;T L2 is not regular;

(c) L1 is regular, L2 is a singleton, and T is a CFL, but L1 ;T L2 is not regular.

In each case, the CFL may be chosen to be an LCFL.

Proof. We first note the following identity:

L ;i∗ {ǫ} = L .

Thus, if we take any non-regular (linear) CFL L , we can establish (a).

For (b), we take the following languages:

L1 = (a2)∗(b2)∗,

T = (di)∗,

L2 = {anbn : n ≥ 0}.

Note that L2 is a non-regular (linear) CFL. With these languages, we have that L1 ;T L2 = L2.

Finally, to establish part (c), we take

L1 = a∗#b∗,

T = {indin : n ≥ 0},

L2 = {#}.

CHAPTER 5. DELETION ALONG TRAJECTORIES 59

We note that T is a non-regular linear CFL, and that

L1 ;T L2 = {anbn : n ≥ 0}.

This establishes the theorem.

In Section 5.4, we discuss non-regular sets of trajectories which preserve regularity. Recall that

a weak coding is a morphism π : 6∗ → 1∗ such that π(a) ∈ 1 ∪ {ǫ} for all a ∈ 6. We have the

following characterization of deletion along trajectories:

Theorem 5.3.3 Let 6 be an alphabet. There exist weak codings ρ1, ρ2, τ, ϕ and a regular language

R such that for all L1, L2 ⊆ 6∗ and all T ⊆ {i, d}∗,

L1 ;T L2 = ϕ
(

ρ−1
1 (L1) ∩ ρ−1

2 (L2) ∩ τ−1(T) ∩ R
)

.

Proof. Let 6̂ = {â : a ∈ 6} be a copy of 6. Define the morphism ρ1 : (6̂ ∪6 ∪{i, d})∗ → 6∗ as

follows: ρ1(â) = ρ1(a) = a for all a ∈ 6 and ρ1(i) = ρ1(d) = ǫ. Define ρ2 : (6̂ ∪ 6 ∪ {i, d})∗ →

6∗ as follows: ρ2(â) = a for all a ∈ 6, ρ2(a) = ǫ for all a ∈ 6 and ρ2(d) = ρ2(i) = ǫ.

Define τ : (6̂ ∪ 6 ∪ {i, d})∗ → {i, d}∗ as follows: τ(â) = τ(a) = ǫ for all a ∈ 6, τ(i) = i and

τ(d) = d. We define ϕ : (6̂∪6∪{i, d})∗ → 6∗ as ϕ(â) = ǫ for all a ∈ 6, ϕ(a) = a for all a ∈ 6,

and ϕ(i) = ϕ(d) = ǫ. Finally, we note that the result can be proven by letting R = (i6 + d6̂)∗.

Thus, we have the following corollary:

Corollary 5.3.4 Let C be a cone. Let L1, L2, T be languages such that two are regular and the

third is in C. Then L1 ;T L2 ∈ C.

Note that the closure of cones under quotient with regular sets [68, Thm. 11.3] is a specific

instance of Corollary 5.3.4. Lemma 5.3.1 can also be proven by appealing to Theorem 5.3.3. We

also note that the CFLs are a cone, thus we have the following corollary (a direct construction is

also possible):

Corollary 5.3.5 Let T, L1, L2 be languages such that one is a CFL and the other two are regular

languages. Then L1 ;T L2 is a CFL.

CHAPTER 5. DELETION ALONG TRAJECTORIES 60

The following result shows that if any of the conditions of Corollary 5.3.5 are not met, the result

might not hold:

Theorem 5.3.6 There exist languages L1, L2 and a set of trajectories T ⊆ {i, d}∗ satisfying each

of the following:

(a) L1, L2 are (linear) CFLs and T is regular, but L1 ;T L2 is not a CFL;

(b) L1, T are (linear) CFLs, and L2 is a singleton, but L1 ;T L2 is not a CFL;

(c) L1 is regular, L2, T are (linear) CFLs, but L1 ;T L2 is not a CFL.

Proof. (a) The result is immediate, since it is known (see, e.g., Ginsburg and Spanier [52, Thm.

3.4]) that the CFLs are not closed under right quotient (given by the set of trajectories T = i∗d∗).

The languages described by Ginsburg and Spanier which witness this non-closure are linear CFLs.

(b) Let 6 = {a, b, c, #} and define L1, L2 ⊆ 6∗ and T ⊆ {i, d}∗ by

L1 = {anbn#cm : n, m ≥ 0};

L2 = {#};

T = {i2ndin : n ≥ 0}.

Note that L1, T are indeed linear CFLs. Then we can verify that

L1 ;T L2 = {anbncn : n ≥ 0},

which is not a CFL.

(c) Let 6 = {a, b, c, #}. Then let

L1 = (a2)∗(b2)∗#c∗;

L2 = {anbn# : n ≥ 0};

T = {(di)2ndin : n ≥ 0}.

Then we can verify that L1 ;T L2 = {anbncn : n ≥ 0}, which is not a CFL. This completes the

proof.

CHAPTER 5. DELETION ALONG TRAJECTORIES 61

Note that the CSLs are not a cone, since it is known that they are not closed under arbitrary

morphism (see, e.g., Mateescu and Salomaa [148, Thm. 2.12] for the closure properties of the

CSLs). Thus, Corollary 5.3.4 does not apply to the CSLs. In fact, it is also known that the CSLs are

not closed under (left or right) quotient with regular languages.

5.3.1 Recognizing Deletion Along Trajectories

We now consider the problem of giving a monoid recognizing deletion along trajectories, when the

languages and set of trajectories under consideration are regular. Harju et al. [61] give a monoid

which recognizes L1 T L2 when L1, L2 and T are regular.

For a background on recognition of formal languages by monoids, please consult Pin [164]. A

monoid is a semigroup with unit element. Let L ⊆ 6∗ be a language. We say that a monoid M

recognizes L if there exists a morphism ϕ : 6∗ → M and a subset F ⊆ M such that L = ϕ−1(F).

The following is a characterization of the regular languages due to Kleene (see, e.g., Pin [164,

p. 17]):

Theorem 5.3.7 A language is regular if and only if it is recognized by a finite monoid.

Consider arbitrary regular languages L1, L2 ⊆ 6∗ and T ⊆ {i, d}∗. Then our goal is to construct

a monoid recognizing L1 ;T L2.

Let M1, M2, MT be finite monoids recognizing L1, L2, LT , with morphisms ϕ j : 6∗ → M j for

j = 1, 2, ϕT : {i, d}∗ → MT and subsets F1, F2, FT , respectively.

As in Harju et al. [61], we consider the monoid P(M1 × M2 × MT) consisting of all subsets

of M1 × M2 × MT . The monoid operation is given by AB = {xy : x ∈ A, y ∈ B} for all

A, B ∈ P(M1 × M2 × MT), and the product of elements of M1 × M2 × MT is defined component-

wise.

We can now establish that P(M1 × M2 × MT) recognizes L1 ;T L2. We first define a subset

D ⊆ M1 × M2 × MT which will be useful:

D = {[ϕ1(x), ϕ2(x), ϕT (d |x |)] : x ∈ 6∗}.

CHAPTER 5. DELETION ALONG TRAJECTORIES 62

Then we define ϕ : 6∗ → P(M1 × M2 × MT) by giving its action on each element a ∈ 6:

ϕ(a) = {[ϕ1(xa), ϕ2(x), ϕT (d |x |i)] : x ∈ 6∗}.

Then, we note that for all y ∈ 6∗,

ϕ(y)D = {[ϕ1(α), ϕ2(β), ϕT (t)] : y ∈ α ;t β, α, β ∈ 6∗, t ∈ {i, d}∗}. (5.1)

Thus, it suffices to take

F = {K ∈ P(M1 × M2 × MT) : K D ∩ (F1 × F2 × FT) 6= ∅}.

Thus, considering (5.1), we have that

L1 ;T L2 = ϕ−1(F).

This establishes the following result:

Lemma 5.3.8 Let L j be a regular language recognized by M j for j = 1, 2 and T ⊆ {i, d}∗ be

a regular set of trajectories recognized by the monoid MT . Then P(M1 × M2 × MT) recognizes

L1 ;T L2.

Thus, Lemma 5.3.8 gives another proof of Lemma 5.3.1.

5.3.2 Equivalence of Trajectories

We briefly note that two sets of trajectories over {i, d} define the same deletion operation if and

only if they are equal. More precisely, if T1, T2 ⊆ {i, d}∗, say that T1 and T2 are equivalent if

L1 ;T1
L2 = L1 ;T2

L2 for all languages L1, L2.

Lemma 5.3.9 Let T1, T2 ⊆ {i, d}∗. Then T1 and T2 are equivalent if and only if T1 = T2.

Proof. If T1 = T2 then clearly T1 and T2 are equivalent. If T1 and T2 are not equal, then without

loss of generality, let t ∈ T1 − T2. Let n = |t|i and m = |t|d . Then it is not hard to see that

in ∈ {t} ;T1
{dm}, but that in /∈ {t} ;T2

{dm}, i.e., T1 and T2 are not equivalent.

CHAPTER 5. DELETION ALONG TRAJECTORIES 63

Thus, the decidability of the equivalence problem for T1, T2 ⊆ {i, d}∗ is well known. For

instance, it is decidable whether T1, T2 are equivalent if, e.g., T1, T2 are DCFLs, but undecidable if

T1 is regular and T2 is an arbitrary CFL.

5.4 Regularity-Preserving Sets of Trajectories

Consider the following result of Mateescu et al. [147, Thm. 5.1]: if L1 T L2 is regular for all regu-

lar languages L1, L2, then T is regular. This result is clear upon noting that for all T , 0∗
T 1∗ = T .

However, in this section, we note that the same result does not hold if we replace “shuffle

on trajectories” by “deletion along trajectories”. In particular, we demonstrate a class of sets of

trajectories H, which contains non-regular languages, such that for all regular languages R1, R2,

and for all H ∈ H, R1 ;H R2 is regular. We also characterize all H ⊆ i∗d∗ which preserve

regularity (i.e., such that R1 ;H R2 is regular for all regular languages R1, R2), and give some

examples of non-CF trajectories which preserve regularity.

As motivation, we begin with a basic example. Let 6 be an alphabet. Let H = {indn : n ≥ 0}.

Note that

R1 ;H R2 = {x ∈ 6∗ : ∃y ∈ R2 such that xy ∈ R1 and |x| = |y|}.

We can establish directly (by constructing an NFA) that for all regular languages R1, R2 ⊆ 6∗, the

language R1 ;H R2 is regular. However, H is a non-regular CFL.

We remark that R1 ;H R2 is similar to proportional removals studied by Stearns and Hartmanis

[189], Amar and Putzolu [4, 5] Seiferas and McNaughton [180], Kosaraju [120, 121, 122], Kozen

[123], Zhang [205], the author [35], Berstel et al. [17], and others. In particular, we note the case of

1
2
(L), given by

1

2
(L) = {x ∈ 6∗ : ∃y ∈ 6∗ such that xy ∈ L and |x| = |y|}.

Thus, 1
2
(L) = L ;H 6∗. The operation 1

2
(L) is one of a class of operations which preserve

regularity. Seiferas and McNaughton completely characterize those binary relations r ⊆ N
2 such

CHAPTER 5. DELETION ALONG TRAJECTORIES 64

that the operation

P(L , r) = {x ∈ 6∗ : ∃y ∈ 6∗ such that xy ∈ L and r(|x|, |y|)}

preserves regularity.

Recall that a binary relation r on a set S is any subset of S2. Call a binary relation r ⊆ N
2

u.p.-preserving if A u.p. implies

r−1(A) = {i : ∃ j ∈ A such that r(i, j)}

is also u.p.1. Then, the binary relations r such that P(·, r) preserves regularity are precisely the

u.p.-preserving relations [180].

We note the inclusion

L1 ;H L2 ⊆
1

2
(L1) ∩ L1/L2

holds for H = {indn : n ≥ 0}. However, equality does not hold in general. Consider the languages

L1 = {02, 04}, L2 = {03}. Then note that 0 ∈ 1
2
(L1) ∩ L1/L2. However, 0 /∈ L1 ;H L2. Thus, we

note that L1 ;H L2 6= 1
2
(L1) ∩ L1/L2 in general.

We now consider arbitrary relations r ⊆ N
2 for which

Hr = {indm : r(n, m)} ⊆ i∗d∗

preserves regularity. By modifying the construction of Seiferas and McNaughton, we obtain the

following result:

Theorem 5.4.1 Let r ⊆ N
2 be a binary relation and Hr = {indm : r(n, m)}. The operation ;Hr

is regularity-preserving if and only if r is u.p.-preserving.

Proof. Assume that ;Hr
preserves regularity. Then L ;Hr

6∗ is regular for all regular languages

L . But L ;Hr
6∗ = P(L , r). Thus, r must be u.p.-preserving [180].

1Recall that u.p. (ultimately periodic) was defined in Section 2.1.

CHAPTER 5. DELETION ALONG TRAJECTORIES 65

For the reverse implication, we modify the construction of Seiferas and McNaughton [180,

Thm. 1]. Let L1, L2 be regular languages. Let M1 = (Q1,6, δ1, q0, F1) be the minimal complete

DFA for L1. Then, for each q ∈ Q1, we let L
(q)
1 be the language accepted by the DFA M

(q)
1 =

(Q1,6, δ1, q0, {q}). Let Rq be the language accepted by the DFA N
(q)
1 = (Q1,6, δ1, q, F1). Note

that L
(q)
1 = {w ∈ 6∗ : δ(q0, w) = q} and Rq = {w ∈ 6∗ : δ(q, w) ∈ F1}.

As M1 is complete, 6∗ =
⋃

q∈Q1
L

(q)
1 . Thus,

L1 ;Hr
L2 =

⋃

q∈Q1

(L1 ;Hr
L2) ∩ L

(q)
1 .

It suffices to demonstrate that (L1 ;Hr
L2) ∩ L

(q)
1 is regular. But we note that

(L1 ;Hr
L2) ∩ L

(q)
1 = {x ∈ L

(q)
1 : ∃y ∈ L2 such that xy ∈ L1 and r(|x|, |y|)}

= {x ∈ L
(q)
1 : ∃y ∈ (Rq ∩ L2) such that r(|x|, |y|)}

= {x ∈ 6∗ : ∃y ∈ (Rq ∩ L2) such that r(|x|, |y|)} ∩ L
(q)
1

= {x ∈ 6∗ : |x| ∈ r−1({|y| : y ∈ (Rq ∩ L2)})} ∩ L
(q)
1 .

It is easy to see that if L is regular, {|y| : y ∈ L} is a u.p. set. As r is u.p.-preserving, r−1({|y| : y ∈

Rq ∩ L2)}) is also u.p.

Note that, in general, L1 ;Hr
L2 6= P(L1, r) ∩ L1/L2. Consider the following particular

examples of regularity-preserving trajectories:

(a) Consider the relation e = {(n, 2n) : n ≥ 0}. Then He preserves regularity (see, e.g., Zhang

[205, Sect. 3]). However, He is not CF. The set He is, however, a linear conjunctive language

(see Okhotin [160] for the definition of conjunctive and linear conjunctive languages, and for

the proof that He is linear conjunctive).

(b) Consider the relation f = {(n, n!) : n ≥ 0}. Then H f preserves regularity (see again Zhang

[205, Thm. 5.1]). However, H f is not a CFL, nor a linear conjunctive language [160].

Thus, there are non-CF trajectories which preserve regularity. Kozen states that there are even Hr

which preserve regularity but are “highly noncomputable” [123, p. 3].

CHAPTER 5. DELETION ALONG TRAJECTORIES 66

We can extend the class of non-regular sets of trajectories T such that L1 ;T L2 is regular

for all regular languages L1, L2 by considering T such that T ⊆ (d∗i∗)md∗ for some m ≥ 1 (The

choice of T ⊆ (d∗i∗)md∗ rather than, e.g., T ⊆ (i∗d∗)m or T ⊆ (d∗i∗)m is arbitrary. The same

type of formulation and arguments can be applied to these similar types of sets of trajectories).

To consider such non-regular T , it will be advantageous to adopt the notations of Zhang [205] on

boolean matrices. We summarize these notions below; for a full review, the reader may consult the

original paper.

For any finite set Q, let M(Q) denote the set of square Boolean matrices indexed by Q. Let

V(Q) denote the set of Boolean vectors indexed by Q. For an automaton over a set of states Q, we

will associate with it matrices from M(Q) and vectors from V(Q).

In particular, let M = (Q,6, δ, q0, F) be a DFA. Then for each a ∈ 6, let ∇a ∈ M(Q) be

the matrix defined by transitions on a, that is,∇a(q1, q2) = 1 if and only if δ(q1, a) = q2. Let ∇ =

∑

a∈6 ∇a (where addition is taken to be Boolean addition, i.e., 0+0 = 0, 0+1 = 1+0 = 1+1 = 1).

Thus, ∇(q1, q2) = 1 if and only if there is some a ∈ 6 such that δ(q1, a) = q2. Note that taking

powers of ∇ yields information on paths of different lengths: for all i ≥ 0, ∇ i(q1, q2) = 1 if and

only if there is a path of length i from q1 to q2.

For any Q ′ ⊆ Q, let IQ ′ ∈ V(Q) be the characteristic vector of Q ′, given by IQ ′(q) = 1 if and

only if q ∈ Q ′. If Q ′ is a singleton q, we denote I{q} by Iq . Note that if Q1, Q2 ⊆ Q and i ≥ 0,

then IQ1
· ∇ i · I t

Q2
= 1 if and only if there is a path of length i from some state in Q1 to some state

in Q2 (here, I t denotes the transpose of I).

Call a function f : N → N ultimately periodic with respect to powers of Boolean matrices

[205], abbreviated m.u.p. (for “matrix ultimately periodic”), if, for all square Boolean matrices ∇,

there exist natural numbers e, p (p > 0) such that for all n ≥ e,

∇ f (n) = ∇ f (n+p).

The functions n! and 2n are known to be m.u.p. [205].

Let m ≥ 1. We will define a class of T ⊆ (d∗i∗)md∗ such that for all regular languages R1, R2,

CHAPTER 5. DELETION ALONG TRAJECTORIES 67

R1 ;T R2 is regular. In particular, let m ≥ 1, and let f
(j)
ℓ : N → N be a m.u.p. function for each

1 ≤ ℓ ≤ m + 1 and 1 ≤ j ≤ m. Define Xℓ : N
m → N for 1 ≤ ℓ ≤ m + 1 by

Xℓ(n1, n2, . . . , nm) =

m
∑

j=1

f
(j)
ℓ (n j). (5.2)

We will use the abbreviation En = (n1, n2, . . . , nm). Finally, we define

T = {

m
∏

j=1

(d X j (En)in j)d Xm+1(En) : En = (n1, . . . , nm) ∈ N
m}. (5.3)

The set T satisfies our intuition that the ‘i-portions’ may not interact with each other, but may

interact with any ‘d-portion’ they wish to. Our claim that these T preserve regularity is proven in

the following theorem.

Theorem 5.4.2 Let m ≥ 1, and f
(j)
ℓ be m.u.p. for 1 ≤ ℓ ≤ m + 1 and 1 ≤ j ≤ m. Let T ⊆

(d∗i∗)md∗ be defined by (5.2) and (5.3). Then for all regular languages R1, R2, the language R1 ;T

R2 is regular.

In this section only, let m = {0, 1, 2, 3, . . . , m} for any m ≥ 1.

Proof. Let Mi = (Q i ,6, δi , si , Fi) be a DFA accepting Ri for i = 1, 2. Let M1,2 = (Q1 ×

Q2,6, δ0, [s1, s2], F1 × F2) where δ is given by δ0([q1, q2], a) = (δ1[q1, a], δ2[q2, a]) for all

[q1, q2] ∈ Q1 × Q2 and all a ∈ 6. Note that M1,2 accepts R1 ∩ R2. Let ∇ be the adjacency

matrix for M1,2. For each 1 ≤ j ≤ m and 1 ≤ ℓ ≤ m + 1, let e
(j)
ℓ and p

(j)
ℓ be natural numbers such

that ∇ f
(j)
ℓ (n) = ∇ f

(j)
ℓ (n+p

(j)
ℓ) for all n ≥ e

(j)
ℓ .

For all 1 ≤ j ≤ m and 1 ≤ ℓ ≤ m + 1, let g
(j)
ℓ = e

(j)
ℓ + p

(j)
ℓ and define the set

M(j, ℓ) = {∇ f
(j)
ℓ (i) : 0 ≤ i ≤ g

(j)
ℓ } × g

(j)
ℓ .

We will define an NFA M = (Q,6, δ, S, F) which we claim accepts R1 ;T R2. The NFA

will be nondeterministic, and will also have multiple start states. It is well known that multiple

start states do not affect the regularity of the language accepted (see, e.g., Yu [201, p. 54]); our

presentation is chosen for ease of description.

CHAPTER 5. DELETION ALONG TRAJECTORIES 68

We now proceed with defining M . Our state set Q is given by

Q = m × (

m
∏

ℓ=1

(

m
∏

j=1

M(j, ℓ)) × Q3
1 × Q2) ×

m
∏

j=1

M(j, m + 1).

Let µ j,ℓ = [∇ f
(j)
ℓ (0), 0] ∈ M(j, ℓ). Our set S of initial states is given by

S = {1} × (

m
∏

ℓ=1

m
∏

j=1

µ j,ℓ × {[q, q] : q ∈ Q1} × Q1 × Q2) ×

m
∏

j=1

µ j,m+1.

To partially motivate this definition, the elements of the form Q3
1 will represent one path through

M1: the first element will represent our nondeterministic “guess” of where the path starts, the second

state will actually trace the path through M1 (along a portion of our input word) and the third state

represents our guess of where the path will end. Thus, during the course of our computation, the

first and third elements are never changed; only the second is affected by the input word. The first

and third elements are used to verify (once the computation has completed) that our guesses for the

start and finish are correct, and that they correspond (“match up”) with the guessed paths for the

adjacent components. The elements of Q2 will represent our guesses of the intermediate points of

the path through M2; similarly to our guesses in Q1, they will not change through the course of the

computation.

Our set of final states F is given by those states of the form

{m} ×
[[

[A
(j)
ℓ , c

(j)
ℓ]m

j=1q
(1)
ℓ , q

(2)
ℓ , q

(3)
ℓ , rℓ

]m

ℓ=1
, (A

(j)
m+1, c

(j)
ℓ)m

j=1

]

,

where the following conditions are met:

(F-i) for all 1 ≤ ℓ ≤ m, I
(q

(3)
ℓ−1,rℓ−1)

· (
∏m

j=1 A
(j)
ℓ) · I t

(q
(1)
ℓ ,rℓ)

= 1 (we let q
(3)
0 = s1, the start state of M1

and r0 = s2 the start state of M2);

(F-ii) I
(q

(3)
m ,rm)

· (
∏m

j=1 A
(j)
m+1) · I t

F1×F2
= 1;

(F-iii) for all 1 ≤ ℓ ≤ m, we have q
(2)
ℓ = q

(3)
ℓ .

We will see that the matrix A
(j)
ℓ will ensure there is a path of length f

(j)
ℓ (n j) through M1×M2. Thus,

condition (F-i) will ensure that we have a path from our guessed end state of the previous i-portion

CHAPTER 5. DELETION ALONG TRAJECTORIES 69

through to the guessed start state of the next i-portion. This will correspond to the presence of some

word w of length
∑m

j=1 f
(j)
ℓ (n j) which takes us M from the end state of the previous i-portion to

the start of the next i-portion. The condition (F-ii) will ensure that the final d-portion ends in a final

state in both M1 and M2.

Condition (F-iii) verifies that the nondeterministic “guesses” for the end of each i-portion path

is correct.

Finally, we may define the action of δ. We will adopt the convention of Zhang [205] and denote

by 〈c〉b
a the quantity

〈c〉b
a =











c if c ≤ a;

a + ((c − a) mod b) otherwise.

Further, to describe the action of δ more easily, we introduce auxiliary functions ϒℓ,α for all

1 ≤ ℓ ≤ m + 1 and 1 ≤ α ≤ m. In particular

ϒℓ,α :

m
∏

j=1

M(j, ℓ) →

m
∏

j=1

M(j, ℓ)

is given by

ϒℓ,α([∇
f
(j)
ℓ (c

(j)
ℓ), c

(j)
ℓ]m

j=1)

=



[∇ f
(j)
ℓ (c

(j)
ℓ), c

(j)
ℓ]α−1

j=1,∇
f
(α)
ℓ (〈c

(α)
ℓ +1〉

p
(α)
ℓ

e
(α)
ℓ

)

, 〈c(α)
ℓ + 1〉

p
(α)
ℓ

e
(α)
ℓ

, [∇ f
(j)
ℓ (c

(j)
ℓ), c

(j)
ℓ]m

j=α+1



 .

Note that ϒℓ,α updates the α-th component, while leaving all other components unchanged.

Then we define δ by

δ
([

α,
[

[∇ f
(j)
ℓ (c

(j)
ℓ), c

(j)
ℓ]m

j=1, p
(1)
ℓ , p

(2)
ℓ , p

(3)
ℓ , rℓ

]m

ℓ=1
, [∇ f

(j)
m+1

(c
(j)
m+1

), c
(j)
m+1]m

j=1

]

, a
)

=
{[

α + β, [ϒℓ,α+β([∇ f
(j)
ℓ (c

(j)
ℓ), c

(j)
ℓ]m

j=1), p
(1)
ℓ , p

(2)
ℓ , p

(3)
ℓ , rℓ]

α+β−1

ℓ=1 ,

ϒα+β,α+β([∇
f
(j)
α+β (c

(j)
α+β), c

(j)
α+β]m

j=1), p
(1)
α+β , δ1(p

(2)
α+β , a), p

(3)
α+β , rα+β

[ϒℓ,α+β([∇ f
(j)
ℓ (c

(j)
ℓ), c

(j)
ℓ]m

j=1), p
(1)
ℓ , p

(2)
ℓ , p

(3)
ℓ , rℓ]m

ℓ=α+β+1,

ϒm+1,α+β([∇ f
(j)
m+1(c

(j)
m+1), c

(j)
m+1]m

j=1)
]

: 0 ≤ β ≤ m − α
}

.

CHAPTER 5. DELETION ALONG TRAJECTORIES 70

Note that, though the definition of δ is complicated, its action is straight-forward. The index α

indicates the ‘i-portion’ which is currently receiving the input. Given that we are currently in the

α-th i-portion, we may nondeterministically choose to move to any of the subsequent portions. The

action of the function ϒℓ,α is to simulate the corresponding function f α
ℓ .

We show that L(M) ⊆ R1 ;T R2. If we arrive at a final state, by (F-i), for each 1 ≤ ℓ ≤ m

there is a word xℓ of length Xℓ(En) which takes us from state q
(3)
ℓ−1 to q

(1)
ℓ in M1 and also takes us

from rℓ−1 to rℓ in M2. By the choice of S, δ and condition (F-iii), for each 1 ≤ ℓ ≤ m, there

is a word wi of length ni which takes us from state q
(1)
ℓ to q

(3)
ℓ . Further, the input word is of the

form w = w1w2 · · · wm . Finally, by (F-ii), there is a word xm+1 of length Xm+1(En) which takes us

from state qm to a final state in M1 and from rm to a final state in M2. The situation is illustrated in

Figure 5.1.

x1

s1

--

--

���

6

aaaaaa

q
(1)
1

· · ·

· · ·

inM1

inM2

∈ F2
rmr3r2

r1s2

xm+1
x3

x2x1

xm+1wmw2
x2w1

∈ F1
q
(3)
mq

(1)
mq

(3)
2

q
(1)
2

q
(3)
1

a

- -

--- aa a

a aaaaa

a aaaa

aaaaaa

-

a

(q
(3)
1

, r1)

q
(3)
2

wmw2w1

q
(3)
mq

(1)
mq

(1)
2

q
(3)
1

q
(1)
1

(q
(3)
m , rm)

xm+1x3
x2

(q
(1)
3

, r3)(q
(3)
2

, r2)(q
(1)
2

, r2)

· · ·

· · ·
(q

(1)
1

, r1)

x1
∈ F1 × F2

(s1, s2)

-

Figure 5.1: Construction of the words in M1 and M2 from the action of M .

Thus, we conclude that x1w1 · · · xmwmxm+1 ∈ R1, x1 · · · xm+1 ∈ R2 and |xℓ| = Xℓ(En) for all

1 ≤ ℓ ≤ m + 1. Thus, w1 · · · wm ∈ R1 ;T R2. A similar argument, which is left to the reader,

shows the reverse inclusion.

As an example, consider m = 1 and let f
(1)
1 , f

(2)
2 both be the identity function. Then the

CHAPTER 5. DELETION ALONG TRAJECTORIES 71

conditions of Theorem 5.4.2 are met and T = {dnindn : n ≥ 0}. Consider then that

R1 ;T 6∗ = {x : ∃y, z ∈ 6|x | such that yxz ∈ R1}.

This is the ‘middle-thirds’ operation, which is sometimes used as a challenge problem for under-

graduates in formal language theory (see, e.g., Hopcroft and Ullman [68, Ex. 3.17]). We may

immediately conclude that the regular languages are preserved under the middle-thirds operation.

We note that the condition that (n1, n2, . . . , nm) ∈ N
m in (5.3) can be replaced by the conditions

that, for all 1 ≤ j ≤ m, n j ∈ I j for an arbitrary u.p. set I j ⊆ N. The construction adds considerable

detail to the proof of Theorem 5.4.2, and is omitted. With this extension, we can also consider a

class of examples given by Amar and Putzolu [5], which are equivalent to trajectories of the form

AP(k1, k2, α) = {imk1 dmk2+α : m ≥ 0},

for fixed k1, k2, α ≥ 0 with α < k1 + k2. For any k1, k2, α ≥ 0, we can conclude that the operation

;A preserves regularity, where A = AP(k1, k2, α). This was established by Amar and Putzolu [5]

by means of even linear grammars.

Pin and Sakarovitch use a very general and elegant method to prove that certain operations

preserve regularity [165]. This method can be used to prove that certain operations which can be

modeled by trajectories preserve regularity; it is not known whether the methods developed here

can be extended to cover theses cases. For example, the let Tζ be given by

Tζ = {dnki kdnk : k, n ≥ 0, 2n + 1 is prime}.

Then Pin and Sakarovitch prove that L ;Tζ
6∗ is regular for all regular languages L [165, p. 292]2.

2Note that the definition of Tζ given here matches that given by Pin and Sakarovitch [165]. In a preliminary version

[166], a different deletion operation is defined which can be modeled by a set of trajectories to which Theorem 5.5.1

below can be applied.

CHAPTER 5. DELETION ALONG TRAJECTORIES 72

5.5 i-Regularity

Recall that a language L ⊆ 6∗ is bounded if there exist w1, w2, . . . , wn ∈ 6∗ such that L ⊆

w∗
1w

∗
2 · · · w∗

n . We say that L is letter-bounded3 if wi ∈ 6 for all 1 ≤ i ≤ n.

We now define a class of letter-bounded sets of trajectories, called i -regular sets of trajectories,

which will have strong closure properties. In particular, we can delete, along an i-regular set of

letter-bounded trajectories, any language from a regular language and the resulting language will be

regular. This will allow us in Section 7.3 to give positive decidability results for the related shuffle

decomposition problem.

Let 1m be the alphabet 1m = {#1, #2, . . . , #m} for any m ≥ 1. We define a class of regular

substitutions from (d + 1m)∗ to 2(i+d)∗ , denoted Sm , as follows: a regular substitution ϕ : (d +

1m)∗ → 2(i+d)∗ is in Sm if both

(a) ϕ(d) = {d}; and

(b) for all 1 ≤ j ≤ m, there exist a j , b j ∈ N such that ϕ(# j) = ia j (ib j)∗.

For all m ≥ 1, we also define a class of languages over the alphabet d + 1m , denoted Tm , as the set

of all languages T ⊆ #1d∗#2d∗ · · · #m−1d∗#m . Define the class of trajectories I as follows:

I = {T ⊆ {i, d}∗ : ∃m ≥ 1, Tm ∈ Tm, ϕ ∈ Sm such that T = ϕ(Tm)}.

If T ∈ I, we say that T is i -regular. As we shall see, the condition that T be i-regular is sufficient

for showing that R ;T L is regular for all regular languages R and all languages L .

Theorem 5.5.1 Let T ∈ I. Then for all regular languages R and all languages L, R ;T L is a

regular language.

Proof. Let T ∈ I. Let m ≥ 1, T ′ ∈ Tm and ϕ ∈ Sm be such that T = ϕ(T ′). Then we define

K (T) ⊆ N
m−1 as

K (T) = {(j1, . . . , jm−1) : #1d j1#2d j2 · · · #m−1d jm−1#m ∈ T ′}.

3The term strictly bounded is sometimes used for this situation, e.g, Dassow et al. [32]. However, other sources, e.g.,

Harju and Karhumäki [60] and Mateescu et al. [150] use the same term differently.

CHAPTER 5. DELETION ALONG TRAJECTORIES 73

Let a j , b j be defined so that ϕ(# j) = ia j (ib j)∗ for all 1 ≤ j ≤ m. Let I j = {a j + nb j : n ≥ 0} for

all 1 ≤ j ≤ m.

Let R be regular and L be arbitrary. Let M = (Q,6, δ, q0, F) be a DFA accepting R. For all

q j , qk ∈ Q, let R(q j , qk) = L((Q,6, δ, q j , {qk})). Note that

R(q j , qk) = {w ∈ 6∗ : qk ∈ δ(q j , w)}.

For I ⊆ N, let R′
I (q j , qk) = R(q j , qk) ∩ {x : |x| ∈ I }.

We now define the set Q R(T, L) ⊆ Q2m−2:

Q R(T, L) = {(q1, q2, . . . , q2m−2) ∈ Q2m−2

: ∃(k j)
m−1
j=1 ∈ K (T) such that L ∩

m−1
∏

ℓ=1

R′
{kℓ}

(q2ℓ−1, q2ℓ) 6= ∅}. (5.4)

We claim that

R ;T L =
⋃

(q j)
2m−2
j=1

∈QR (T ,L)

q f ∈F

(

m−1
∏

ℓ=1

R′
Iℓ
(q2(ℓ−1), q2ℓ−1)

)

· R′
Im

(q2m−2, q f). (5.5)

Let x ∈ R ;T L . Then we can write x = x1x2 · · · xm such that there exists some z =

z1z2 · · · zm−1 ∈ L such that y = x1z1x2z2 · · · xm−1zm−1xm ∈ R. Further, by the conditions on T ,

(|z j |)
m−1
j=1 ∈ K (T) and |x j | ∈ I j for all 1 ≤ j ≤ m. We let q

x

⊢ q ′ denote the fact that δ(q, x) = q ′

in M . As y ∈ R, there are some q1, q2, . . . , q2m−2, q f ∈ Q such that

q0

x1

⊢ q1

z1

⊢ q2

x2

⊢ · · ·
xm−1

⊢ q2m−3

zm−1

⊢ q2m−2

xm

⊢ q f

and q f ∈ F . Then z j ∈ R′
{|z j |}

(q2 j−1, q2 j) for all 1 ≤ j ≤ m − 1, x j ∈ R′
I j
(q2(j−1), q2 j−1) for all

1 ≤ j ≤ m − 1 and xm ∈ R′
Im

(q2m−2, q f). Further, note that

z ∈ L ∩

m−1
∏

ℓ=1

R′
{|zℓ |}

(q2ℓ−1, q2ℓ).

We conclude that (q1, q2, . . . , q2m−2) ∈ Q R(T, L), as (|z j |)
m−1
j=1 ∈ K (T), and thus x is contained in

the right-hand side of (5.5).

CHAPTER 5. DELETION ALONG TRAJECTORIES 74

For the reverse inclusion, let (q1, . . . , q2m−2) ∈ Q R(T, L) and q f ∈ F . Let (k1, . . . , km−1) ∈

K (T) be a (m−1)-tuple which witnesses (q1, q2, . . . , q2m−2)’s membership in Q R(T, L). Then we

show that (
∏m−1

ℓ=1 R′
Iℓ
(q2(ℓ−1), q2ℓ))R′

Im
(q2m−2, q f) ⊆ R ;T L .

Let z j ∈ R′
{k j }

(q2 j−1, q2 j) for all 1 ≤ j ≤ m − 1 be such that z = z1 · · · zm−1 ∈ L . Such

z j exist by definition of Q R(T, L). Let x j ∈ R′
I j
(q2(j−1), q2 j−1) for all 1 ≤ j ≤ m − 1, and

xm ∈ R′
Im

(q2m−2, q f) be arbitrary. Then

q0

x1

⊢ q1

z1

⊢ q2

x2

⊢ · · ·
xm−1

⊢ q2m−3

zm−1

⊢ q2m−2

xm

⊢ q f .

Thus, y = x1z1 · · · xm−1zm−1xm ∈ R. Further, the length considerations are met by definition of I j

and (k1, k2, . . . , km−1) ∈ K (T). Thus x ∈ y ;T z ⊆ R ;T L .

Thus, since Q R(T, L) is finite, R ;T L is a finite union of regular languages, and thus is

regular.

Corollary 5.5.2 Let T ⊆ {i, d}∗ be a finite union of i-regular sets of trajectories. Then for all

regular languages R and all languages L, the language R ;T L is regular.

We note that if T is not i-regular, it may define an operation which does not preserve regularity

in the sense of Theorem 5.5.1. In particular, from the proof of Theorem 5.3.2, we have that if

T = (di)∗,

(a2)∗(b2)∗
;T {anbn : n ≥ 0} = {anbn : n ≥ 0},

a non-regular CFL. For T = (i + d)∗, we have that

(

(ab)∗#(ab)∗
;T {an#bn : n ≥ 0}

)

∩ b∗a∗ = {bnan : n ≥ 0}.

Further, if T is letter-bounded but not i-regular, then T may not preserve regularity. Again, from the

proof of Theorem 5.3.2, we have that if T = {indin : n ≥ 0}. Then a∗#b∗
;T {#} = {anbn : n ≥

0}. Note that in this case, the language {#} is a singleton. We also have that there is a non-i-regular

set of trajectories,

T = {indnin : n ≥ 0},

CHAPTER 5. DELETION ALONG TRAJECTORIES 75

and a regular language R such that R ;T 6∗ is not a regular language. In particular, we have the

following example. Let 6 = {a, b, c} and R = a∗bc∗. Then R ;T 6∗ is not a regular language, as

(R ;T 6∗) ∩ a∗c∗ = {ancn : n ≥ 0}.

As an example of Theorem 5.5.1, consider T = {dnimdn : n, m ≥ 0}. It is easily verified

that T ∈ I (consider T ′ = {#1dn#2dn#3 : n ≥ 0}, and ϕ defined by ϕ(#1) = ϕ(#3) = {ǫ} and

ϕ(#2) = i∗). Thus, the language R ;T L is regular for all regular languages R and all languages

L . For any language L ⊆ 6∗, define sq(L) = {x2 : x ∈ L}. Consider then that

R ;T sq(L) = {w : vwv ∈ R, v ∈ L}.

This precisely defines the middle-quotient operation, which has been investigated by Meduna [153]

for linear CFLs. Let R | L denote the middle quotient of R by L , i.e., R | L = R ;T sq(L). Thus,

we can immediately conclude the following result, which was not considered by Meduna:

Theorem 5.5.3 Given a regular language R and arbitrary language L, the language R|L is regular.

5.6 Filtering and Deletion along Trajectories

Recently, Berstel et al. [17] introduced the concept of filtering. Here we examine the notion of

filtering, and show that it is a particular case of deletion along trajectories.

Given a sequence s ⊆ N, and a word w ∈ 6∗ with w = w1 · · · wn, wi ∈ 6, the filtering of

w by s is given by w[s] = ws0
ws1

· · · wsk
where k is such that sk ≤ n < sk+1. For example, if

s = (1, 2, 4, 7), then abcacb[s] = aba. Filtering is extended monotonically to languages.

For every s ⊆ N, let ωs : N → {i, d} be given by ωs(j) = i if j ∈ s and ωs(j) = d otherwise4.

Let Ts ⊆ {0, 1}∗ be defined by

Ts = {

n
∏

j=0

ωs(j) : n ≥ 0}.

Then we clearly have that

L[s] = L ;Ts
6∗,

4That is, ωs is the characteristic ω-word of s over {i, d}.

CHAPTER 5. DELETION ALONG TRAJECTORIES 76

for all sequences s ⊆ N. Note that for all s ⊆ N, Ts is prefix-closed (i.e., if t1 ∈ Ts and t2 is a prefix

of t1, then t2 ∈ Ts).

For all sequences s = (s j) j≥1 ⊆ N, let ∂s = ((∂s) j) j≥1 be defined by (∂s) j = s j+1 − s j for

j ≥ 1. The sequence ∂s is called the differential sequence of s. A sequence s ⊆ N is said to be

residually ultimately periodic if for each finite monoid F and each monoid morphism ϕ : N → F ,

ϕ(s) is ultimately periodic.

Berstel et al. [17] characterize those sequences s ⊆ N which preserve regularity. In particular,

a sequence s preserves regularity if and only if it is differentially residually ultimately periodic, i.e.,

the sequence ∂s is residually ultimately periodic.

5.7 Splicing on Routes

Splicing on routes was introduced by Mateescu [144] to model generalizations of the crossover

splicing operation (see Mateescu [144] for a definition of the crossover splicing operation). Crossover

splicing simulates the manner in which two DNA strands may be spliced together at multiple loca-

tions to form several new strands, see Mateescu for a discussion [144]. Splicing on routes has also

been used to model dialogue in natural languages [12].

Splicing on routes generalizes the crossover splicing operation by specifying a set T of routes

which restricts the way in which splicing can occur. The result is that specific sets of routes can

simulate not only the crossover operation, but also such operations on DNA such as the simple

splicing and the equal-length crossover operations (see Mateescu for details and definitions of these

operations [144]). Splicing on routes is also a generalization of the shuffle on trajectories operation.

In this section, we consider the simulation of splicing on a route by shuffle and deletion along

trajectories. We show that there exist three fixed weak codings π1, π2, π3 such that for all routes t ,

we can simulate the splicing on t of two words w1, w2 by a fixed combination of the shuffle and

deletion of the same languages w1, w2 along the trajectories π1(t), π2(t), π3(t). As a corollary, it is

shown that every unary operation defined by splicing on routes can also be performed by a deletion

CHAPTER 5. DELETION ALONG TRAJECTORIES 77

along trajectories.

We define the concept of splicing on routes, and note the difference between deletion along

trajectories from splicing on routes, which allows discarding letters from either input word. In

particular, a route is a word t specified over the alphabet {0, 0, 1, 1}, where, informally, 0, 1 means

insert the letter from the appropriate word, and 0, 1 means discard that letter and continue.

Formally, let x, y ∈ 6∗ and t ∈ {0, 0, 1, 1}∗. We define the splicing of x and y, denoted x ⊲⊳t y,

recursively as follows: if x = ax ′, y = by′ (a, b ∈ 6) and t = ct ′ (c ∈ {0, 0, 1, 1}), then

x ⊲⊳ct ′ y =



































a(x ′ ⊲⊳t ′ y) if c = 0;

(x ′ ⊲⊳t ′ y) if c = 0;

b(x ⊲⊳t ′ y′) if c = 1;

(x ⊲⊳t ′ y′) if c = 1.

If x = ax ′ and t = ct ′, where a ∈ 6 and c ∈ {0, 0, 1, 1}, then

x ⊲⊳ct ′ ǫ =























a(x ′ ⊲⊳t ′ ǫ) if c = 0;

(x ′ ⊲⊳t ′ ǫ) if c = 0;

∅ otherwise.

If y = by′ and t = ct ′, where a ∈ 6 and c ∈ {0, 0, 1, 1}, then

ǫ ⊲⊳ct ′ y =























b(ǫ ⊲⊳t ′ y′) if c = 1;

(ǫ ⊲⊳t ′ y′) if c = 1;

∅ otherwise.

We have x ⊲⊳ǫ y = ǫ if {x, y} 6= {ǫ}. Finally, we set ǫ ⊲⊳t ǫ = ǫ if t = ǫ and ∅ otherwise. We

extend ⊲⊳t to sets of trajectories and languages as expected:

x ⊲⊳T y =
⋃

t∈T

x ⊲⊳t y ∀T ⊆ {0, 0, 1, 1}∗, x, y ∈ 6∗;

L1 ⊲⊳T L2 =
⋃

x∈L1
y∈L2

x ⊲⊳T y.

For example, if x = abc, y = cbc and T = {010011, 010011}, then x ⊲⊳T y = {acbcbc, abbc}.

CHAPTER 5. DELETION ALONG TRAJECTORIES 78

We now demonstrate that splicing on routes can be simulated by a combination of shuffle on

trajectories and deletion along trajectories.

Theorem 5.7.1 There exist weak codings π1, π2 : {0, 1, 0, 1}∗ → {i, d}∗ and a weak coding π3 :

{0, 1, 0, 1}∗ → {0, 1}∗ such that for all t ∈ {0, 0, 1, 1}∗, and for all x, y ∈ 6∗, we have

x ⊲⊳t y = (x ;π1(t) 6∗) π3(t) (y ;π2(t) 6∗).

Proof. Let π1, π2 : {0, 0, 1, 1}∗ → {i, d}∗ and π3 : {0, 0, 1, 1} → {0, 1}∗ be given by

π1(0) = i ; π1(0) = d; π1(1) = ǫ; π1(1) = ǫ;

π2(0) = ǫ; π2(0) = ǫ; π2(1) = i ; π2(1) = d;

π3(0) = 0; π3(0) = ǫ; π3(1) = 1; π3(1) = ǫ.

We first show the left-to-right inclusion. Let z ∈ x ⊲⊳t y. The result is by induction on |t|. If

|t| = 0, then x = y = z = ǫ. Thus, we can easily verify that z ∈ (ǫ ;ǫ ǫ) ǫ (ǫ ;ǫ ǫ).

Let |t| > 0. Then t = ct ′ for c ∈ {0, 0, 1, 1}. We prove only the case where c = 0 and c = 0.

The other two cases are similar and are left to the reader.

(a) c = 0. Then x = ax ′ and z ∈ a(x ′ ⊲⊳t ′ y) for some x ′ ∈ 6∗. Thus, z = az′ for some z′ ∈

(x ′ ⊲⊳t ′ y). By induction, z′ ∈ (x ′
;π1(t

′) 6∗) π3(t
′) (y ;π2(t

′) 6∗). Let u ∈ x ′
;π1(t

′) 6∗

and v ∈ y ;π2(t ′) 6∗ be such that z′ ∈ u π3(t ′) v .

Note that π1(t) = iπ1(t
′). Thus by definition of ;T , au ∈ x ;π1(t) 6∗. Similarly, as π2(t) =

π2(t
′), v ∈ y ;π2(t) 6∗. Finally π3(t) = 0π3(t

′). Thus, au π3(t) v = a(u π3(t ′) v) ∋ az′ =

z. Thus, the result holds for c = 0.

(b) c = 0. Then x = ax ′ and z ∈ (x ′ ⊲⊳t ′ y) for some x ′ ∈ 6∗. Thus, by induction z ∈

(x ′
;π1(t ′) 6∗) π3(t ′) (y ;π2(t ′) 6∗). Let u ∈ x ′

;π1(t ′) 6∗ and v ∈ y ;π2(t ′) 6∗ be such

that z ∈ u π3(t
′) v .

Note in this case that π1(t) = dπ1(t
′). Thus, u ∈ x ;π1(t) 6∗. Similarly, as π2(t) = π2(t

′),

v ∈ y ;π2(t) 6∗. Finally, π3(t) = π3(t
′). Thus, u π3(t) v = u π3(t

′) v ∋ z. Thus, the result

holds for c = 0.

CHAPTER 5. DELETION ALONG TRAJECTORIES 79

We now prove the reverse inclusion. Let z ∈ (x ;π1(t) 6∗) π3(t) (y ;π2(t) 6∗). We show the

result by induction on t . For |t| = 0, t = ǫ. Thus π1(t) = π2(t) = π3(t) = ǫ. By definition of t ,

L1 ǫ L2 is non-empty if and only if ǫ ∈ L1 ∩ L2, which implies z = ǫ. Thus, ǫ ∈ (x ;ǫ 6∗), and

similarly for y in place of x . By definition of ;t , this implies that x = y = ǫ. Thus, z ∈ x ⊲⊳t y,

by definition. The inclusion is proven for |t| = 0.

Let |t| > 0. Thus, there is some c ∈ {0, 0, 1, 1}, and t ′ ∈ {0, 0, 1, 1}∗ such that t = ct ′. We

distinguish between four cases, for each choice of c in {0, 0, 1, 1}, however, we only prove the cases

c = 0 and c = 0. The other two cases are very similar, and are left to the reader.

(a) c = 0. Note that π1(t) = iπ1(t
′), π2(t) = π2(t

′) and π3(t) = 0π3(t
′). Let u, v ∈ 6∗ be words

such that u ∈ x ;π1(t) 6∗, v ∈ y ;π2(t) 6∗ and z ∈ u π3(t) v .

As π3(t) = 0π3(t
′), we have, by definition of t , that u = au′, z = az′ and z′ ∈ u′

π3(t
′) v

for some a ∈ 6 and u′, z′ ∈ 6∗. Now, as au′ ∈ x ;iπ1(t ′) 6∗, there exists x ′ ∈ 6∗ such that

x = ax ′ and u′ ∈ x ′
;π1(t ′) 6∗. Also, note that v ∈ y ;π2(t ′) 6∗. Thus, combining these

yields that

z′ ∈ (x ′
;π1(t

′) 6∗) π3(t
′) (y ;π2(t

′) 6∗).

By induction, z′ ∈ x ′ ⊲⊳t ′ y. Thus,

z = az′ ∈ a(x ′ ⊲⊳t ′ y) = ax ′ ⊲⊳0t ′ y = x ⊲⊳t y.

Thus, the inclusion is proven.

(b) c = 0. Then π1(t) = dπ1(t
′), π2(t) = π2(t

′) and π3(t) = π3(t
′). Let u, v ∈ 6∗ be such that

u ∈ x ;π1(t) 6∗, v ∈ y ;π2(t) 6∗ and z ∈ u π3(t) v .

As u ∈ x ;π1(t) 6∗, let u0 ∈ 6∗ be such that u ∈ x ;π1(t) u0. As π1(t) = dπ1(t
′),

there are some b ∈ 6, x ′, u′
0 ∈ 6∗ such that x = bx ′, u0 = bu′

0 and u ∈ x ′
;π1(t

′) u′
0.

Thus, u ∈ x ′
;π1(t ′) 6∗. Note that v ∈ y ;π2(t ′) 6∗. Thus, z ∈ u π3(t ′) v ⊆ (x ′

;π1(t ′)

6∗) π3(t ′) (y ;π2(t ′) 6∗). By induction, z ∈ x ′ ⊲⊳t ′ y. Thus, we can see that (bx ′ ⊲⊳t y) =

x ′ ⊲⊳t ′ y ∋ z. This proves the inclusion.

CHAPTER 5. DELETION ALONG TRAJECTORIES 80

The result is now proven.

Corollary 5.7.2 There exist weak codings π1, π2 : {0, 1, 0, 1}∗ → {i, d}∗ and π3 : {0, 1, 0, 1}∗ →

{0, 1}∗ such that for all T ⊆ {0, 0, 1, 1}∗ and L1, L2 ⊆ 6∗,

L1 ⊲⊳T L2 =
⋃

t∈T

(L1 ;π1(t) 6∗) π3(t) (L2 ;π2(t) 6∗).

Unfortunately, the identity

L1 ⊲⊳T L2 = (L1 ;π1(T) 6∗) π3(T) (L2 ;π2(T) 6∗)

does not hold in general, even if L1, L2 are singletons and |T | = 2. For example, if L1 = {ab}, L2 =

{cd} and T = {0011, 0011}, then

L1 ⊲⊳T L2 = {bc, ad};

(L1 ;π1(T) 6∗) π3(T) (L2 ;π2(T) 6∗) = {ac, ad, bc, bd}.

However, if T is a unary set of routes, by which we mean that T ⊆ {0, 0}∗1
∗
, then we have the

following result, which is easily established:

Corollary 5.7.3 Let T ⊆ {0, 0}∗1
∗
. Then for all L ⊆ 6∗,

L ⊲⊳T 6∗ = L ;π1(T) 6∗.

We refer the reader to Mateescu [144] for a discussion of unary operations defined by splicing on

routes. As an example, consider that with T = {0n0
n

: n ≥ 0}1
∗
, L ⊲⊳T 6∗ = 1

2
(L), where 1

2
(L)

was given in Section 5.4.

5.8 Inverse Word Operations

In this section, we show that deletion along trajectories constitutes the inverse of shuffle on trajec-

tories, in the sense introduced by Kari [106].

CHAPTER 5. DELETION ALONG TRAJECTORIES 81

We now define a word operation for our purposes. Given an alphabet 6∗, a word operation is

any binary function ⋄ : (6∗)2 → 26∗
. We usually denote a word operation as an infix operator. A

word operation is extended to languages in a monotone way, as we have already seen for shuffle and

deletion along trajectories: given L1, L2 ⊆ 6∗,

L1 ⋄ L2 =
⋃

x∈L1
y∈L2

x ⋄ y.

Note that unlike Hsiao et al. [69], we do not make any assumptions about the action of ⋄ on ǫ as an

argument.

5.8.1 Left Inverse

Given two binary word operations ⋄, ⋆ : (6∗)2 → 26∗
, we say that ⋄ is a left-inverse of ⋆ [106,

Defn. 4.1] if, for all u, v,w ∈ 6∗,

w ∈ u ⋆ v ⇐⇒ u ∈ w ⋄ v.

For instance, the operations of concatenation and right-quotient are left-inverses of each other, as

w = uv iff u ∈ w/v .

Let τ : {0, 1}∗ → {i, d}∗ be the morphism given by τ(0) = i and τ(1) = d. Then we have the

following characterization of left-inverses:

Theorem 5.8.1 Let T ⊆ {0, 1}∗ be a set of trajectories. Then T and ;τ (T) are left-inverses of

each other.

Proof. We show that for all t ∈ {0, 1}∗, w ∈ u t v ⇐⇒ u ∈ w ;τ (t) v. The proof is by

induction on |w|. For |w| = 0, we have w = ǫ. Thus, by definition of t and ;t , we have that

ǫ ∈ u t v ⇐⇒ u = v = t = ǫ ⇐⇒ u ∈ (ǫ ;τ (t) v).

Let w ∈ 6∗ with |w| > 0 and assume that the result is true for all words shorter than w. Let

w = aw′ for a ∈ 6.

CHAPTER 5. DELETION ALONG TRAJECTORIES 82

First, assume that aw′ ∈ u t v . As |t| = |w|, we have that t 6= ǫ. Let t = et ′ for some

e ∈ {0, 1}. There are two cases:

(a) If e = 0, then we have that u = au′ and that w′ ∈ u′
t ′ v . By induction, u′ ∈ w′

;τ (t ′) v .

Thus,

w ;τ (t) v = (aw′
;iτ (t ′) v)

= a(w′
;τ (t ′) v) ∋ au′ = u.

(b) If e = 1, then we have that v = av ′ and w′ ∈ u t ′ v
′. By induction, u ∈ w′

;τ (t ′) v ′. Thus,

w ;τ (t) v = (aw′
;dτ (t ′) av ′)

= (w′
;τ (t ′) v ′) ∋ u.

Thus, we have that in both cases u ∈ w ;τ (t) v .

Now, let us assume that u ∈ w ;τ (t) v . As |t| = |τ(t)| = |w| ≥ 1, let t = et ′ for some

e ∈ {0, 1}. We again have two cases:

(a) If e = 0, then τ(e) = i . Then necessarily u = au′, and u′ ∈ w′
;τ (t ′) v . By induction

w′ ∈ u′
t ′ v . Thus,

u t v = (au′
0t ′ v)

= a(u′
t ′ v) ∋ aw′ = w.

(b) If e = 1, then τ(e) = d. Then necessarily v = av ′, and u ∈ (w′
;τ (t ′) v ′). By induction,

w′ ∈ u t ′ v
′. Thus,

u t v = (u 1t ′ av ′)

= a(u t ′ v
′) ∋ aw′ = w.

Thus w ∈ u t v . This completes the proof.

We note that Theorem 5.8.1 agrees with the observations of Kari [106, Obs. 4.7].

CHAPTER 5. DELETION ALONG TRAJECTORIES 83

5.8.2 Right Inverse

Given two binary word operations ⋄, ⋆ : (6∗)2 → 26∗
, we say that ⋄ is a right-inverse [106, Defn.

4.1] of ⋆ if, for all u, v,w ∈ 6∗,

w ∈ u ⋆ v ⇐⇒ v ∈ u ⋄ w.

Let ⋄ be a binary word operation. The word operation ⋄r given by u ⋄r v = v ⋄ u is called reversed

⋄ [106].

Let π : {0, 1}∗ → {i, d}∗ be the morphism given by π(0) = d and π(1) = i . We can repeat the

above arguments for right-inverses instead of left-inverses:

Theorem 5.8.2 Let T ⊆ {0, 1}∗ be a set of trajectories. Then T and (;π(T))
r are right-inverses

of each other.

Proof. Let syms : {0, 1}∗ → {0, 1}∗ be the morphism defined by syms(0) = 1 and syms(1) = 0.

Then it is easy to note (cf., Mateescu et al. [147, Rem. 4.9(i)]) that

x ∈ u t v ⇐⇒ x ∈ v syms(t) u.

Thus, using Theorem 5.8.1, we note that

x ∈ u t v ⇐⇒ x ∈ v syms(t) u

⇐⇒ v ∈ x ;τ (syms(t)) u

⇐⇒ v ∈ u(;τ (syms(t)))
r x .

Thus, the result follows on noting that π ≡ τ ◦ syms .

This again agrees with the observations of Kari [106, Obs. 4.4].

We also consider the right-inverse of ;T for all T ⊆ {i, d}∗. However, unlike the left-inverse

of ;T , the right-inverse of ;T is again a deletion operation. Let symd : {i, d}∗ → {i, d}∗ be the

morphism given by symd(i) = d and symd(d) = i .

CHAPTER 5. DELETION ALONG TRAJECTORIES 84

Theorem 5.8.3 Let T ⊆ {i, d}∗ be a set of trajectories. The operation ;T has right-inverse

;symd (T).

Proof. By Theorems 5.8.2 and 5.8.1, we note that

x ∈ y ;t z ⇐⇒ y ∈ x τ−1(t) z

⇐⇒ z ∈ y ;π(τ−1(t)) x

The result follows on noting that π ◦ τ−1 ≡ symd .

We note that Theorem 5.8.3 agrees with the observations of Kari [106, Obs. 4.4].

5.9 Conclusions

We have defined deletion along trajectories, and examined its closure properties. Deletion along

trajectories is shown to be a useful generalization of the many deletion-like operations which have

been studied in the literature. The closure properties of deletion along trajectories differ from that

of shuffle on trajectories in that there exist non-regular and non-CF sets of trajectories which define

deletion operations which preserve regularity.

We have also demonstrated that shuffle on trajectories and deletion along trajectories form mu-

tual inverses of each other in the sense of Kari [106]. In Chapter 7, we will use the fact that shuffle

and deletion along trajectories are mutual inverses of each other to solve language equations involv-

ing these operations. In Chapter 6, we will use the inverse characterizations to allow us to prove

positive decidability results.

