
Chapter 6

Trajectory-Based Codes

6.1 Introduction

The theory of codes is a fundamental area of formal language theory, with many important applica-

tions. The class of prefix codes is a particularly important subclass of codes, and is fundamentally

linked to the nature of concatenation as the underlying operation. Further research in codes has con-

sidered the subclasses of codes which arise from replacing catenation with other, related operations,

most notably shuffle (the hypercodes) and insertion (the outfix codes).

In this chapter, we generalize these results by considering T -codes. A T -code is any language

L satisfying the equation (L T 6
+) ∩ L = ∅. Thus, we consider the natural extension of prefix

codes to all operations defined by shuffle on trajectories, and examine the properties of these classes

of languages.

The idea of studying general classes of codes has received much attention in the literature (see,

e.g., Shyr and Thierrin [186], Jürgensen et al. [99] and Jürgensen and Yu [100]). Further, the

definition of a T -code which we present can also be formulated in dependency theoretic terms (see,

e.g., Jürgensen and Konstantinidis [97] for a survey of dependency theory). Some of the results we

have obtained can be proven by appealing to dependency theory, however, our proofs are simpler in

our restricted situation.

85

CHAPTER 6. TRAJECTORY-BASED CODES 86

In addition, there are works in the literature which consider the problem of defining codes based

on arbitrary binary relations, see, e.g., the work of Jürgensen et al. [99] on codes defined by binary

relations and Shyr and Thierrin [186] for work on so-called strict binary relations. We will see that

we can also view T -codes as anti-chains under the natural binary relation defined by T .

With this research in mind, we nonetheless feel the framework of T -codes is useful in that

it helps us to see results relating to codes defined by shuffle on trajectories in a new way. The

restriction of considering only those codes defined by shuffle on trajectories gives us new insight

into these classes, including prefix-, suffix-, bi(pre)fix-, infix-, outfix-, shuffle- and hyper-codes,

by focusing our attention to classes of codes which are specific enough to allow reasoning on the

associated sets of trajectories, but general enough to encompass all of the above interesting and

well-studied classes of codes.

We also feel that introducing the idea of T -code will allow more unified results to be obtained

on the various classes of codes, since specific conditions on sets of trajectories (i.e., languages)

will be easier to obtain than more general conditions on arbitrary relations. In particular, we have

obtained results which do not appear to have been considered before in the more general framework

of dependency theory or binary relations.

Further, we note that the notion of T -codes is useful elsewhere in the study of iterated shuffle

and deletion along trajectories, for instance, in analyzing the shuffle-base of certain languages. We

examine this relationship in Section 8.9. Finally, the study of T -codes, much like the study of shuffle

on trajectories in general, allows us to examine what assumptions must be made on an operation in

order for certain results to follow. We find that even when these assumptions have been studied in

the literature, the proofs obtained for the specific cases of shuffle on trajectories are often simpler.

We obtain several interesting results on T -codes. We generalize a result relating outfix and

hyper-codes and the notion of (embedding-) convexity to all T -codes. Further, the known closure

properties of shuffle on trajectories allow us to easily conclude positive decidability results for the

problem of determining membership in classes of T -codes (including maximal T -codes), which

were previously determined by ad-hoc constructions in the literature.

CHAPTER 6. TRAJECTORY-BASED CODES 87

We note that recently, a more general concept than T -codes has been independently introduced

by Kari et al. [108], motivated by the bonding of strands of DNA and DNA computing. Their

framework, called bond-free properties, is also a general setting which involves shuffle on trajecto-

ries. Generally, the motivations for our work and those of the work by Kari et al. are different, and

the decidability results which are similar are noted below.

6.2 Definitions

Recall that a non-empty language L is a code if u1u2 · · · um = v1v2 · · · vn where ui , v j ∈ L for

1 ≤ i ≤ m and 1 ≤ j ≤ n implies that n = m and ui = vi for 1 ≤ i ≤ n. For background on codes,

we refer the reader to Berstel and Perrin [18], Jürgensen and Konstantinidis [97] or Shyr [184].

We now come to the main definition of this chapter. Let L ⊆ 6+ be a language. Then, for any

T ⊆ {0, 1}∗, we say that L is a T -code if L is non-empty and (L T 6
+) ∩ L = ∅. If 6 is an

alphabet and T ⊆ {0, 1}∗, let PT (6) denote the set of all T -codes over 6. If 6 is understood, we

will denote the set of T -codes over 6 by PT .

There has been much research into the idea of T -codes for particular T ⊆ {0, 1}∗, including

(a) prefix codes, corresponding to T = 0∗1∗ (concatenation);

(b) suffix codes, corresponding to T = 1∗0∗ (anti-catenation);

(c) biprefix (or bifix) codes, corresponding to T = 0∗1∗ + 0∗1∗ (bi-catenation);

(d) outfix and infix codes, corresponding to T = 0∗1∗0∗ (insertion) and T = 1∗0∗1∗, (bi-polar

insertion) respectively;

(e) shuffle-codes, corresponding to bounded sets of trajectories such as

(e-i) T = (0∗1∗)n for fixed n ≥ 1 (prefix codes of index n);

(e-ii) T = (1∗0∗)n for fixed n ≥ 1 (suffix codes of index n);

(e-iii) T = 1∗(0∗1∗)n for fixed n ≥ 1 (infix codes of index n);

(e-iv) T = (0∗1∗)n0∗ for fixed n ≥ 1 (outfix codes of index n);

CHAPTER 6. TRAJECTORY-BASED CODES 88

(f) hypercodes, corresponding to T = (0 + 1)∗ (arbitrary shuffle);

(g) k-codes, corresponding to T = 0∗1∗0≤k (k-catenation, see Kari and Thierrin [114]) for fixed

k ≥ 0; and

(h) for arbitrary k ≥ 1, codes defined by the sets of trajectories P Pk = 0∗ + (0∗1∗)k−10∗1+,

P Sk = 0∗ +1+0∗(1∗0∗)k−1, P Ik = 0∗ +(1∗0∗)k1+, SIk = 0∗ +1+(0∗1∗)k , P Bk = P Pk ∪ P Sk

and B Ik = P Ik ∪ SIk , see Long [135], or Ito et al. [77] for P I1, SI1.

For a list of references related to (a)–(f), see Jürgensen and Konstantinidis [97, pp. 549–553]. In

this chapter, we let

H = (0 + 1)∗, (6.1)

P = 0∗1∗, (6.2)

S = 1∗0∗, (6.3)

I = 1∗0∗1∗, (6.4)

O = 0∗1∗0∗, and (6.5)

B = P ∪ S. (6.6)

6.3 General Properties of T -codes

We can give two alternate characterizations of T -codes in terms of the left and right inverses of

shuffle on trajectories. These are given via the morphisms τ, π : {0, 1}∗ → {i, d}∗ defined by

τ(0) = i , τ(1) = d, π(0) = d and π(1) = i . We can easily prove the following two equalities by

appealing to Theorems 5.8.1 and 5.8.2. In particular, we have for all T ⊆ {0, 1}∗, and all 6,

PT (6) = {L ⊆ 6+ : (L ;τ (T) 6
+) ∩ L = ∅}, (6.7)

PT (6) = {L ⊆ 6+ : L ;π(T) L ⊆ {ǫ}}. (6.8)

For some particular T , these characterizations are well-known, e.g., (6.7) for T = 0∗1∗ is given by

Berstel and Perrin [18, Prop. II.1.1.(ii)].

CHAPTER 6. TRAJECTORY-BASED CODES 89

We now note that the term T -code is somewhat of a misnomer: some T -codes are not codes.

However, we feel that as T -codes are the natural analogues of prefix codes when catenation is

replaced by T , the term T -code is appropriate. The following example shows how T -codes can

fail to be codes:

Example 6.3.1: Let T = (01)∗. Then T corresponds to perfect shuffle (also known as balanced

literal shuffle). Then note that L = {aa, bb, aabb} is a T -code: there is no way to perfectly shuffle

aa (resp., bb) and any other word of length 2 to get aabb. However, L is not a code: aa ·bb = aabb.

2

The following states that more restrictive sets of trajectories (potentially) result in more lan-

guages being T -codes; the proof is immediate:

Lemma 6.3.2 Let T1 ⊆ T2 ⊆ {0, 1}∗. Then for all 6, PT1
(6) ⊇ PT2

(6).

By the fact that all prefix codes are codes, we conclude the following, which complements

Example 6.3.1:

Corollary 6.3.3 Let T ⊇ 0∗1∗. Then every T -code is a code.

Let PCODE denote the set of all codes. We now show that for all T ⊆ {0, 1}∗, PT 6= PCODE. We

will require the following well-known characterization of two element codes (see, e.g., Berstel and

Perrin [18, Cor. 2.9]):

Theorem 6.3.4 Let L = {x1, x2} ⊆ 6+. Then L is not a code if and only if there exist z ∈ 6+,

i, j ∈ N+ such that x1 = zi and x2 = z j .

Lemma 6.3.5 Let T ⊆ {0, 1}∗. Then PT (6) 6= PCODE(6) for all 6 with |6| > 1.

Proof. Let T ⊆ {0, 1}∗. If T ⊆ 0∗ + 1∗, then PT = P∅ = 26
+

− {∅} (the first equality will become

clear after Theorem 6.3.7 below), which is clearly not the set of codes.

CHAPTER 6. TRAJECTORY-BASED CODES 90

Thus, we can assume that there is some t ∈ T with |t|1, |t|0 > 0. Let n = |t|0. Consider that

t ∈ 0n
t {0, 1}+. Thus L = {t, 0n} ⊆ {0, 1}+ is not a T -code.

If L is not a code, then t and 0n are powers of the same word, i.e., t ∈ 0∗. This contradicts our

choice of t . Thus, L is a code.

We also observe that PT1
∩ PT2

= PT1∪T2
. We note that the dual case does not hold. In the

case of PT1∩T2
, we have the inclusion PT1

∩ PT2
⊆ PT1∩T2

. But of course equality does not hold in

general. For example, with T1 = 0∗1∗ and T2 = 1∗0∗, PT1∩T2
= P0∗+1∗ = P∅ = 26

+
− {∅} (the

second equality will be established in Theorem 6.3.7 below). However, PT1
∩PT2

= PT1∪T2
, the set

of biprefix codes.

We can also ask if T1 ⊂ T2 (⊂ denotes proper inclusion) implies that PT1
⊃ PT2

. The answer is

yes, as long as the difference between T2 and T1 contains non-unary words.

Theorem 6.3.6 Let T1 ⊂ T2 be such that (T2 − T1) ∩ 0∗ + 1∗ 6= ∅. Then for all 6 with |6| ≥ 2,

PT1
(6) ⊃ PT2

(6).

Proof. Let t ∈ (T2 − T1) ∩ 0∗ + 1∗. Let t0, t1 be defined by t0 = 0|t |0 and t1 = 1|t |1 . Then

note that t0, t1 6= ǫ, by our choice of t . Thus, we have that {t, t0} ⊆ {0, 1}+. We claim that

L t = {t, t0} ∈ PT1
− PT2

.

To see that L t /∈ PT2
, note that t ∈ t0 t t1. As t ∈ T2 and t1 6= ǫ, L t is not a T2-code. Assume

that L t is not a T1-code. As |t| > |t0|, the only way that L t can fail to be a T1-code is if there exists

x ∈ {0, 1}+ such that t ∈ t0 T1
x . By definition, as |t|0 = |t0|, we must have that x = t1 = 1|t |1 .

But t ∈ t0 T1
t1 only if t ∈ T1, which is not the case.

Theorem 6.3.7 Let T1 ⊂ T2 and T2−T1 ⊆ 1∗+0∗. Then for all6 with |6| > 1, PT1
(6) = PT2

(6).

Proof. Assume, contrary to what we want to prove, that L ⊆ 6+ is a T1-code which is not a T2-

code. As L is not a T2-code, there exist x, z ∈ L , y ∈ 6+ and t ∈ T2 such that z ∈ x t y. As L is

a T1-code, z /∈ x T1
y. Thus t /∈ T1. By assumption, this implies that t ∈ 1∗ + 0∗.

CHAPTER 6. TRAJECTORY-BASED CODES 91

If t ∈ 1∗, then by definition of T , z ∈ x t y implies that x = ǫ, contrary to our choice of

L . If t ∈ 0∗, then by definition, y = ǫ, contrary to our choice of y. In either case, we have arrived

at a contradiction.

Thus, we have completely characterized when reducing a set of trajectories corresponds to an

increase in the languages which are T -codes. In particular, we note the following corollary:

Corollary 6.3.8 Let T1, T2 ⊆ {0, 1}∗ be regular sets of trajectories. Then it is decidable whether

PT1
= PT2

.

Proof. We note that PT1
= PT2

if and only if (T1 − T2) ∪ (T2 − T1) ⊆ 0∗ + 1∗. Since T1, T2 are

regular, so is (T1 − T2) ∪ (T2 − T1), and the inclusion is decidable.

We now examine further questions of decidability.

Lemma 6.3.9 Let T ⊆ {0, 1}∗ be a fixed CF set of trajectories. Then given a regular language L,

it is decidable whether L is a T -code.

Proof. Since L is regular and T is a CFL, L T 6
+, and (L T 6

+)∩ L are CFLs. Thus, we can

test whether (L T 6
+) ∩ L = ∅, which precisely defines L being a T -code.

This result can also be proved using dependency theory. As every T ⊆ {0, 1}∗ defines a 3-

dependence system, and every context-free T defines a dependence system whose associated sup-

port can be accepted by a 3-tape PDA, the problem of determining membership in PT is decidable;

see Jürgensen and Konstantinidis [97, Sect. 9] for details. Further, Kari et al. [108, Thm. 4.7] estab-

lish a similar decidability result in their framework of bond-free properties. When translated to our

setting, it states that given T, R regular, we can decide if R ∈ PT .

A class of languages C is said to have decidable membership problem if, given L ⊆ 6∗ with

L ∈ C, it is decidable whether x ∈ L for an arbitrary x ∈ 6∗. We have the following positive

decidability result:

CHAPTER 6. TRAJECTORY-BASED CODES 92

Lemma 6.3.10 Let C be a class of languages with decidable membership. Let T ⊆ {0, 1}∗ be a set

of trajectories such that T ∈ C. Then given a finite language F, it is decidable whether F ∈ PT .

Proof. Let F ⊆ 6+ be a finite set. Let n = max{|x| : x ∈ F}. Since membership in T is

decidable, we can test all t ∈ {0, 1}≤n for membership in T . Thus, we can effectively compute

T ≤n = T ∩ {0, 1}≤n . It is easily observed that F ∩ (F T ≤n L) = F ∩ (F T L) for all L .

Since F, T ≤n,6+ are regular, we can test F ∩ (F T ≤n 6+) = ∅. Thus, the result follows.

We conclude with the following method of constructing a T -code from an arbitrary language.

Lemma 6.3.11 Let T ⊆ {0, 1}∗. Let L ⊆ 6+ be a non-empty language. Then L0 = L −

(L T 6
+) ∈ PT (6).

Proof. As L0 ⊆ L and T is a monotone operation, (L0 T 6
+) ⊆ (L T 6

+). Thus, L0 ∩

(L0 T 6
+) ⊆ L0 ∩ (L T 6

+) and L0 ∩ (L T 6
+) = ∅ by definition of L0.

The following is proven in exactly the same manner as Lemma 6.3.11:

Lemma 6.3.12 Let T ⊆ {0, 1}∗. Let L ⊆ 6+ be a non-empty language. Then L0 = L − (L ;τ (T)

6+) ∈ PT (6).

6.4 The Binary Relation defined by Trajectories

We can also define T -codes by appealing to a definition based on binary relations. In particular, for

T ⊆ {0, 1}∗, define ωT as follows: for all x, y ∈ 6∗,

x ωT y ⇐⇒ y ∈ x T 6
∗.

Then it is clear that L ⊆ 6+ is a T -code if and only if L is an anti-chain under ωT (i.e, x, y ∈ L

and x ωT y implies x = y).

We note that the relation analogous to ωT for infinite words and ω-trajectories was defined by

Kadrie et al. [101], and its properties were briefly investigated. Kadrie et al. do not investigate the

CHAPTER 6. TRAJECTORY-BASED CODES 93

analogous relation with the same amount of detail as below and do not appear to be motivated by

the theory of codes.

We immediately note that if T1, T2 ⊆ {0, 1}∗ are sets of trajectories, there is not necessarily a

set of trajectories T such that ωT = ωT1
∩ ωT2

, i.e., such that x ωT y ⇐⇒ (x ωT1
y) ∧ (x ωT2

y).

For instance, for P = 0∗1∗ and S = 1∗0∗, the relation ωP ∩ωS is given by ≤d , where x ≤d y if and

only if there exist u, v ∈ 6∗ such that y = xu = vx . This relation cannot be represented by a set of

trajectories:

Lemma 6.4.1 For all T ⊆ {0, 1}∗, ωT 6=≤d .

Proof. Assume that there exists T ⊆ {0, 1}∗ such that ωT =≤d . Consider L0 = {0, 00}. As

0 ≤d 00, we must have that 0 ωT 00. Thus, 00 ∈ 0 T 0 and {01, 10} ∩ T 6= ∅. Thus, without loss

of generality assume that 01 ∈ T . The case 10 ∈ T is similar.

Consider now L1 = {0, 01}. We observe that L1 is an anti-chain under ≤d , i.e., 0 ≤d 01 does

not hold. However, 01 ∈ 0 T 1. Thus, 0 ωT 01, and ωT 6=≤d .

For a discussion of ≤d , see Shyr [184, Ch. 8]. We now recall some of the properties of the

binary relations ωT that will be useful. In what follows, we will refer to T having a property P if

and only if ωT has property P .

6.4.1 Anti-symmetry

Recall that a binary relation ρ is anti-symmetric if x ρ y and y ρ x implies x = y. We note that ωT

always gives an anti-symmetric binary relation:

Lemma 6.4.2 Let T ⊆ {0, 1}∗. The relation ωT is anti-symmetric.

Proof. Let x, y ∈ 6∗ be such that x ωT y ωT x . Then let t1, t2 ∈ T and α, β ∈ 6∗ be such

that x ∈ y t1 α and y ∈ x t2 β. By definition of shuffle on trajectories, |x| = |y| + |α| and

|y| = |x| + |β|. Thus, |α| = |β| = 0, i.e., α = β = ǫ. But now x ∈ y t1 ǫ, which implies that

x = y, again by definition of shuffle on trajectories.

CHAPTER 6. TRAJECTORY-BASED CODES 94

6.4.2 Reflexivity

Recall that a binary relation ρ on 6∗ is reflexive if x ρ x for all x ∈ 6∗.

Lemma 6.4.3 Let T ⊆ {0, 1}∗. Then T is reflexive if and only if 0∗ ⊆ T .

Proof. Let 0∗ ⊆ T . Then x ∈ x 0|x | ǫ, i.e., x ωT x . Thus ωT is reflexive. For the converse, let

x ∈ x T 6
∗ for all x ∈ 6∗. Then clearly 0|x | ∈ T for all x ∈ 6∗, which implies 0∗ ⊆ T .

Corollary 6.4.4 Given a CF set T ⊆ {0, 1}∗ of trajectories, it is decidable whether T is reflexive.

Proof. Let T ′ = T ∩ 0∗, which is a unary CFL, and thus regular. In fact, if T is effectively

context-free, then T ′ is effectively regular. We can then test the equality 0∗ = T ′.

6.4.3 Positivity

A binary relation ρ on 6∗ is said to be positive if ǫ ρ x for all x ∈ 6∗.

Lemma 6.4.5 Let T ⊆ {0, 1}∗. Then T is positive if and only if 1∗ ⊆ T .

Proof. Let 1∗ ⊆ T . Then u ∈ ǫ 1|u| u for all u ∈ 6∗, whereby ǫ ωT u, as 1|u| ∈ T . The reverse

implication is similarly established.

Corollary 6.4.6 Given a CF set T ⊆ {0, 1}∗ of trajectories, it is decidable whether T is positive.

6.4.4 ST-Strictness

Shyr and Thierrin [186] define the concept of a strict binary relation. To avoid confusion with the

concept of a strict ordering (see, e.g., Choffrut and Karhumäki [24, Sect. 7.1]), we will call a binary

relation ρ on 6∗ ST-strict if it satisfies the following four properties:

(a) ρ is reflexive;

(b) ρ is positive;

CHAPTER 6. TRAJECTORY-BASED CODES 95

(c) for all u, v ∈ 6∗, u ρ v implies |u| ≤ |v|;

(d) for all u, v ∈ 6∗, u ρ v and |u| = |v| implies u = v .

We now consider T such that ωT is ST-strict. We first note that conditions (c) and (d) are

satisfied by all T . Indeed, if u ωT v , then v ∈ u T 6
∗, which implies that |v| ≥ |u|. Further, if

|u| = |v|, then u ωT v implies that v ∈ u T ǫ, which implies that u = v .

Thus, as we already have necessary and sufficient conditions on T being reflexive and positive,

the following results are immediate:

Corollary 6.4.7 Let T ⊆ {0, 1}∗. Then T is ST-strict if and only if 0∗ + 1∗ ⊆ T .

Corollary 6.4.8 Given a CF set T ⊆ {0, 1}∗ of trajectories, it is decidable whether T is ST-strict.

Corollary 6.4.9 Let T1, T2 ⊆ {0, 1}∗ be ST-strict. Then PT1
= PT2

if and only if T1 = T2.

6.4.5 Cancellativity

A binary relation ρ on 6∗ is said to be left-cancellative (resp., right-cancellative) if uv ρ ux implies

v ρ x (resp., vu ρ xu implies v ρ x) for all u, v, x ∈ 6∗. The relation ρ is cancellative if it is both

left- and right-cancellative.

Given T ⊆ {0, 1}∗, we define two sets of trajectories, s(T), p(T) ⊆ {0, 1}∗, as follows:

p(T) = {t11 j : t1t2 ∈ T, 0 ≤ j ≤ |t2|},

s(T) = {1 j t2 : t1t2 ∈ T, 0 ≤ j ≤ |t1|}.

Lemma 6.4.10 Let T ⊆ {0, 1}∗. Then T is left-cancellative (resp., right-cancellative) if s(T) ⊆ T

(resp., p(T) ⊆ T).

Proof. We establish the result for left-cancellativity only; the other case is symmetric. Let s(T) ⊆

T . Then let u, v, x ∈ 6∗ be such that uvωT ux . Let t ∈ T and α ∈ 6∗ chosen so that ux ∈ uv t α.

Write t = t1t2 and α = α1α2 so that ux ∈ (u t1 α1)(v t2 α2). Let β1, β2 ∈ 6∗ be chosen so that

CHAPTER 6. TRAJECTORY-BASED CODES 96

β1 ∈ u t1 α1, β2 ∈ v t2 α2 and ux = β1β2. As |β1| = |u| + |α1| ≥ |u|, there exists γ ∈ 6∗ such

that uγ = β1 and x = γβ2. Note that |γ | ≤ |β1| = |t1|. Thus,

x ∈ γ (v t2 α2).

Let t3 = 1|γ |t2 ∈ s(T). By assumption, t3 ∈ T . Further,

x ∈ v t3 γ α2.

We conclude that v ωT x .

Corollary 6.4.11 Let T ⊆ {0, 1}∗. If s(T) ∪ p(T) ⊆ T , then T is cancellative.

We now consider a condition of Jürgensen et al. [99]. Say that a binary relation ρ on 6∗ is

leviesque if uv ρ xy implies that u ρ x or v ρ y, for all u, v, x, y ∈ 6∗.

Lemma 6.4.12 Let T ⊆ {0, 1}∗. If s(T) ∪ p(T) ⊆ T , then T is leviesque.

Proof. Let rs ωT xy. Then there exist t ∈ T and α ∈ 6∗ such that xy ∈ rs t α. Then there exist

factorizations t = t1t2, α = α1α2 such that xy ∈ (r t1 α1)(s t2 α2). Let β1, β2 ∈ 6∗ be such that

β1 ∈ r t1 α1, β2 ∈ s t2 α2 and xy = β1β2. There are two cases:

(i) If |x| ≥ |β1|, then there exists γ ∈ 6∗ such that x = β1γ and γ y = β2. Note that |γ | ≤

|β2| = |t2|. Consider that x = β1γ ∈ (r t11|γ | α1γ). As t11|γ | ∈ p(T) ⊆ T , r ωT x .

(ii) If |x| ≤ |β1|, there exists γ ∈ 6∗ such that xγ = β1 and y = γβ2. Note that |γ | ≤ |β1| = |t1|.

In this case, y = γβ2 ∈ (s 1|γ |t2
γ α2). Thus, as 1|γ |t2 ∈ s(T) ⊆ T , we have s ωT y.

Thus, rs ωT xy implies (r ωT x) or (s ωT y).

6.4.6 Compatibility

Let ρ be a binary relation on 6∗. Then we say that ρ is left-compatible (resp., right-compatible)

if, for all u, v,w ∈ 6∗, u ρ v implies that wu ρ wv (resp., uw ρ vw). If ρ is both left- and right-

compatible, we say it is compatible.

CHAPTER 6. TRAJECTORY-BASED CODES 97

Lemma 6.4.13 Let T ⊆ {0, 1}∗. Then T is right-compatible (resp., left-compatible) if and only if

T 0∗ ⊆ T (resp., 0∗T ⊆ T).

Proof. We establish the result for right-compatibility. The result for left-compatibility is symmet-

rical.

Let T 0∗ ⊆ T . Let u, v,w ∈ 6∗ with u ωT v . Then there exist t ∈ T and α ∈ 6∗ such that

v ∈ u t α. As t ′ = t0|w| ∈ T , vw ∈ uw t ′ α. Thus uw ωT vw.

Assume that T 0∗ is not a subset of T . Then there exist t ∈ T and i ∈ N such that t0i /∈ T . Let

j = |t|0 and k = |t|1. Consider that 0 j ωT t , as t ∈ 0 j
t 1k . However, 0 j · 0i ωT t · 0i does not

hold, as t0i ∈ 0 j+i
T 1k would imply that t0i ∈ T . Thus, T is not right-compatible.

The following corollary is immediate; it is identical to the condition that T 0∗ ∪ 0∗T ⊆ T :

Corollary 6.4.14 Let T ⊆ {0, 1}∗. Then T is compatible if and only if 0∗T 0∗ ⊆ T .

Corollary 6.4.15 Given a regular set T ⊆ {0, 1}∗ of trajectories, it is decidable whether T is (left-

or right-) compatible.

Lemma 6.4.16 Given an LCF set T ⊆ {0, 1}∗ of trajectories, it is undecidable whether T is (left-

or right-) compatible.

Proof. We prove only the case for left-compatibility; the other cases are similar and are left to the

reader. We apply a meta-theorem of Hunt and Rosenkrantz (Theorem 2.5.3). First, we note that

T = {0, 1}∗ is left-compatible.

Let T = {0n1n : n ≥ 0}. We claim that there is no LCF set T ′ ⊆ {0, 1}∗ of trajectories

and trajectory t ∈ {0, 1}+ such that T = T ′/t . Assume that there were such T ′, t . Then as

ǫ ∈ T = T ′/t , we must have t ∈ T ′. As T ′ is left-compatible, we have that 0t ∈ T ′. Thus

0 ∈ T ′/t = T , a contradiction. Thus, the set

{T : ∃ left-compatible LCF T ′ ⊆ {0, 1}∗, t ∈ {0, 1}+ such that T = T ′/t}

is a proper subset of the LCFLs. Therefore, we may apply Theorem 2.5.3, and it is undecidable

whether a given LCF set of trajectories is left-compatible.

CHAPTER 6. TRAJECTORY-BASED CODES 98

Recall the definitions of P, S and O given by (6.2), (6.3) and (6.5). Let PP ,PS,PO be the class

of prefix, suffix and outfix codes. We can conclude the following corollary about positive T which

satisfy compatibility conditions. Parts (a) and (b) of the following result have been established for

all partial orders by Jürgensen et al. [99]; the proofs are immediate in our case:

Corollary 6.4.17 Let T ⊆ {0, 1}∗ be positive. Then the following hold:

(a) if T is left-compatible, then PT ⊆ PP ;

(b) if T is right-compatible, then PT ⊆ PS;

(c) if T is compatible, then PT ⊆ PO .

Furthermore, in each case equality of the classes holds if and only if it holds for the sets of trajec-

tories involved.

Proof. We prove (b); the rest are similar. If T is positive then 1∗ ⊆ T . If T is right compatible,

then T 0∗ ⊆ T . Thus, S = 1∗0∗ ⊆ T . The inclusions thus hold by Lemma 6.3.2; for the equalities,

we note that P, S, O are ST-strict and for each of (a),(b) and (c), T is also ST-strict.

6.4.7 Transitivity

Recall that a binary relation ρ on 6∗ is said to be transitive if x ρ y and y ρ z imply that x ρ z

for all x, y, z ∈ 6∗. We now consider conditions on T which will ensure that ωT is a transitive

relation. Transitivity is often, but not always, a property of the binary relations defining the classic

code classes. For instance, both bi-prefix and outfix codes are defined by binary relations which are

not transitive, and hence not a partial order. We now give necessary and sufficient conditions on a

set T of trajectories defining a transitive binary relation.

First, we define three morphisms we will need. Let D = {x, y, z} and ϕ, σ,ψ : D∗ → {0, 1}∗

CHAPTER 6. TRAJECTORY-BASED CODES 99

be the morphisms given by

ϕ(x) = 0, σ (x) = 0, ψ(x) = 0,

ϕ(y) = 0, σ (y) = 1, ψ(y) = 1,

ϕ(z) = 1, σ (z) = ǫ, ψ(z) = 1.

Note that these morphisms are similar to the substitutions defined by Mateescu et al. [147], whose

purpose is to give necessary and sufficient conditions on a set T of trajectories defining an associa-

tive operation. Indeed, our condition is a weakening of their conditions, which, intuitively, reflects

the fact that any associative operation T defines a transitive binary relation ωT (note, however,

that T = 1∗0∗1∗ is transitive but not associative).

Theorem 6.4.18 Let T ⊆ {0, 1}∗. Then T is transitive if and only if

ψ(ϕ−1(T) ∩ σ−1(T)) ⊆ T . (6.9)

Proof. (⇐): Let T define a transitive binary relation. Let w ∈ ψ(ϕ−1(T) ∩ σ−1(T)). Then there

exist t1, t2 ∈ T such that w ∈ ψ(ϕ−1(t1) ∩ σ−1(t2)). Let t ∈ ϕ−1(t1) ∩ σ−1(t2) be chosen so that

w ∈ ψ(t).

Consider t1. Let n ∈ N and αi , βi ∈ N be chosen for 1 ≤ i ≤ n so that

t1 =

n∏

i=1

0αi 1βi .

Note that

ϕ−1(t1) =

n∏

i=1

(x + y)αi zβi .

As t ∈ ϕ−1(t1) and t ∈ σ−1(t2), by definition of σ , we must have that t2 =
∏n

i=1 si for si ∈ {0, 1}∗

satisfying |si | = αi . Thus, we have that |t2| = |t1|0. Furthermore, t ∈ (x p1
t2 y p2) t1 z p3 , where

p1 = |t2|0, p2 = |t2|1 and p3 = |t1|1. Consider now that w ∈ ψ(t), so that

w ∈ (0p1
t2 1p2) t1 1p3 .

CHAPTER 6. TRAJECTORY-BASED CODES 100

Clearly, 0p1
t2 1p2 = t2. Thus, w ∈ t2 t1 1p3 , as well. By definition, we then have that 0p1 ωT

t2 ωT w. By the transitivity of T , 0p1 ωT w, i.e.,

w ∈ 0p1
T {0, 1}∗.

Note that |w|1 = p2 + p3 and |w|0 = p1. The only word v over {0, 1} such that w ∈ 0p1
T v is

v = 1p2+p3 (regardless of T). That is, w ∈ 0p1
T 1p2+p3 . But from this, we must have that w ∈ T .

Thus, we have that ψ(ϕ−1(T) ∩ σ−1(T)) ⊆ T .

(⇒): Assume that ψ(ϕ−1(T)∩σ−1(T)) ⊆ T . Let u, v,w ∈ 6∗ be such that uωT v and v ωT w.

We wish to show that u ωT w. Let t1, t2 ∈ T and θ1, θ2 ∈ 6∗ be such that w ∈ v t1 θ1 and

v ∈ u t2 θ2. Thus, w ∈ (u t2 θ2) t1 θ1. Note then that |t1|0 = |t2|. Let n ∈ N and αi , βi ∈ N be

chosen for 1 ≤ i ≤ n so that

t1 =

n∏

i=1

0αi 1βi .

Furthermore, let t2 =
∏n

i=1 si be so that |si | = αi for all 1 ≤ i ≤ n. For all 1 ≤ i ≤ n, let ηi be the

word obtained from si by replacing 0 with x and 1 with y, i.e., {ηi} = σ−1(si) ∩ {x, y}∗. Then let

t =

n∏

i=1

ηi z
βi .

We can verify that ϕ(t) = t1 and σ (t) = t2. Thus, t ∈ ϕ−1(t1) ∩ σ−1(t2). Let t ′ = ψ(t). By

assumption, t ′ ∈ T , and we further note that

t ′ =

n∏

i=1

si1
βi .

We now define a morphism h : D∗ → {0, 1}∗ given by h(x) = ǫ, h(y) = 0 and h(z) = 1. Let

θ ∈ θ2 h(t) θ1. Then we can verify that w ∈ (u t2 θ2) t1 θ1 ⊆ u t ′ θ ⊆ u T 6
∗. Thus,

u ωT w as required.

Remark 6.4.19 As an alternate formulation for Theorem 6.4.18, we note that, for all T ⊆ {0, 1}∗, T

is transitive if and only if T T 1∗ ⊆ T . The reader can verify this by establishing that T T 1∗ =

ψ(ϕ−1(T) ∩ σ−1(T)) holds for all T ⊆ {0, 1}∗.

CHAPTER 6. TRAJECTORY-BASED CODES 101

Corollary 6.4.20 Given a regular set T ⊆ {0, 1}∗ of trajectories, it is decidable whether T is

transitive.

Proof. Since the regular languages are closed under morphism and inverse morphism, and inclusion

of regular languages is decidable, we can determine whether the inclusion (6.9) holds.

The following decidability result also holds, since we can determine whether T ⊇ 0∗ and (6.9)

hold if T is regular:

Corollary 6.4.21 Given a regular set T ⊆ {0, 1}∗ of trajectories, it is decidable whether ωT is a

partial order.

We now turn to undecidability. We will use PCP, which we defined in Section 2.5.

Theorem 6.4.22 Given a CF set T ⊆ {0, 1}∗ of trajectories, it is undecidable whether T is transi-

tive.

Proof. Let P = (u1, u2, . . . , un; v1, v2, . . . , vn) be a PCP instance. Define

L1 = {01i1 01i2 · · · 01im 0n+11n+1uim uim−1
· · · ui1 : m ≥ 1, 1 ≤ i p ≤ n, 1 ≤ p ≤ m};

L2 = {01i1 01i2 · · · 01im 0n+11n+1vim vim−1
· · · vi1 : m ≥ 1, 1 ≤ i p ≤ n, 1 ≤ p ≤ m}.

Let K = L1 ∩ L2. It is easy to see that P has a solution if and only if K 6= ∅. Let T = {0, 1}∗ − K .

Thus, P has no solutions if and only if T = {0, 1}∗. It is easily verified that that T is a CFL.

We now show that P has no solutions if and only if T is transitive. If P has no solutions, then

clearly T = {0, 1}∗ is transitive.

Assume that P has a solution. Then there is some word

t = 01i1 01i2 · · · 01im 0n+11n+1uim uim−1
· · · ui1 /∈ T .

Note that (L1 ∪ L2) ∩ 02(0 + 1)∗ = ∅, since m ≥ 1, and i p ≥ 1 for all 1 ≤ p ≤ m. Thus, we

have that

t1 = 001i1−101i2 · · · 01im 0n+11n+1uim uim−1
· · · ui1 /∈ K ⊆ L1 ∪ L2.

CHAPTER 6. TRAJECTORY-BASED CODES 102

Thus t1 ∈ T . Let α = |t1|0. Note that as n ≥ 1, certainly |x|1 ≥ 2 for all x ∈ L1 ∪ L2. Thus, we

have t2 = 010α−2 ∈ T .

Assume now that T is transitive, contrary to what we want to prove. By (6.9), as t1, t2 ∈ T , we

must have that ψ(ϕ−1(t1) ∩ σ−1(t2)) ⊆ T . But it is easy to verify that t ∈ ψ(ϕ−1(t1) ∩ σ−1(t2)),

which is a contradiction. Thus, T is not transitive.

Therefore P has a solution if and only if T is not transitive, and we conclude that it is undecid-

able whether T is transitive.

Consider, by (6.9), or by direct observation, that if {Ti}i∈I is a family of transitive sets of tra-

jectories, then the set ∩i∈I Ti is also transitive. Thus, we can define the transitive closure of a set T

of trajectories as follows: for all T ⊆ {0, 1}∗, let tr(T) = {T ′ ⊆ {0, 1}∗ : T ⊆ T ′, T ′ transitive}.

Note that tr(T) 6= ∅, as {0, 1}∗ ∈ tr(T) for all T ⊆ {0, 1}∗. Define T̂ as

T̂ =
⋂

T ′∈tr(T)

T ′. (6.10)

Then note that T̂ is transitive and is the smallest transitive set of trajectories containing T . The

operation ·̂ : 2{0,1}∗ → 2{0,1}∗ is indeed a closure operator (much like the closure operators on sets

of trajectories constructed by Mateescu et al. [147] for, e.g., associativity and commutativity) in

the algebraic sense, since T ⊆ T̂ , and ·̂ preserves inclusion and is idempotent. Thus, we can, for

instance, note the following result:

Lemma 6.4.23 If T ⊇ O (= 0∗1∗0∗), then T̂ = H (= {0, 1}∗).

Proof. The result follows, since it is known (and easily observed) that Ô = H (see, e.g., Ito et

al. [77, Rem. 3.2]).

For particular instances of Lemma 6.4.23, see Thierrin and Yu [193, Prop. 2.3] or Long [136,

Thm. 2.1].

A partial order is said to be a division ordering [24] if it is positive and compatible.

Lemma 6.4.24 Let T ⊆ {0, 1}∗ be a partial order. If T is a division ordering, then T = (0 + 1)∗.

CHAPTER 6. TRAJECTORY-BASED CODES 103

Proof. As T is positive and compatible, then T ⊇ 1∗ and T ⊇ 0∗T 0∗. Thus, T ⊇ O. As T is a

partial order, then T is transitive. Thus, T = T̂ ⊇ Ô = H . The result follows.

Consider the operator �T : 2{0,1}∗ → 2{0,1}∗ given by

�T (T
′) = T ∪ T ′ ∪ ψ(σ−1(T ′) ∩ ϕ−1(T ′)). (6.11)

By definition of �T , any fixed point �T (T0) = T0 contains T and is transitive. Then we have

∅ ⊆ �T (∅) = T ⊆ �2
T (T) ⊆ �3

T (T) ⊆ · · · ⊆ T̂ .

Since the operations of ǫ-free morphism, inverse morphism, union and intersection are monotone

and continuous [158], �T is monotone and continuous and thus T̂ is the least upper bound of

{�i
T (∅)}i≥0. Thus, given T , we can find T̂ by iteratively applying �T to T , and in fact

T̂ =
⋃

i≥0

�i
T (T). (6.12)

This observation allows us to construct T̂ , and, for instance, gives us the following result (a similar

result for ω-trajectories is given by Kadrie et al. [101]):

Lemma 6.4.25 There exists a regular set of trajectories T ⊆ {0, 1}∗ such that T̂ is not a CFL.

Proof. Consider T = (01)∗, corresponding to perfect or balanced literal shuffle. Then we note that

T̂ ∩ 01∗ = {012n−1 : n ≥ 1}.

Open Problem 6.4.26 Given T ∈ REG (or T ∈ CF), is it decidable whether T̂ ∈ CF?

6.4.8 Monotonicity

A binary relation ρ on 6∗ is said to be monotone (see, e.g, Ehrenfeucht et al. [47, p. 315]) if x ρ y

and u ρ v implies xu ρ yv for all x, y, u, v ∈ 6∗. Occasionally, the concept of monotonicity is

included as a requirement in compatibility, but we separate the two concepts here for clarity. We

note that monotone here is a condition on T , rather than the monotonicity of the operation T

CHAPTER 6. TRAJECTORY-BASED CODES 104

(i.e., that L1 ⊆ L2, L3 ⊆ L4, and T1 ⊆ T2 imply that L1 T1
L3 ⊆ L2 T2

L4), which holds for

all T .

Lemma 6.4.27 Let T ⊆ {0, 1}∗. Then T is monotone if and only if T 2 ⊆ T if and only if T = T +.

Proof. The fact that T 2 ⊆ T if and only if T = T + is obvious. Thus, we establish that T is

monotone if and only if T 2 ⊆ T .

Assume that T 2 ⊆ T . Let xi ωT yi for i = 1, 2. Let ti ∈ T and αi ∈ 6∗ be chosen so that

yi ∈ xi ti αi for i = 1, 2. Then as t1t2 ∈ T , we have the fact that y1y2 ∈ x1x2 t1t2 α1α2 implies

that x1x2 ωT y1y2. Thus T is monotone.

Assume that T is monotone. Let t1, t2 ∈ T be arbitrary. Let ni = |ti |0 and m i = |ti |1 for

i = 1, 2. Thus, we have that 0ni ωT ti for i = 1, 2. By the monotonicity of T , 0n1+n2 ωT t1t2. Thus,

there exist t ∈ T and α ∈ {0, 1}∗ such that t1t2 ∈ 0n1+n2
t α. But it is now clear that α = 1m1+m2

and t = t1t2. Thus t1t2 ∈ T and T 2 ⊆ T .

The following corollary is immediate, since it is decidable whether T + = T for regular lan-

guages.

Corollary 6.4.28 Given a regular set T of trajectories, it is decidable whether T is monotone.

We also have the following undecidability result:

Lemma 6.4.29 Given an LCF set T ⊆ {0, 1}∗ of trajectories, it is undecidable whether T is mono-

tone.

Proof. We apply Theorem 2.5.3. First, we note that T = {0, 1}∗ is monotone. Further, we note that

the LCF set of trajectories T = {0n1n : n ≥ 0} is not expressible as T = T ′/t for any monotone

T ′ ⊆ {0, 1}∗ and t ∈ {0, 1}+ (Indeed, if this were the case, then as ǫ ∈ T , t ∈ T ′. As T ′ = (T ′)+,

we have that t2, t3 ∈ T ′ and t, t2 ∈ T . But the only way this can happen is if t = ǫ). Thus, we may

apply Theorem 2.5.3. and it is undecidable whether a given LCF set of trajectories is monotone.

CHAPTER 6. TRAJECTORY-BASED CODES 105

We can now consider the monotone closure of a set T of trajectories, much in the same way we

considered the transitive closure in Section 6.4.7. However, we do not need the same level of detail,

since it is clear that the monotone closure of T is T +. Thus, we have the following result:

Lemma 6.4.30 Let T ⊆ {0, 1}∗ be a regular (resp., CF, CS, recursive) set of trajectories. Then the

monotone closure of T is also a regular (resp., CF, CS, recursive) set of trajectories.

Recall that H = {0, 1}∗ and PH corresponds to the set of biprefix codes.

Lemma 6.4.31 Let T ⊆ {0, 1}∗. If T is ST-strict and monotone, then PT = PH .

Proof. Let T be ST-strict and monotone. As T is ST-strict, ǫ, 0, 1 ∈ T . As T is monotone,

{ǫ, 0, 1}+ = H ⊆ T . Thus, T = H and the result follows.

6.4.9 Well-Foundedness

A partial order ρ is said to be well-founded (see, e.g., Choffrut and Karhumäki [24, Sect. 7.1])

if every strictly descending chain under ρ is finite. We note that for relations defined by sets of

trajectories, well-foundedness is implied by partial orders (and even by reflexive binary relations):

Theorem 6.4.32 Let T ⊆ {0, 1}∗ be a partial order. Then ωT is a well-founded partial order.

Proof. Let T be a partial order. Then T is reflexive.

Let {wi}i≥1 be a descending chain, i.e., wi+1 ωT wi for all i ≥ 1. Then |wi+1| ≤ |wi | for all

i ≥ 1. Let K = |w1|. Thus, |wi | ≤ K for all i ≥ 1. Thus, there must exist some j ≥ 1 such

that |w j | = |w j+1|. In particular, this implies that w j = w j+1, and so by the reflexivity of T ,

w j ωT w j+1. Thus, {wi}i≥1 is not an infinite strictly descending chain.

CHAPTER 6. TRAJECTORY-BASED CODES 106

6.5 Transitivity and Bases

Given a closure operator ·̂ and a closed set S = Ŝ, a base B is a subset B ⊆ S such that B̂ = S

and B is minimal with this property with respect to inclusion. Mateescu et al. note that in gen-

eral, problems relating to the existence and effective constructibility of bases are “very challenging

mathematically [147, p. 30].” Mateescu et al. list several problems relating to bases and associativ-

ity for shuffle on trajectories which, to our knowledge, are still open [147, Prob. 3–6, p. 29]. In this

section, we investigate the problems of bases with respect to transitivity closure, which we studied

in Section 6.4.7.

We will require the following notation. For all n ≥ 1, let ∨n : ({0, 1}n)2 → {0, 1}n be

pointwise ‘OR’. For instance, 0101 ∨4 1100 = 1101. Let ≤
(n)
∨ be the ordering on the associated

poset, i.e., for all x, y ∈ {0, 1}n , x ≤
(n)
∨ y if and only if x ∨n y = y.

We now consider the notion of a transitivity-base. Given T ⊆ {0, 1}∗ such that T is transitive,

a set B ⊆ {0, 1}∗ of trajectories is said to be a transitivity-base for T if B ⊆ T , B̂ = T and B

is minimal with respect to inclusion for the above properties (recall that ·̂ is the transitive closure

operator defined in Section 6.4.7, cf., (6.10) and (6.12)).

Let 5 : 2{0,1}∗ → 2{0,1}∗ be defined by

5(T) = ψ(ϕ−1(T − 0∗) ∩ σ−1(T − 0∗)).

Note that by Remark 6.4.19, 5(T) = (T − 0∗) T −0∗ 1∗. Further, let α : 2{0,1}∗ → 2{0,1}∗ be given

by

α(T) = T −5(T).

We now establish that every language has a transitivity-base.

Theorem 6.5.1 Let T ⊆ {0, 1}∗ be a transitive set of trajectories. Then α(T) is a transitivity-base

for T .

Proof. Clearly, α(T) ⊆ T . Thus, we first demonstrate that α̂(T) = T . Let t ∈ T be arbitrary. We

establish by induction on the length of t that t ∈ α̂(T).

CHAPTER 6. TRAJECTORY-BASED CODES 107

For the base case, suppose that t is a trajectory of minimal length in T . Suppose, contrary to

what we want to prove, that t /∈ α̂(T) ⊇ α(T). Then as t /∈ α(T), t ∈ 5(T). Let t1, t2 ∈ T − 0∗

be such that t ∈ ψ(ϕ−1(t1) ∩ σ−1(t2)). By definition of ψ, ϕ, σ , there exist n ≥ 1, i j , k j ≥ 0 for

1 ≤ j ≤ n and s j ∈ {0, 1}i j for 1 ≤ j ≤ n such that

t1 =

n∏

j=1

0i j 1k j

t2 =

n∏

j=1

s j

t =

n∏

j=1

s j 1
k j .

As
∑n

j=1 k j 6= 0, t 6= t2 and |t2| < |t|. As t2 /∈ 0∗, t 6= t1. Now t2 ∈ T and |t2| < |t| contradicts our

choice of t .

Assume that for all t ∈ T with |t| ≤ n, t ∈ α̂(T). Let m = min{n′ > n : T ∩{0, 1}n′
6= ∅}. We

now establish that for all t ∈ T ∩ {0, 1}m, t ∈ α̂(T). Let p ≥ 1 and t1, t2, . . . , tp be the trajectories

of length m in T , ordered by ≤
(m)
∨ . We establish the result by induction.

Let t1 be any trajectory in T of length m which is minimal under ≤
(m)
∨ . Assume that t1 /∈ α̂(T).

Then t1 /∈ α(T) as well. Let s1, s2 ∈ T − 0∗ be such that t1 ∈ ψ(ϕ−1(s1) ∩ σ−1(s2)). Note that

s1 6= t1, |s1| = |t1| and s1 ≤
(m)
∨ t1, contradicting our choice of t1. Thus, t1 ∈ α̂(T).

Now, let t ∈ T be any word in T of length m, and assume that for all s ∈ T of length m such

that s ≤
(m)
∨ t , s ∈ α̂(T) Assume, contrary to what we want to prove, that t /∈ α̂(T). Then again,

t /∈ α(T) and thus there exist s1, s2 ∈ T − 0∗ such that t ∈ ψ(ϕ−1(s1) ∩ σ−1(s2)). Note that

|s2| < |s1| = |t|, and s1 6= t . Thus, by induction on |t|, s2 ∈ α̂(T). By induction on the partial

ordering induced by ≤
(m)
∨ , s1 ∈ α̂(T). By Theorem 6.4.18, as α̂(T) is transitive, t ∈ α̂(T). Thus,

T ∩ {0, 1}m ⊆ α̂(T). Therefore, by induction T ⊆ α̂(T) and as ·̂ preserves inclusion and T = T̂ (T

is transitive), the reverse inclusion also holds.

Thus, it remains to establish that α(T) is minimal with respect to inclusions among all T ′ with

T̂ ′ = T . Assume, contrary to what we want to prove, that there exists T ′ ⊆ {0, 1}∗ such that

CHAPTER 6. TRAJECTORY-BASED CODES 108

T ′ ⊂ α(T), where the inclusion noted is proper, and T̂ ′ = T .

Recall the operator �T defined by (6.11). Let j = min{i : �i
T ′(T

′) ∩ (α(T) − T ′) 6= ∅}.

Clearly j exists, as ∅ 6= (α(T)− T ′) ⊆ T = T̂ ′ = ∪i≥0�
i
T ′(T

′). Let t ∈ �
j

T ′(T
′) be arbitrary. We

show that t /∈ α(T)− T ′, contrary to our choice of j . This will give us our contradiction.

Consider that t ∈ �
j

T ′(T
′) = �

j−1

T ′ (T
′) ∪ T ′ ∪ ψ(ϕ−1(�

j−1

T ′ (T
′)) ∩ σ−1(�

j−1

T ′ (T
′))). If t ∈

�
j−1

T ′ (T
′), then by choice of j , t /∈ α(T)− T ′. Also, if t ∈ T ′, then t /∈ α(T)− T ′. Thus, assume

that there exist t1, t2 ∈ �
j−1

T ′ (T
′) ⊆ T such that t ∈ ψ(ϕ−1(t1) ∩ σ−1(t2)). Note that if t1, t2 /∈ 0∗,

then t ∈ 5(T). In this case, t /∈ α(T). Thus, we may assume that t1 ∈ 0∗ or t2 ∈ 0∗.

If t1 ∈ 0∗, then we can see that t = t2 /∈ α(T) − T ′. Further, if t2 ∈ 0∗, then we see that

t = t1 /∈ α(T)− T ′. Thus, we have established our contradiction, and α(T) is a transitivity-base for

T .

We have the following corollary:

Corollary 6.5.2 Let T be a finite (resp., regular, context-free, recursive) transitive set of trajecto-

ries. Then T has a finite (resp., regular, co-NP, recursive) transitivity-base.

Proof. The cases when T is finite, regular or recursive are immediate, based on the closure proper-

ties of these classes of languages. We turn to the case when T is a CF set of trajectories. Consider

that

5(T) = ψ(ϕ−1(T − 0∗) ∩ σ−1(T − 0∗)).

and that α(T) = T − 5(T). Note that T − 0∗, ϕ−1(T − 0∗) and σ−1(T − 0∗) are all CFLs.

We claim now that 5(T) is in NP. To see this, note that ψ is a letter-to-letter morphism (i.e.,

ψ(a) ∈ {0, 1} for all a ∈ {x, y, z}). Thus, to determine if a trajectory t is a member of 5(T), we

nondeterministically guess a trajectory t1 of the same length as t . We then test whether t ∈ ψ(t1),

and whether t1 ∈ ϕ−1(T − 0∗) ∩ σ−1(T − 0∗). As testing membership in CFLs can be done in

polynomial time, and as t1 is the same length as t , the above is a nondeterministic polynomial-time

algorithm for determining membership in 5(T). It follows that α(T) = T −5(T) is in co-NP.

CHAPTER 6. TRAJECTORY-BASED CODES 109

Example 6.5.3: We give some examples:

(a) let T = 0∗1∗. We can compute that α(T) = 0∗(ǫ + 1).

(b) If T = (0 + 1)∗, then α(T) = 0∗(ǫ + 1)0∗.

(c) Let T = {0i12 j 0i : i, j ≥ 0}. Then α(T) = (00)∗ + {0i110i : i ≥ 0}. Note that T and α(T)

are both context-free.

(d) If T = 1∗0∗1∗, then α(T) = 0∗ + 10∗ + 0∗1.

2

We now show that the context-free languages are not closed under α. This requires a slightly

more complex construction, which we give now:

Theorem 6.5.4 The context-free languages are not closed under α.

Proof. Let T = {0i1 j : 1 ≤ i ≤ j}∗. We leave it to the reader to verify that T ∈ CF and T is

transitive. Note that T ∩ 0∗ = ∅.

Claim 6.5.5 If t ∈ 5(T), then 3|t|0 ≤ |t|1.

Let t ∈ 5(T), and let t1, t2 ∈ T be such that t ∈ t1 t2 1∗. As t1, t2 ∈ T , we have |ti |0 ≤ |ti |1

for i = 1, 2. Further, we note that |t1|0 + |t1|1 = |t1| = |t2|0, |t|0 = |t1|0, and |t|1 = |t1|1 + |t2|1.

Thus, we have that

3|t|0 = 3|t1|0 ≤ |t1|1 + 2|t1|0 ≤ |t1|1 + (|t1|0 + |t1|1) ≤ |t1|1 + |t2|0 ≤ |t1|1 + |t2|1 = |t|1.

Thus, the claim is proven. 2

We now return to the proof that α(T) is not a CFL. Assume, contrary to what what we want to

prove, that α(T) is a CFL. Then α(T) ∩ 0+1+0+1+ is also a CFL.

We employ Ogden’s Lemma [68, Lemma 6.2]. Let n be the constant associated with Ogden’s

Lemma. Assume without loss of generality that n ≥ 1. Let t = 0n1n0n15n−1 ∈ T . Note that

|t|0 = 2n and |t|1 = 6n − 1, thus t /∈ 5(T). Therefore, t ∈ α(T) ∩ 0+1+0+1+. Let us consider

CHAPTER 6. TRAJECTORY-BASED CODES 110

the first n occurrences of zero as marked. Let t = uvwxy. Then we note that both v, x must occur

within a block of letters of one type, otherwise, we can consider t = uv2wx2 y /∈ 0+1+0+1+. Now,

v or x must contain at least one of the marked letters. Note that if either (a) vwx is entirely contained

in the first block of zeroes or (b) v is contained in the first block of zeroes and x is contained in the

second block of zeroes or the second block of ones, then uv2wx2 y has the form 0n+k1nz for some

word z starting with zero. This word is clearly not in T , thus not in α(T).

Thus, we must have that v is contained in the first block of zeroes, and x is contained in the first

block of ones. Let v = 0i and x = 1 j for some i, j ≥ 0 with i > 0 and j ≥ 0. We have two cases:

(a) i 6= j . Let k = 0 if i > j and k = 2 if i < j . Then note that n + (k − 1)i > n + (k − 1) j for

this choice of k. Further, uvkwxk y = 0n+(k−1)i 1n+(k−1) j 0n15n−1. Clearly, uvkwxk y /∈ T .

(b) i = j . Note that n ≥ i = j 6= 0. Thus, consider uwy = 0n−i 1n−i 0n15n−1. We claim

that uwy ∈ 5(T). Consider t1 = 02n−i 12n−i and t2 = 0n−i 1n−i 0n1n02n−i 12n+(i−1). Then

uwy ∈ t1 t2 1∗. It remains to show that t1, t2 ∈ T − 0∗. That t1, t2 /∈ 0∗ is easily observed, as

n 6= 0 and i ≤ n. Clearly, t1 ∈ T . Further, as 2n − i < 2n + (i − 1) for i > 0, t2 ∈ T as well.

Thus, α(T) is not a CFL, as required.

We briefly discuss the problem of bases for monotone sets of trajectories. Recall that the closure

operator for monotonicity is T +. The problem of finding a base for a monotone set of trajectories is

therefore a classical problem; we refer the reader to Brzozowski [20]. In particular, we note that the

construction µ(T) = T − T 2 gives a base for a monotone set of trajectories T .

6.6 Convexity and Transitivity

Let T̂ again represent the transitive closure of T . We now examine the relationship between T -codes

and T̂ -codes for arbitrary T ⊆ {0, 1}∗. We call a language L ⊆ 6∗ T -convex if, for all y ∈ 6∗ and

x, z ∈ L , x ωT y and y ωT z implies y ∈ L .

We now characterize when a language is T -convex using shuffle and deletion along trajectories.

CHAPTER 6. TRAJECTORY-BASED CODES 111

Lemma 6.6.1 Let T ⊆ {0, 1}∗. Then L ⊆ 6∗ is T -convex if and only if (L T 6
∗) ∩ (L ;τ (T)

6∗) ⊆ L.

Proof. Let L be a T -convex language. Consider an arbitrary word x ∈ (L T 6
∗)∩(L ;τ (T) 6

∗).

Then there exist y1, y2 ∈ L such that x ∈ y1 T 6
∗ and x ∈ y2 ;τ (T) 6

∗. By Lemma 5.8.1, we

have that y2 ∈ x T 6
∗. Thus, y1 ωT x ωT y2. By the T -convexity of L , x ∈ L . Thus, the inclusion

is established.

The reverse implication is similar. Let (L T 6
∗) ∩ (L ;τ (T) 6

∗) ⊆ L . Let y1, y2 ∈ L and

x ∈ 6∗ be such that y1 ωT x ωT y2. Then x ∈ y1 T 6
∗ and y2 ∈ x T 6

∗. Again, Lemma 5.8.1

implies that x ∈ y2 ;τ (T) 6
∗. Thus, x ∈ L , by our assumed inclusion, and L is T -convex.

Corollary 6.6.2 Let T ⊆ {0, 1}∗ be reflexive. Then L ⊆ 6∗ is T -convex if and only if (L T 6
∗)∩

(L ;τ (T) 6
∗) = L.

Proof. We show that if T is reflexive, then for all L ⊆ 6∗,

L ⊆ (L T 6
∗) ∩ (L ;τ (T) 6

∗). (6.13)

If T is reflexive, then 0∗ ⊆ T and (L T 6
∗) ⊇ (L 0∗ {ǫ}) = L . Further, if T ⊇ 0∗ then

τ(T) ⊇ i∗ and (L ;τ (T) 6
∗) ⊇ (L ;i∗ {ǫ}) = L . Thus, we have established (6.13).

We now turn to decidability:

Corollary 6.6.3 Let T ⊆ {0, 1}∗ be a regular set of trajectories. Given a regular language L, it is

decidable whether L is T -convex.

Proof. As L , T are regular, so are L T 6
∗, L ;τ (T) 6

∗ and (L T 6
∗) ∩ (L ;τ (T) 6

∗). Thus,

the inclusion in Lemma 6.6.1 is decidable.

We now turn to our main result of this section:

Theorem 6.6.4 Let 6 be an alphabet and T ⊆ {0, 1}∗. For all languages L ⊆ 6+, the following

two conditions are equivalent:

CHAPTER 6. TRAJECTORY-BASED CODES 112

(i) L is a T̂ -code;

(ii) L is a T̂ -convex T -code.

Proof. (i) ⇒ (ii): Let L ⊆ 6+ be a T̂ -code. Then as T ⊆ T̂ , L is a T -code as well. Assume that

u ωT̂ v ωT̂ w, with u, w ∈ L . As T̂ is transitive, by definition, u ωT̂ w. Thus, u = w, as u, w ∈ L .

Now, by the antisymmetry of T̂ , v ωT̂ u and u ωT̂ v imply v = u ∈ L . Thus, L is T̂ -convex.

(ii) ⇒ (i): Let L ⊆ 6+ be a T -code, as well as being T̂ -convex.

Recall the operator �T given by (6.11). Let Ti = �i
T (T). Then T̂ = ∪i≥0Ti , by (6.12). We

establish (by induction) that L is a Ti -code for all i ≥ 0. The result will then follow. To see this,

assume L is a Ti -code for all i ≥ 0. Let x, y ∈ L be such that x ωT̂ y. Then there exists t ∈ T̂ such

that y ∈ x t z for some z ∈ 6∗. As t ∈ T̂ , there exists i ≥ 0 such that t ∈ Ti , Thus, x ωTi
y and

then x = y, as required.

We now establish by induction on i ≥ 0 that L is a Ti -code. For i = 0, T0 = T . Thus, L is a

T -code by assumption.

Let i > 0 and assume that L is a Ti−1-code. Let x, y ∈ L be chosen so that x ωTi
y. Thus,

there exist t ∈ Ti and z ∈ 6∗ such that y ∈ x t z. We have that t ∈ Ti = �T (Ti−1) =

T ∪ Ti−1 ∪ ψ(σ−1(Ti−1) ∩ ϕ−1(Ti−1)). If t ∈ T ∪ Ti−1, then, as y ∈ x t z, by induction x = y.

Consider then the case when t ∈ ψ(σ−1(Ti−1) ∩ ϕ−1(Ti−1)). Let t0, t1 ∈ Ti−1 be such that

t ∈ ψ(ϕ−1(t0) ∩ σ−1(t1)). By definition of ψ, σ, ϕ, we know that we can write

t0 =

n∏

k=1

0ik 1 jk

for some n ∈ N and ik, jk ∈ N for all 1 ≤ k ≤ n, as well as t1 =
∏n

k=1 sk where |sk | = ik for all

1 ≤ k ≤ n. Further,

t =

n∏

k=1

sk1 jk .

As y ∈ x t z, we can write x =
∏n

k=1 xk , z =
∏n

k=1 αkβk , where xk, αk, βk ∈ 6∗ satisfy |xk | =

|sk |0, |αk | = |sk |1 and |βk | = jk for all 1 ≤ k ≤ n. Further, let y =
∏n

k=1 γkβk where γk ∈ xk sk
αk

for all 1 ≤ k ≤ n.

CHAPTER 6. TRAJECTORY-BASED CODES 113

Let α =
∏n

k=1 αk , β =
∏n

k=1 βk and γ =
∏n

k=1 γk . Then we note that

y ∈ γ t0 β;

γ ∈ x t1 α.

As t0, t1 ∈ Ti−1 ⊆ T̂ , we conclude that x ωTi−1
γ ωTi−1

y, as well as x ωT̂ γ ωT̂ y, and thus γ ∈ L ,

by the T̂ -convexity of L .

Finally, we note that γ ωTi−1
y implies that γ = y, as L is a Ti−1-code by induction. Similarly,

x ωTi−1
γ implies that γ = x . We conclude that x = y and, since x, y ∈ L were chosen arbitrarily,

L is a Ti -code.

Theorem 6.6.4 was known for the case O = 0∗1∗0∗, which corresponds to outfix codes, see,

e.g., Shyr and Thierrin [185, Prop. 2]. In this case, Ô = H = (0 + 1)∗, which corresponds to

hypercodes. Theorem 6.6.4 was known to Guo et al. [57, Prop. 2] in a slightly weaker form for

B = 0∗1∗ + 1∗0∗. In this case, B̂ = I = 1∗0∗1∗, and the convexity is with respect to the factor (or

subword) ordering. See also Long [136, Sect. 5] for the case of shuffle codes.

6.7 Closure Properties

We now consider the closure properties of PT .

6.7.1 Closure under Boolean Operations

We note immediately that PT is closed under intersection with arbitrary languages, provided the

intersection is non-empty:

Lemma 6.7.1 Let6 be an alphabet and T ⊆ {0, 1}∗. Let L0 ∈ PT (6) and L1 ⊆ 6+. If L0 ∩ L1 6=

∅, then L0 ∩ L1 ∈ PT (6).

Further, it is clear that PT is closed under union if and only if T ⊆ 0∗ + 1∗.

CHAPTER 6. TRAJECTORY-BASED CODES 114

Lemma 6.7.2 Let 6 be an alphabet with |6| > 1 and T ⊆ {0, 1}∗. Then PT (6) is closed under

union if and only if T ⊆ 0∗ + 1∗.

Proof. If T ⊆ 0∗ +1∗, then PT (6) = 26
+
−{∅}. Thus, it is clear that PT (6) is closed under union.

If T ∩ 0∗ + 1∗ 6= ∅, then let t ∈ T be such that |t|0, |t|1 6= 0. Let t0 = 0|t |0 . As |t|1 6= 0, t0 6= t .

It suffices to note that {t}, {t0} ∈ PT (6), but that {t, t0} /∈ PT (6).

For completeness, we consider closure of PT (6) under non-empty complement relative to 6+:

Lemma 6.7.3 Let 6 be an alphabet with |6| > 1. Let T ⊆ {0, 1}∗. Then there exists L ∈ PT (6)

such that L ∩6+ 6= ∅ and L ∩6+ /∈ PT (6) if and only if T 6⊆ 0∗ + 1∗.

Proof. If T ⊆ 0∗ + 1∗, then PT (6) = 26
+

− {∅}. Assume there exists L ∈ PT (6) such that

L ∩6+ 6= ∅ and L ∩6+ /∈ PT (6) Thus, L ∩6+ /∈ 26
+

− {∅}. As L ∩6+ 6= ∅, we must have that

L ∩6+ /∈ 26
+

, i.e., L ∩6+ 6⊆ 6+, which is absurd.

If T ∩ 0∗ + 1∗ 6= ∅, then let t ∈ T be such that |t|0, |t|1 6= 0. Let 0, 1 ∈ 6 without loss of

generality.

Let t1 = 1|t |1 and t0 = 0|t |0 . Note that the three trajectories t, t0, t1 are all distinct. We conclude

by noting that L = {t1} ∈ PT (6), but 6+ − {t1} ⊇ {t0, t}. Thus, L ∈ PT (6) but L ∩6+ /∈ PT (6).

6.7.2 Closure under Catenation

Theorem 6.7.4 Let T ⊆ {0, 1}∗ be a set of trajectories such that s(T) ∪ p(T) ⊆ T . Then PT is

closed under catenation.

Proof. Let L i ∈ PT for i = 1, 2. Assume that

(L1L2 T x) ∩ L1L2 6= ∅

for some x ∈ 6∗. We will demonstrate that x = ǫ. Let αi , βi ∈ L i for i = 1, 2 be such that

β1β2 ∈ α1α2 T x .

CHAPTER 6. TRAJECTORY-BASED CODES 115

Let t ∈ T be such that β1β2 ∈ α1α2 t x . Let x = x1x2 and t = t1t2 be chosen so that β1β2 ∈

(α1 t1 x1)(α2 t2 x2). We distinguish two cases:

(a) |α1| + |x1| ≥ |β1|. Then there exists γ ∈ 6∗ such that

β1γ ∈ α1 t1 x1;

β2 ∈ γ (α2 t2 x2).

Let t ′
2 = 1|γ |t2 and x ′

2 = γ x2. Then, as |γ | ≤ |t1|, t ′
2 ∈ s(T) ⊆ T and thus β2 ∈ α2 t ′2

x ′
2

implies that x ′
2 = ǫ. In particular, x2 = γ = ǫ. As γ = ǫ, β1 ∈ α1 t1 x1. Note that

t1 ∈ p(T) ⊆ T . Thus, L1 a T -code implies that x1 = ǫ and hence x = x1x2 = ǫ.

(b) |α1| + |x1| < |β1|. Let γ ∈ 6+ be such that

β1 ∈ (α1 t1 x1)γ ;

γβ2 ∈ α2 t2 x2.

Let t ′
1 = t11|γ | ∈ p(T) ⊆ T , as |γ | ≤ |t2|, and let x ′

1 = x1γ . Then β1 ∈ (α1 t ′1
x ′

1). As L1 is

a T -code, x ′
1 = ǫ. This contradicts that γ ∈ 6+.

Thus, x = ǫ and L1L2 is a T -code.

We note that Theorem 6.7.4 can also be proven as follows: as p(T) ∪ s(T) ⊆ T , T is both

cancellative and leviesque. By Jürgensen et al. [99, Prop. 10], this implies that PT is closed under

catenation.

6.7.3 Closure under Inverse Morphism

We now turn to inverse morphism. Let n ≥ 1. Let T ⊆ (0∗1∗)n be a bounded regular language such

that there exist ai , bi , ci , di for 1 ≤ i ≤ n such that

T =

n∏

i=1

0ai (0bi)∗1ci (1di)∗. (6.14)

CHAPTER 6. TRAJECTORY-BASED CODES 116

(We assume throughout that T ⊆ (0∗1∗)n; similar proofs follow if, e.g., T ⊆ (0∗1∗)n0∗). Let

I j = {a j + b j m : m ≥ 0} ∀1 ≤ j ≤ n;

K j = {c j + d j m : m ≥ 0} ∀1 ≤ j ≤ n.

Let I ′
j = I j \ {0} for all 1 ≤ j ≤ n.

Let ϕ : 1∗ → 6∗ be a morphism. We define [ϕ], [ϕ−1] : N → 2N as follows:

[ϕ](m) = {|x| : x ∈ ϕ(6m)};

[ϕ−1](m) = {|x| : x ∈ ϕ−1(6m)}.

We extend these functions naturally to operate on 2N as, e.g., [ϕ](S) =
⋃

s∈S[ϕ](s).

We now prove a generalization of a result on infix and outfix codes established by Ito et al. [77,

Prop. 6.5].

Theorem 6.7.5 Let T ⊆ (0∗1∗)n be a bounded regular set of trajectories as given by (6.14). Let

ϕ : 1∗ → 6∗ be a morphism satisfying

(a) ∅ 6= [ϕ−1](I j) ⊆ I j for all 1 ≤ j ≤ n.

(b) there exists j with 1 ≤ j ≤ n such that ∅ 6= [ϕ−1](I ′
j) ⊆ I ′

j .

(c) [ϕ](I j) ⊆ I j for all 1 ≤ j ≤ n.

(d) [ϕ](K j) ⊆ K j for all 1 ≤ j ≤ n.

Then PT (6) is closed under ϕ−1 if and only if

{|x| : x ∈ ϕ−1(ǫ)}n ∩

n∏

j=1

K j − {0}n

 = ∅. (6.15)

Proof. Assume that (6.15) fails. Let x j for 1 ≤ j ≤ n be such that x j ∈ ϕ−1(ǫ) and |x j | ∈ K j . By

(6.15), x =
∏n

i=1 xi 6= ǫ. Let k j = |x j | for 1 ≤ j ≤ n.

By (a), let i j ∈ I j be such that [ϕ−1](i j) 6= ∅ for all 1 ≤ j ≤ n, and such there exist j0 satisfying

1 ≤ j0 ≤ n, i j0 6= 0 and [ϕ−1](i j0) contains a non-zero element, by (b). Thus, ϕ−1(6i j) 6= ∅. Let

CHAPTER 6. TRAJECTORY-BASED CODES 117

u j ∈ 6i j be such that there exist v j ∈ ϕ−1(u j) for all 1 ≤ j ≤ n. As i j0 6= 0, u =
∏n

j=1 u j 6= ǫ,

and as we can choose v j0 ∈ ϕ−1(u j0) to be a non-empty word, v =
∏n

j=1 v j 6= ǫ. Further, by (a),

|v j | ∈ I j . Let ℓ j = |v j | for 1 ≤ j ≤ n.

Consider t =
∏n

j=1 0ℓ j 1k j . As ℓ j ∈ I j and k j ∈ K j , t ∈ T . We now define a T -code L ⊆ 6+

such that ϕ−1(L) is not a T -code.

Consider L = {u} ⊆ 6+. Trivially, L is a T -code. Let w =
∏n

j=1 v j x j . Note that ϕ(v) =

ϕ(v1) · · · ϕ(vn) = u1 · · · un = u, and that ϕ(w) =
∏n

j=1 ϕ(v j)ϕ(x j) =
∏n

j=1 u j · ǫ = u. Thus,

v,w ∈ ϕ−1(L). Further, v 6= ǫ implies that w 6= ǫ.

The fact that ϕ−1(L) is not a T -code now follows, since w ∈ ϕ−1(L) ∩ (v t x) ⊆ ϕ−1(L) ∩

(ϕ−1(L) T 1
+).

For the reverse implication, let L ⊆ 6+ be a T -code such that ϕ−1(L) is not a T -code. Then

there exists t ∈ T , u, v ∈ ϕ−1(L) and x ∈ 1+ such that v ∈ u T x . As ϕ(u), ϕ(v) ∈ L ⊆ 6+,

u, v ∈ 1+.

Consider t =
∏n

j=1 0i j 1k j for some i j ∈ I j and k j ∈ K j for 1 ≤ j ≤ n. Then v =
∏n

j=1 u j x j .

for |u j | = i j , |x j | = k j , 1 ≤ j ≤ n. Consider that

ϕ(v) =

n∏

i=1

ϕ(u j)ϕ(x j),

ϕ(u) =

n∏

i=1

ϕ(u j),

ϕ(x) =

n∏

i=1

ϕ(x j).

Let ℓ j = |ϕ(u j)| and m j = |ϕ(x j)| for 1 ≤ j ≤ n. By assumptions (c) and (d), ℓ j ∈ I j and

m j ∈ K j . Thus,

t ′ =

n∏

j=1

0ℓ j 1m j ∈ T .

Then we may easily observe that

ϕ(v) ∈ ϕ(u) t ′ ϕ(x).

As ϕ(v), ϕ(u) ∈ L , a T -code, ϕ(x) = ǫ, and, in particular, ϕ(x j) = ǫ for all 1 ≤ j ≤ n. Thus,

CHAPTER 6. TRAJECTORY-BASED CODES 118

recalling that k j = |x j | and x 6= ǫ, we note that

[k1, · · · , kn] ∈ {|x| : x ∈ ϕ−1(ǫ)}n ∩

n∏

j=1

K j − {0}n

 .

This completes the proof.

6.7.4 Closure under Reversal

For a word w = w1w2 · · ·wn, where wi ∈ 6, its reversal, denoted wR , is given by wR =

wnwn−1 · · ·w1. If L ⊆ 6∗ is a language, then its reversal is L R = {wR : w ∈ L}. For a

class of languages C, let CR = {L R : L ∈ C}.

Lemma 6.7.6 For all T ⊆ {0, 1}∗, the following equality holds: PT R = P R
T .

Proof. It suffices to show that PT R ⊆ P R
T .

Let L ∈ PT R . Then we have that L ∩ (L T R 6+) = ∅. Assume that L /∈ P R
T and thus

L R /∈ PT . Let x, y ∈ L R, t ∈ T and z ∈ 6+ be such that x ∈ y t z. Then we note (see,

e.g., Mateescu et al. [147, Rem. 4.9(ii)]) that x R ∈ y R
t R z R. But as x R, y R ∈ L , t R ∈ T R , and

z R ∈ 6+, this contradicts that L is a T R-code. Thus, L ∈ P R
T .

Corollary 6.7.7 Let T ⊆ {0, 1}∗. Then P R
T = PT if and only if T = T R .

6.8 Maximal T -codes

Let T ⊆ {0, 1}∗. We say that L ∈ PT (6) is a maximal T -code if, for all L ′ ∈ PT (6), L ⊆ L ′

implies L = L ′. Denote the set of all maximal T -codes over an alphabet 6 by MT (6). Note

that the alphabet 6 is crucial in the definition of maximality. By Zorn’s Lemma, we can easily

establish that every L ∈ PT (6) is contained in some element of MT (6). Again, the proof is a

specific instance of a result from dependency theory. We may also prove the following result using

dependency theory; the result is also clear in our case:

Lemma 6.8.1 Let T1 ⊆ T2. Then for all 6, MT2
(6) ⊆ MT1

(6).

CHAPTER 6. TRAJECTORY-BASED CODES 119

6.8.1 Decidability and Maximal T -Codes

Unlike showing that every T -code can be embedded in a maximal T -code, to our knowledge, de-

pendency theory has not addressed the problem of deciding whether a language is a maximal code

under some dependence system. We address this problem for T -codes now. We first require the

following technical lemma, which is interesting in its own right (specific cases were known for,

e.g., prefix codes [18, Prop. 3.1, Thm. 3.3], hypercodes [185, Cor. to Prop. 11], as well as biprefix

and outfix codes [134, Lemmas 3.3 and 3.5]). Let τ : {0, 1}∗ → {i, d}∗ be again given by τ(0) = i

and τ(1) = d.

Lemma 6.8.2 Let T ⊆ {0, 1}∗. Let 6 be an alphabet. For all L ∈ PT (6), L ∈ MT (6) if and only

if

L ∪ (L T 6
+) ∪ (L ;τ (T) 6

+) = 6+. (6.16)

Proof. Let L ∈ PT (6) − MT (6). Then there exists x ∈ 6+ such that L ∪ {x} ∈ PT (6), but

x /∈ L . Thus, assume, contrary to what we want to prove, that x ∈ (L T 6
+) ∪ (L ;τ (T) 6

+).

If x ∈ L T 6
+, then certainly x ∈ (L ∪ {x}) T 6

+, by the monotonicity of T . But this

contradicts that L ∪ {x} is a T -code.

If x ∈ L ;τ (T) 6
+, then by the monotonicity of ;τ (T), x ∈ (L ∪ {x}) ;τ (T) 6

+. But this

contradicts that L ∪ {x} is a T -code, by (6.7). Thus, x /∈ L ∪ (L T 6
+) ∪ (L ;τ (T) 6

+).

For the reverse implication, assume that L ∈ MT (6). Then for all x ∈ 6+ with x /∈ L , there

exist y ∈ L , z ∈ 6+ such that either x ∈ y T z or y ∈ x T z. The second membership is

equivalent to x ∈ y ;τ (T) z. Thus, we have x ∈ (L T 6
+) ∪ (L ;τ (T) 6

+) for all x ∈ 6+ − L .

The result then follows.

Corollary 6.8.3 Let T ⊆ {0, 1}∗ be a regular set of trajectories. Given a regular language L ⊆ 6+,

it is decidable whether L ∈ MT (6).

Proof. By Lemma 6.3.9, we can decide whether L ∈ PT (6). If not, then certainly L /∈ MT (6).

Otherwise, since T, L are regular, then the languages L , L T 6
+, L ;τ (T) 6

+, as well as L ∪

CHAPTER 6. TRAJECTORY-BASED CODES 120

(L T 6
+) ∪ (L ;τ (T) 6

+) are regular. Thus, the equality (6.16) is decidable.

Similar results were also obtained by Kari et al. [108, Sect. 5]. We now consider the decidability

of being a maximal T -code for finite languages. Our goal is to give a class of sets of trajectories

larger than REG such that for any T in our class, it is decidable whether an arbitrary finite language

is a maximal T -code.

We first introduce some notation. Let T ⊆ {0, 1}∗. For any n ≥ 0, let ηn(T) = {t ∈ T : |t|0 =

n}. Clearly, ∪n≥0ηn(T) = T .

Before we begin, we require some preliminary lemmas. Recall that a semilinear set over Nk is

a finite union of sets of the form {u +
∑n

i=1 civi : ci ∈ N} where u, vi ∈ Nk . The following lemma

can be found in Ginsburg [50, Cor. 5.3.2]:

Lemma 6.8.4 Let T ⊆ w∗
1w

∗
2 for w1, w2 ∈ {0, 1}∗. Then T is a CFL if and only if {(m, n) :

wm
1 w

n
2 ∈ T } is a semilinear set.

Lemma 6.8.5 Let T ⊆ w∗
1w

∗
2 for w1, w2 ∈ {0, 1}∗. If w1, w2 are given and T is an effectively given

CFL, then for all n ≥ 1, ηn(T) is an effectively regular language.

For example, let T = {0m1m : m ≥ 0} ⊆ 0∗1∗. Then ηn(T) = {0n1n} for all n ≥ 0. If

T = (01)∗1∗, then ηn(T) = (01)n1∗. We note that we cannot relax the conditions of Lemma 6.8.5

to T ⊆ w∗
1w

∗
2w

∗
3 , since, e.g., T = {1n0m1n : n,m ≥ 0} ⊆ 1∗0∗1∗, but ηm(T) = {1n0m1n : n ≥ 0},

which is not regular if m > 0.

Proof. Let T ⊆ w∗
1w

∗
2 for w1, w2 ∈ {0, 1}∗. Let S be the semilinear set such that w

α1

1 w
α2

2 ∈ T if

and only if (α1, α2) ∈ S. Since the union of regular languages is regular, we can assume without

loss of generality that S is linear, i.e., there exist m, k1, k2 ≥ 0 and p1, ri ≥ 0 for all 1 ≤ i ≤ m

such that

S = {(k1, k2)+

m∑

i=1

ni(pi , ri) : (n1, . . . , nm) ∈ Nm}.

We assume without loss of generality that (p j , r j) 6= (0, 0) for all 1 ≤ j ≤ m, otherwise, we can

simply remove this index from our set without affecting S. We distinguish between four cases:

CHAPTER 6. TRAJECTORY-BASED CODES 121

(a) w1w2 ∈ 1∗ + 0∗. In this case, as T is a unary CFL, it is known that T is a regular language.

Thus, so is ηn(T) = T ∩ (1∗0)n1∗.

(b) w1 ∈ 1∗. By case (a), we can assume that w2 /∈ 1∗, i.e., that |w2|0 6= 0. As w1 ∈ 1∗, there

exists α ≥ 0 such that

T = {1α(k1+
∑m

i=1 ni pi)w
k2+

∑m
i=1 ni ri

2 : (n1, . . . , nm) ∈ Nm}.

Let I ⊆ Nm be defined so that

I = {(n1, . . . , nm) : |w2|0(k2 +

m∑

i=1

niri) = n}.

From this, we can see that

ηn(T) = {1α(k1+
∑m

i=1 ni pi)w
k2+

∑m
i=1 ni ri

2 : (n1, . . . , nm) ∈ Nm}.

By reordering if necessary, let 0 ≤ m ′ ≤ m be the index such that for all j ≤ m ′, r j 6= 0 and for

all m ′ < j ≤ m, r j = 0. Let ϕ : I → Nm′
be given by ϕ(n1, n2, . . . , nm) = (n1, n2, . . . , nm′).

Note that ϕ−1(ϕ(I)) = I as we have that if (n1, . . . , nm) ∈ I , for all m ′ < j ≤ m,

(n1, n2, . . . , n j−1, n′
j , n j+1, . . . , nm) ∈ I

for all n′
j ∈ N.

Further, note that ϕ(I) is finite, since for all (n1, . . . , nm′) ∈ ϕ(I) and all j ≤ m ′, n j satisfies

n j ≤
1

r j

(
n

|w2|0
− k2

)
.

Thus, we can conclude that

ηn(T) ={1α(k1+
∑m′

i=1 ni pi)(

m∏

i=m′+1

(1αpi)∗)w
k2+

∑m′

i=1 ni ri

2

: (n1, . . . , nm′) ∈ ϕ(I)}.

and that ηn(T) is regular.

CHAPTER 6. TRAJECTORY-BASED CODES 122

(c) w2 ∈ 1∗. Thus, consider that ηn(T
R) = ηn(T)

R . As T R ⊆ (wR
2)

∗(wR
1)

∗, by (a) or (b), ηn(T
R)

is regular. As the regular languages are closed under reversal, ηn(T) is regular.

(d) w1, w2 /∈ 1∗. Let I ⊆ Nm be defined by

I ={(n1, . . . , nm) ∈ Nm

: |w1|0(k1 +

m∑

i=1

ni pi)+ |w2|0(k2 +

m∑

i=1

niri) = n}.

Note that I is finite, as |w1|0, |w2|0 6= 0 and (pi , ri) 6= (0, 0) for all 1 ≤ i ≤ m. Further, we

have that

ηn(T) = {w
k1+

∑m
i=1 ni pi

1 w
k2+

∑m
i=1 ni ri

2 : (n1, . . . , nm) ∈ I }.

From this, we note that ηn(T) is finite.

Thus, ηn(T) is regular.

We are now ready to give our positive decidability result:

Theorem 6.8.6 Let T ⊆ {0, 1}∗ be a CFL such that T ⊆ w∗
1w

∗
2 for w1, w2 ∈ {0, 1}∗, where w1, w2

are given. If F is a finite set, then we can decide whether F is a maximal T -code. Furthermore, all

constructions are effective.

Proof. Let T ⊆ w∗
1w

∗
2 be a CFL. Let F be our finite set and let ℓ(F) = {|x| : x ∈ F} and

ℓF = max{ℓ : ℓ ∈ ℓ(F)}. First, we note that we can find T ≤ℓF = T ∩ {0, 1}≤ℓF , and that

F ;τ (T) 6
+ = F ;τ (T ≤ℓF) 6

+,

which is thus a regular language, since F,6+, τ (T ≤ℓF) are, as well.

Second, we note that η(T) = ∪ℓ∈ℓ(F)ηℓ(T) is a regular language, since ℓ(F) is finite, and ηℓ(T)

is regular by Lemma 6.8.5. Further, we note that

F T 6
+ = F η(T)6

+,

which is regular, by the regularity of F,6+ and η(T).

CHAPTER 6. TRAJECTORY-BASED CODES 123

Thus, we conclude that F ∪(F ;τ (T) 6
+)∪(F T 6

+) is a regular language, and thus, we can

determine whether this language is equal to 6+. Thus, by Lemma 6.8.2, we can determine whether

F is a maximal T -code.

6.8.2 Transitivity and Embedding T -codes

Given a class of codes C, and a language L ∈ C of given complexity, there has been much research

into whether or not L can be embedded in (or completed to) a maximal element L ′ ∈ C of the same

complexity, i.e., a maximal code L ′ ∈ C with L ⊆ L ′. Finite and regular languages in these classes

of codes are of particular interest. For instance, we note that every regular code can be completed

to a maximal regular code, while the same is not true for finite codes or finite biprefix codes.

We now show an interesting result on embedding T -codes in maximal T -codes while preserving

complexity. For example, we will show that if T is transitive and regular and L is a regular T -code,

then we can embed L in a maximal T -code which is also regular.

Our construction is a generalization of a result due to Lam [128]. In particular, we define two

transformations on languages. Let T be a set of trajectories and L ⊆ 6+ be a language. Then define

UT (L), VT (L) ⊆ 6+ as

UT (L) = 6+ − (L T 6
+ ∪ L ;τ (T) 6

+);

VT (L) = UT (L)− (UT (L) T 6
+).

First, we note the following two properties of UT (L), VT (L):

Lemma 6.8.7 Let T ⊆ {0, 1}∗ be a set of trajectories and L ∈ PT (6). Then L ⊆ UT (L) and

L ⊆ VT (L).

Proof. We establish first that L ⊆ UT (L). Let x ∈ L , but assume that x /∈ UT (L). Then x ∈

L T 6
+ or x ∈ L ;τ (T) 6

+. In the first case, we have L ∩ (L T 6
+) 6= ∅, contradicting that L

is a T -code. The second case also contradicts that L is a T -code, since then L ∩ (L ;τ (T) 6
+) 6= ∅,

contradicting (6.7).

CHAPTER 6. TRAJECTORY-BASED CODES 124

We now establish L ⊆ VT (L). Assume not, then as L ⊆ UT (L), we must have that L ∩

(UT (L) T 6
+) 6= ∅. Assume that y ∈ UT (L), z ∈ 6+ and x ∈ L are chosen so that x ∈ y T z.

Thus y ∈ x ;τ (T) z ⊆ L ;τ (T) 6
+, contradicting that y ∈ UT (L). Thus, L ⊆ VT (L).

Theorem 6.8.8 Let T ⊆ {0, 1}∗ be transitive. Let 6 be an alphabet. Then for all L ∈ PT (6), the

language VT (L) contains L and VT (L) ∈ MT (6).

Proof. By Lemma 6.8.7, L ⊆ VT (L). That VT (L) is a T -code follows from Lemma 6.3.11 applied

to UT (L). Thus, it remains to show that for all z ∈ 6+ − VT (L), VT (L) ∪ {z} is not a T -code.

Let z /∈ VT (L) be arbitrary. We distinguish two cases:

(a) if z /∈ UT (L), then z ∈ (L T 6
+) ∪ (L ;τ (T) 6

+). If z ∈ L T 6
+ ⊆ VT (L) T 6

+,

then VT (L) ∪ {z} /∈ PT (6). If z ∈ L ;τ (T) 6
+ ⊆ VT (L) ;τ (T) 6

+, then again (this time by

(6.7)), VT (L) ∪ {z} /∈ PT (6).

(b) if z ∈ UT (L)− VT (L), then z ∈ UT (L) T 6
+. Let y ∈ UT (L) be a shortest word such that

z ∈ y T 6
+. We claim that y ∈ VT (L). If this were not the case, then as y ∈ UT (L)−VT (L),

we have that y ∈ UT (L) T 6
+, by definition of VT (L). Let y′ ∈ UT (L) be such that

y ∈ y′
T 6

+. Thus, we have that y′ωT yωT z. By transitivity of T , y′ωT z, i.e., z ∈ y′
T 6

∗.

As |y′| < |y| < |z|, we certainly have that z ∈ y′
T 6

+ in particular. But as |y′| < |y|, this

contradicts our choice of y. Thus, y ∈ VT (L). But y, z ∈ VT (L) ∪ {z} and z ∈ y T 6
+

imply that VT (L) ∪ {z} /∈ PT (6).

Thus, VT (L) is a maximal T -code.

There are several consequences of Theorem 6.8.8. We note only one important corollary:

Corollary 6.8.9 Let T ⊆ {0, 1}∗ be transitive and regular. Then every regular (resp., recursive)

T -code is contained in a maximal regular (resp., recursive) T -code.

Corollary 6.8.9 was given for T = 1∗0∗1∗ and regular T -codes by Lam [128, Prop. 3.2]. Further

research into the case when T is not transitive is necessary (for example, the proofs of Zhang

CHAPTER 6. TRAJECTORY-BASED CODES 125

and Shen [206] and Bruyère and Perrin [19] on embedding regular biprefix codes are much more

involved than our construction, and do not seem to be easily generalized).

We can extend our embedding results to finite languages with one additional constraint on T ,

namely completeness. The following technical lemma is easily proven:

Lemma 6.8.10 Let T ⊆ {0, 1}∗ be complete. Then for all y ∈ 6∗ and for all m ≤ |y|, there exists

z ∈ 6m such that y ∈ z T 6
∗. Further, if m < |y|, y ∈ z T 6

+.

We now show that for transitive and complete sets of trajectories T , finite T -codes can be

completed to finite maximal T -codes.

Corollary 6.8.11 Let T ⊆ {0, 1}∗ be transitive and complete. Let 6 be an alphabet. Then for all

finite F ∈ PT (6), there exists a finite language F ′ ∈ MT (6) such that F ⊆ F ′. Further, if T is

effectively regular, and F is effectively given, we can effectively construct F ′.

Proof. Let F be a finite language and n = max{|x| : x ∈ F}. As F ∈ PT (6), n 6= 0. We

first establish the following claim: for all y ∈ 6+ with |y| > n, there exists u ∈ UT (F) such that

y ∈ u T 6
+.

Let y ∈ 6+ be such that |y| > n. Then by Lemma 6.8.10, there exists z such that |z| =

n and y ∈ z T 6
+. Note that as n 6= 0, z ∈ 6+. If z ∈ UT (F), we have established the

claim with u = z. Thus, assume that z /∈ UT (F). By definition of UT (F), we have that z ∈

(F T 6
+) ∪ (F ;τ (T) 6

+). However, |x| < n for all x ∈ F ;τ (T) 6
+. Thus, we have that

z ∈ F T 6
+ ⊆ UT (F) T 6

+, the inclusion being valid by Lemma 6.8.7. Let u ∈ UT (F) be

such that z ∈ u T 6
+. Then u ωT z and z ωT y. Thus, by transitivity, u ωT y. As |u| < |y|, this

implies that y ∈ u T 6
+. Thus, our claim is proven.

We now establish that VT (F) is finite. Let y be an arbitrary word such that |y| > n. By

our claim, y ∈ UT (F) T 6
+. But by definition of VT (F), this implies that y /∈ VT (F). Thus,

VT (F) ⊆ 6≤n. Therefore, the conditions of the corollary are met by VT (F), by Theorem 6.8.8.

This completes the proof.

CHAPTER 6. TRAJECTORY-BASED CODES 126

In practice, the condition that T be complete is not very restrictive, since natural operations

seem to typically be defined by a complete set of trajectories.

In Section 6.9.3 below, we will give alternate conditions on T that ensure that every finite T -

code can be embedded in a finite maximal T -code. However, this result will be a trivial consequence

of the fact that for such T , all T -codes are finite.

We now show that there exist T which are not transitive, and for which the above results do not

hold. It is known, for example, that there exist finite biprefix codes which cannot be embedded in a

maximal finite biprefix code (see, e.g., Bruyère and Perrin [19, Sect. 3]). We present the following

two examples, as well; in the first case, T is regular but not transitive, and for all regular T -codes

L , L cannot be embedded in any maximal CF T -code. In the second example, T is not complete,

and no finite T -code can be embedded in a maximal finite T -code.

Example 6.8.12: Let T = (01)∗; then T is known as perfect or balanced literal shuffle. Clearly,

T is not transitive. Let6 = {a}. We claim that for all regular languages L ⊆ a∗, L is not a maximal

T -code.

Let L ⊆ a∗ be regular. As L is a unary regular language, it is well-known that L corresponds to

an ultimately periodic set of natural numbers. That is, there exist n0, p ∈ N with p > 0 such that

for all n > n0, an ∈ L if and only if an+p ∈ L .

Let r = min{kp : k ≥ 1, kp > n0}. Then we have two cases:

(a) if ar ∈ L , then a2r ∈ L as well. Thus, as a2r ∈ ar
T ar , L is not a T -code.

(b) if ar /∈ L , then a2r /∈ L as well. Thus, consider L ∪ {a2r}. If L is a T -code, then as

a2r /∈ L T a+ and L ∩ (a2r
T a+) = ∅, we have that L ∪ {a2r} is a T -code as well.

Thus, L is not a maximal T -code.

Thus, there are no regular languages in MT ({a}). Further, since the unary context-free and unary

regular languages coincide, there are no context-free languages in MT ({a}), either. Thus, e.g., the

T -code {a} cannot be embedded in any regular (or context-free) maximal T -code.

We note in passing that one maximal T -code containing {a} is given by L = {acn : n ≥ 1}

CHAPTER 6. TRAJECTORY-BASED CODES 127

where {cn}n≥1 = {1, 3, 4, 5, 7, 9, 11, . . . } is the lexicographically least sequence of positive integers

satisfying m ∈ {cn} ⇐⇒ 2m /∈ {cn}. This sequence has received some attention in the literature,

and has connections to the Thue-Morse word. We point the reader to A003159 in Sloane [188] for

details and references. Clearly, L is not regular. 2

Example 6.8.13: Let T = {0 j 12i0 j : i, j ≥ 0}. Then T is the balanced insertion operation.

Note that T is transitive, but not complete. Let 6 be an alphabet and let Lo = {x ∈ 6+ : |x| ≡ 1

(mod 2)}. Then for all L ∈ PT (6), L ∪ Lo ∈ PT (6). Thus, there are no finite maximal T -codes.

2

6.9 Finiteness of all T -codes

In this section, we investigate T ⊆ {0, 1}∗ such that all PT codes are finite. It is a well-known result

that all hypercodes (T = {0, 1}∗) are finite, which can be concluded from a result due to Higman

[64].

We define the following classes of sets of trajectories:

FR = {T ∈ {0, 1}∗ : PT ∩ REG ⊆ FIN};

FC = {T ∈ {0, 1}∗ : PT ∩ CF ⊆ FIN};

FH = {T ∈ {0, 1}∗ : PT ⊆ FIN}.

The class FH is of particular importance. If T is a partial order and T ∈ FH , then T is a well

partial order1. This is a subject of tremendous research, not only in the larger theory of partial orders

(see the survey of Kruskal [125]), but also within formal language theory as well. Without trying

to be exhaustive, we note the work of Jullien [96], Haines [58], van Leeuwen [197], Ehrenfeucht et

al. [47], Ilie [72, 73], Ilie and Salomaa [80] and Harju and Ilie [59] on well partial orders relating

to words. We also refer the reader to the survey of results presented by de Luca and Varricchio [33,

Sect. 5].

1Recall that we say that T has property P if and only if ωT has property P.

CHAPTER 6. TRAJECTORY-BASED CODES 128

To begin, we give conditions on T which ensure all regular (or context-free) T -codes are finite.

6.9.1 Finiteness of Regular T -codes

Let T ⊆ {0, 1}∗. Define the insertion behaviour of T , denoted ib(T), as

ib(T) = {(n1, n2, n3) ∈ N3 : 0n1 1n2 0n3 ∈ T }.

Say that T is REG-pumping compliant if, for all i, j, k ∈ N (j > 0), there exists j ′ with 0 ≤ j ′ < j

such that

(i) if j ′ = 0, then ib(T) ∩ {(i + jm1, jm2, k + jm3) : m1,m3 ≥ 0,m2 > 0} 6= ∅.

(ii) if 1 ≤ j ′ < j , then ib(T)∩ {(i + j ′ + jm1, jm2, k − j ′ + jm3) : m1 ≥ 0,m2,m3 > 0} 6= ∅.

The use of the terminology ‘REG-pumping compliant’ will become clear in the following lemma:

Lemma 6.9.1 Let T ⊆ {0, 1}∗. If T is REG-pumping compliant, then T ∈ FR .

Proof. Let R ∈ REG be an infinite regular language over 6. By the pumping lemma for regular

languages, there exist u, v,w ∈ 6∗ such that v 6= ǫ and uv∗w ⊆ R. Let i = |u|, j = |v| and

k = |w|. Note that j 6= 0. Let j ′ be the natural number implied by the REG-pumping compliance

condition.

If j ′ = 0, then let m1,m2,m3 be chosen so that m1,m3 ≥ 0, m2 > 0 and (i + jm1, jm2, k +

jm3) ∈ ib(T). Let t = 0i+ jm1 1 jm20k+ jm3 . By definition, t ∈ T . Consider x = uvm1+m3w ∈ R and

y = vm2 . As m2 6= 0 and v 6= ǫ, y 6= ǫ. We note that

x t y ∋ uvm1 · vm2 · vm3w = uvm1+m2+m3w.

Thus, (R T 6
+) ∩ R 6= ∅ and R /∈ PT .

If 1 ≤ j ′ < j , let m1 ≥ 0, m2,m3 > 0 be chosen so that

(i + j ′ + jm1, jm2, k − j ′ + jm3) ∈ ib(T),

CHAPTER 6. TRAJECTORY-BASED CODES 129

and hence t = 0i+ j ′+ jm11 jm20k+(j− j ′)+ j (m3−1) ∈ T . Let v1 ∈ 6∗ be the prefix of v of length j ′ and

let v = v1v2 for some v2 ∈ 6∗.

Consider x = uvm1+m3w ∈ R and y = (v2v1)
m2 6= ǫ. Then

x t y ∋ uvm1v1 · v2(v1v2)
m2−1v1 · v2v

m3−1w = uvm1+m2+m3w.

Again, (R T 6
+)∩ R 6= ∅ and thus R /∈ PT . Thus, PT contains no infinite regular languages.

The condition of being REG-pumping compliant is not very restrictive. Clearly, if T ⊇ 0∗1∗0∗,

then T is REG-pumping compliant (in this case, Lemma 6.9.1 is a corollary of a result on outfix

codes due to Ito et al. [77]). For a broader class of examples, we can consider immune languages.

Lemma 6.9.2 Let T ⊆ {0, 1}∗ be a set of trajectories such that T ∩ 0∗1∗0∗ is REG-immune. Then

T is REG-pumping compliant.

Proof. Let i ≥ 0, j > 0, k ≥ 0 be arbitrary. Consider

T0 = T0(i, j, k) = 0i (0 j)∗(1 j)+(0 j)∗0k .

As T0 is an infinite regular language, T0 is not a subset of T ∩ 0∗1∗0∗. Thus, T0 ∩ (T ∩ 0∗1∗0∗) =

T0 ∩ (T ∪ 0∗1∗0∗) 6= ∅. As T0 ⊆ 0∗1∗0∗, this implies that T0 ∩ T 6= ∅. Thus, there exist m1 ≥ 0,

m2 > 0 and m3 ≥ 0 such that 0i+ jm1 1 jm20k+ jm3 ∈ T , i.e., (i + jm1, jm2, k + jm3) ∈ ib(T). Thus,

the REG-pumping compliant conditions are met with j ′ = 0.

Next, we show that if T ⊆ 0∗1∗0∗, then REG-pumping compliance is necessary to ensure that

there are no infinite regular languages in PT .

Lemma 6.9.3 Let T ⊆ 0∗1∗0∗ be not REG-pumping compliant. Then PT (6) contains an infinite

regular language for all 6 with |6| ≥ 2.

Proof. Let i, j, k ∈ N be arbitrary such that i ≥ 0, j > 0, k ≥ 0,

ib(T) ∩ {(i + jm1, jm2, k + jm3) : m1,m3 ≥ 0,m2 > 0} = ∅.

CHAPTER 6. TRAJECTORY-BASED CODES 130

and for all 1 ≤ j ′ < j ,

ib(T) ∩ {(i + j ′ + jm1, jm2, k − j ′ + jm3) : m1 ≥ 0,m2,m3 > 0} = ∅.

Let a, b ∈ 6 (a 6= b) and R = ai (b j)∗ak . We claim that R ∈ PT (6). Assume not. Then there exist

ℓ1 > ℓ2 ≥ 0 such that

aib jℓ1ak ∈ ai b jℓ2ak
T z

for some z ∈ {a, b}+. By observation, z = b j (ℓ1−ℓ2). Thus, let t ∈ T be chosen so that

ai b jℓ1ak ∈ ai b jℓ2ak
t b j (ℓ1−ℓ2).

Then as T ⊆ 0∗1∗0∗, t = 0i+α j+ j ′
1 j (ℓ1−ℓ2)0(j− j ′)+(ℓ2−α−1) j+k for some α and j ′ with either 0 ≤ α ≤

ℓ2 and j ′ = 0 or 0 ≤ α < ℓ2−1 and 1 ≤ j ′ < j . If j ′ = 0, then (i +α j, j (ℓ1−ℓ2), k +(ℓ2−α) j) ∈

ib(T) while if j ′ 6= 0, then (i + j ′ + α j, j (ℓ1 − ℓ2), k − j ′ + (ℓ2 − α) j) ∈ ib(T), which are both

contradictions.

6.9.2 Finiteness of Context-free T -codes

Let T ⊆ {0, 1}∗. Define the 2–insertion behaviour of T , denoted 2ib(T), as follows:

2ib(T) = {(n1, n2, . . . , n5) ∈ N5 : 0n1 1n2 0n3 1n4 0n5 ∈ T }.

We use 2ib(T) to define the notion of CF-pumping compliance. The idea is the same as REG-

pumping compliance, but with more cases. In particular, say that T is CF-pumping compliant if, for

all i, j1, j2, k, ℓ ∈ N, with j1 + j2 > 0, there exist j ′
1, j ′

2 ∈ N such that 0 ≤ j ′
i < ji for i = 1, 2 and

2ib(T) ∩ P 6= ∅, where P is defined as follows:

(a) if j ′
1 = j ′

2 = 0, then

P = {(i + j1α1, j1β, k + j1α2 + j2α3, j2β, ℓ + j2α4)

: αm, β ∈ N, (1 ≤ m ≤ 4), β > 0, α1 + α2 = α3 + α4}.

CHAPTER 6. TRAJECTORY-BASED CODES 131

(b) if 1 ≤ j ′
1 < j1 and j ′

2 = 0, then

P = {(i + j ′
1 + j1α1, j1β, k − j ′

1 + j1α2 + j2(α3 + γ1), j2β, ℓ+ j2(α4 + γ2))

: αm, β, γp ∈ N, (1 ≤ m ≤ 4, 1 ≤ p ≤ 2),

β, α2 > 0, α1 + α2 = α3 + α4 + 1, γ1 + γ2 = 1}.

(c) if j ′
1 = 0 and 1 ≤ j ′

2 < j2, then

P = {(i + j1(α1 + γ1), j1β, k + j ′
2 + j1(α2 + γ2)+ j2α3, j2β, ℓ − j ′

2 + j2α4)

: αm, β, γp ∈ N, (1 ≤ m ≤ 4, 1 ≤ p ≤ 2),

β, α4 > 0, α1 + α2 + 1 = α3 + α4, γ1 + γ2 = 1}.

(d) if 1 ≤ j ′
1 < j1 and 1 ≤ j ′

2 < j2, then

P = {(i + j ′
1 + j1α1, j1β, k − j ′

1 + j ′
2 + j1α2 + j2α3, j2β, ℓ− j ′

2 + j2α4)

: αm, β ∈ N, (1 ≤ m ≤ 4), β, α2, α4 > 0, α1 + α2 = α3 + α4}.

Lemma 6.9.4 Let T ⊆ {0, 1}∗. If T is CF-pumping compliant, then T ∈ FC .

Proof. Let L ∈ CF be an infinite language which is a subset of 6+. Then by the pumping lemma

for CFLs, there exist u, v,w, x, y ∈ 6∗ such that vx 6= ǫ and {uvmwxm y : m ≥ 0} ⊆ L . Let

i = |u|, j1 = |v|, k = |w|, j2 = |x| and ℓ = |y|. Let j ′
1, j ′

2 be the natural numbers implied

by the CF-pumping compliance of T . We consider the case j ′
1 = 0 and 1 ≤ j ′

2 < j2. The other

cases are similar (the differences are similar to the differences between the cases in the proof of

Lemma 6.9.1).

Let αm, β, γp ∈ N for 1 ≤ m ≤ 4 and 1 ≤ p ≤ 2 be such that

(i + j1(α1 + γ1), j1β, k + j ′
2 + j1(α2 + γ2)+ j2α3, j2β, ℓ− j ′

2 + j2α4) ∈ 2ib(T). (6.17)

Further, we have that β, α4 > 0, α1 + α2 + 1 = α3 + α4 and γ1 + γ2 = 1, i.e., one of γp = 0 and

other is equal to one. Consider that

uvα1+α2+1wxα3+α4 y, uvα1+α2+1+βwxα3+α4+β y ∈ L .

CHAPTER 6. TRAJECTORY-BASED CODES 132

Further, if x = x1x2 where x1, x2 ∈ 6∗ and |x1| = j ′
2, then

uvα1+α2+1+βwxα3+α4+β y ∈ z1 · z2 · z3 t v
β(x2x1)

β

where

z1 = uvα1+γ1,

z2 = vα2+γ2wxα3 x1,

z3 = x2xα4−1 y,

t = 0i+ j1(α1+γ1)1 j1β0k+ j ′
2
+ j1(α2+γ2)+ j2α31 j2β0ℓ− j ′

2
+ j2α4 .

By (6.17), t ∈ T . Note also that

z1z2z3 = uvα1+α2+1wxα3+α4 y ∈ L .

As vx 6= ǫ and β > 0, vβ(x2x1)
β 6= ǫ. Thus, L /∈ PT .

Note that if T ⊇ 0∗1∗0∗1∗0∗ then T satisfies the conditions of Lemma 6.9.4. This instance of

our result is also a corollary of a result due to Thierrin and Yu [193, Prop. 3.3(2)].

6.9.3 Finiteness of T -codes

We now turn to the question of the existence of arbitrary infinite languages in a class of T -codes.

We first show that if T is bounded, then there is an infinite T -code.

Theorem 6.9.5 Let T ⊆ {0, 1}∗ be a bounded set of trajectories. Then for all 6 with |6| > 1,

PT (6) contains an infinite language.

Proof. Let T ⊆ {0, 1}∗ be a bounded language. Then there exist k ≥ 0 and w1, w2, . . . , wk ∈

{0, 1}∗ such that T ⊆ w∗
1w

∗
2 · · ·w∗

k . By Lemma 6.3.2, if we can establish that there is an infinite

T ′-code, where T ′ = w∗
1 · · ·w∗

k , the result will follow. Thus, without loss of generality, we let

T = w∗
1w

∗
2 · · ·w∗

k .

CHAPTER 6. TRAJECTORY-BASED CODES 133

If w1 = w2 = · · · = wk = ǫ, then T = {ǫ}, and thus PT (6) = 26
+

− {∅}, which clearly

contains an infinite language.

Otherwise, there exists i0 with 1 ≤ i0 ≤ k such that wi0 6= ǫ. For all 1 ≤ i ≤ k, let αi = |wi |.

Let a, b ∈ 6 be distinct letters, and define LT ⊆ {a, b}+ by

LT = {(

k∏

i=1

ambαi)am : m ≥ 0}.

We have that LT ⊆ {a, b}+ as αi0 6= 0. We claim LT ∈ PT (6). Assume not. Then there exist

m1,m2 ∈ N with m1 > m2, t ∈ T and z ∈ 6+ such that

(

k∏

i=1

am1 bαi)am1 ∈ (

k∏

i=1

am2 bαi)am2
t z.

Thus, we have that z = a(k+1)(m1−m2). Further, let ti ∈ {0, 1}∗ for 1 ≤ i ≤ k + 1 be defined so that

t = (

k∏

i=1

ti 0
αi)tk+1,

where |ti |0 = m2 and |ti |1 = m1 −m2 for all 1 ≤ i ≤ k +1. As t ∈ T , there exist ji ∈ N, 1 ≤ i ≤ k,

such that t =
∏k

i=1 w
ji
i . Thus, we have that

k∑

i=1

αi ji = (

k∑

i=1

|ti | + αi)+ |tk+1|,

and so
k∑

i=1

αi ji ≥

k∑

i=1

|ti | + αi .

Let ℓ with 1 ≤ ℓ ≤ k be the minimal index such that

ℓ∑

i=1

αi ji ≥

ℓ∑

i=1

|ti | + αi . (6.18)

Note that jℓ > 0, since if jℓ = 0, then ℓ − 1 satisfies (6.18) as well, contrary to our choice of ℓ (if

ℓ = 1 and j1 = 0, then |t1| = 0, which is a contradiction to |t1| = m1 > 0).

Let u1 =
∏ℓ−1

i=1 ti 0
αi , u2 = (

∏k
i=ℓ+1 ti 0

αi)tk+1, s1 =
∏ℓ−1

i=1 w
ji
i and s2 =

∏k
i=ℓ+1 w

ji
i . Thus, we

have that

u1tℓ0
αℓu2 = s1w

jℓ
ℓ s2

CHAPTER 6. TRAJECTORY-BASED CODES 134

tℓ u20αℓu1

s2w
jℓ
ℓ

s1

Figure 6.1: Two factorizations of t .

with |u1| ≥ |s1| and |u1| + |tℓ| + αℓ ≤ |s1| + αℓ · jℓ. The situation is summarized in Fig. 6.1. Thus,

we have that w
jℓ
ℓ contains a block of zeroes of length αℓ. As |wℓ| = αℓ and jℓ 6= 0, this implies that

wℓ = 0αℓ . But then as tℓ is a factor of w
jℓ
ℓ , we also have that tℓ ∈ 0∗. Thus, |tℓ|1 = 0, and m1 = m2,

a contradiction.

Further, there exist uncountably many unbounded trajectories T such that PT contains infinite–

even infinite regular–languages. Infinitely many of these are unbounded regular sets of trajectories.

Theorem 6.9.6 Let T ⊆ {0, 1}∗ be a set of trajectories such that there exists n ≥ 0 such that

T ⊆ 0≤n1(0 + 1)∗. Then for all 6 with |6| > 1, PT (6) contains an infinite regular language.

Proof. Let n ≥ 0 and T (n) = 0≤n1(0 + 1)∗. By Lemma 6.3.2, it suffices to prove that PT (n)(6)

contains an infinite regular language. Let a, b ∈ 6 be distinct letters. Consider the regular language

Rn = an+1b∗. Assume that Rn /∈ PT (n)(6). Thus, there exist i ≥ 0, t0 ∈ T (n) and z ∈ {a, b}+ such

that (an+1bi
t0 z) ∩ Rn 6= ∅. Let t0 = 0m1t2 for some n ≥ m ≥ 0 and t2 ∈ {0, 1}∗. Consider that

an+1bi
t0 z = am z1(a

n+1−mbi
t2 z2)

where z = z1z2 and z1 ∈ {a, b}.

By assumption, am z1(a
n+1−mbi

t2 z2) ∩ Rn 6= ∅, so that z1 = a. But now,

(an+1−mbi
t2 z2) ∩ an−mb∗ 6= ∅,

which is clearly impossible, since |x|a ≥ n + 1 − m for all x ∈ an+1−mbi
t2 z2.

The following corollary holds by Lemma 6.7.6.

CHAPTER 6. TRAJECTORY-BASED CODES 135

Corollary 6.9.7 Let T ⊆ {0, 1}∗ be a set of trajectories such that there exists n ≥ 0 such that

T ⊆ (0 + 1)∗10≤n . Then for all 6 with |6| > 1, PT (6) contains an infinite regular language.

We now turn to defining sets T of trajectories such that all T -codes are finite. The following

proof is generalized from the case H = (0 + 1)∗ found in, e.g., Lothaire [140] or Conway [28, pp.

63–64].

Lemma 6.9.8 Let n,m ≥ 1 be such that m | n. Let Tn,m = (0n + 1m)∗0≤n−1. Then Tn,m ∈ FH .

Proof. In what follows, let ω = ωTn,m . Assume that there exists an infinite Tn,m-code. Then there

exists an infinite sequence {xi }i≥1 which is ω-free, i.e., i < j implies xi ω x j does not hold. As

Tn,m ⊇ 0∗, ω is reflexive and we have that xi 6= x j for all i > j ≥ 1.

We now choose (using the axiom of choice) a minimal infinite ω-free sequence as follows: let

y1 be the shortest word which begins an infinite ω-free sequence. Let y2 be the shortest word such

that y1, y2 begins an infinite ω-free sequence. We continue in this way. Let {yi}i≥1 be the resulting

sequence. Clearly, {yi}i≥1 is an infinite ω-free sequence.

As ω is reflexive, yi 6= y j for all i > j ≥ 1. Therefore, |yi | ≤ n for only finitely many

i ∈ N. Furthermore, since there are only finitely many words of length n, there exist y ∈ 6n and

{i j } j≥1 ⊆ N such that y is a prefix of yi j
for all j ≥ 1. In particular, for all j ≥ 1, let u j ∈ 6∗ be

the word such that yi j
= yu j . Consider the sequence

Y = {y1, y2, y3, · · · , yi1−1, u1, u2, · · · }.

Clearly, as n ≥ 1, |u1| < |yi1 |. Thus, Y is an infinite sequence which comes before {yi}i≥1 in

our ordering of infinite ω-free sequences, and so two words in Y must be comparable under ω. By

assumption, y j1 6 ω y j2 for all 1 ≤ j1 < j2 ≤ i1 − 1. Thus, there are two remaining cases:

(i) there exist 1 ≤ j ≤ i1−1 and k ≥ 1 such that y jωuk . Thus, let t ∈ Tn,m and α ∈ 6∗ be chosen

so that uk ∈ y j t α. Consider t ′ = 1nt ∈ Tn,m . Then yik = yuk ∈ y(y j t α) = y j t ′ yα.

Therefore, y j ω yik . As j ≤ i1 − 1 < ik , this is a contradiction.

CHAPTER 6. TRAJECTORY-BASED CODES 136

(ii) there exist k > ℓ ≥ 1 such that uℓ ω uk . Let α ∈ 6∗ and t ∈ Tn,m be such that uk ∈ uℓ t α.

Consider t ′ = 0nt ∈ Tn,m . Then yik = yuk ∈ y(uℓ t α) = yuℓ t ′ α = yiℓ t ′ α. Thus

yiℓ ω yik . As ℓ < k, this is a contradiction.

We have arrived at a contradiction.

As another class of examples, Ehrenfeucht et al. [47, p. 317] note that {1n, 0}∗ ∈ FH for all

n ≥ 1 (their other results, though elegant and interesting, do not otherwise seem to be applicable to

our situation).

Note that T1,1 = {0, 1}∗. Let Tn = Tn,n . For all 1 ≤ i < j , PTi
6= PT j

, as 0i1i ∈ Ti − T j . Thus,

by Lemma 6.3.6, the classes of Ti - and T j -codes are distinct.

Corollary 6.9.9 There are infinitely many T ⊆ {0, 1}∗ which define distinct classes PT satisfying

PT ⊆ FIN.

Further, the following is immediate:

Corollary 6.9.10 Let T ⊆ {0, 1}∗ be such that Tn ⊆ T for some n ≥ 1. Then PT ⊆ FIN.

Ilie [73, Sect. 7.7] also gives a class of partial orders which we may phrase in terms of sets of

trajectories. In particular, define the set of functions

G = {g : N → N : g(0) = 0 and 1 ≤ g(n) ≤ n for all n ≥ 1}.

Then for all g ∈ G, we define

Tg = {1∗

m∏

k=1

(0ik 1∗) : ik ≥ 0 ∀1 ≤ k ≤ m; m = g(

m∑

k=1

ik)}.

We denote the upper limit of a sequence {sn}n≥1 by limn→∞sn . We have the following result

[73, Thm. 7.7.8]:

Theorem 6.9.11 Let g ∈ G. Then Tg ∈ FH ⇐⇒ limn→∞
n

g(n)
< ∞.

CHAPTER 6. TRAJECTORY-BASED CODES 137

6.9.4 Decidability and Finiteness Conditions

We now consider decidability of membership in PT if T satisfies the conditions of the previous

sections. We have the following positive decidability results:

Theorem 6.9.12 Let T be recursive. If T ∈ FR (resp., T ∈ FC , T ∈ FH) then given a regular

(resp., context-free, context-free) language L, it is decidable whether L ∈ PT .

Proof. We establish the result for T ∈ FC . The case T ∈ FH is an instance of this case and the case

T ∈ FR is very similar. Let T ∈ REC and T ∈ FC . Let L ∈ CF. We first check if L is infinite. If it

is, then certainly L /∈ PT , so we answer no.

If L is finite, then we can effectively find a list of all words in L (consider putting L in Chomsky

Normal Form (CNF); see Hopcroft and Ullman [68] for an introduction to CNF). Let F = L , where

F is some effectively given finite set. Then by Lemma 6.3.10, we can decide whether L = F ∈ PT .

One might hope for an undecidability result of the following type, which would complement

Theorem 6.3.9: for a fixed T ∈ REG (perhaps with some reasonable assumption, e.g., complete-

ness), then it is undecidable, given a CFL L , whether L ∈ PT . Theorem 6.9.12 shows us that we

cannot hope for a simple such result, since we need to restrict ourselves to those T which do not lie

in FC in this case.

6.9.5 Up and Down Sets

Let L ⊆ 6∗ and T ⊆ {0, 1}∗ Define DOWNT (L), UPT (L) as

DOWNT (L) = L ;τ (T) 6
∗;

UPT (L) = L T 6
∗.

Our notation roughly follows Harju and Ilie [59], where DOWNT (L) is denoted DOWNωT
(L) and

UPT (L) is denoted DOWNω−1
T
(L).

CHAPTER 6. TRAJECTORY-BASED CODES 138

Our aim in this section is, given T , to characterize the complexity UPT (L) and DOWNT (L) for

arbitrary L . We will have a particular interest in those T ∈ FH which are partial orders. Let F
(po)
H

denote the class of all trajectories T ∈ FH which are partial orders.

Haines [58] observed that for T = (0 + 1)∗, UPT (L) and DOWNT (L) are regular languages for

all L . There is an elegant generalization of Haines’ result due to Harju and Ilie [59]: If we restrict

our attention to those T ∈ FH which are compatible, then UPT (L) and DOWNT (L) are still regular

languages for all languages L . We recall this in the following result, which is a specific case of a

result due to Harju and Ilie [59, Thm. 6.3]:2

Theorem 6.9.13 Let T ∈ FH be compatible. Let L ⊆ 6∗ be a language. Then UPT (L), DOWNT (L)

are regular languages.

The following corollary is an interesting consequence:

Corollary 6.9.14 Let T ∈ FH satisfy 0∗ ⊆ T ∗. Let L ⊆ 6∗ be a language. Then the languages

UPT ∗(L), DOWNT ∗(L) are regular.

Proof. If 0∗ ⊆ T ∗ then T ∗ is clearly compatible by Corollary 6.4.14. Further, as T ⊆ T ∗, we have

T ∗ ∈ FH . The result now follows by Theorem 6.9.13.

We now consider arbitrary T ∈ F
(po)
H and seek to characterize the complexity of UPT (L) and

DOWNT (L). By the same proofs as given for H = (0 + 1)∗ (see, e.g., Harrison [62, Sect. 6.6]), we

have the following results:

Lemma 6.9.15 Let T ⊆ F
(po)
H . Let L ⊆ 6∗. Then

(a) there exists a finite language F ⊆ 6∗ such that UPT (L) = UPT (F).

(b) there exists a finite language G ⊆ 6∗ such that DOWNT (L) = UPT (G).

We now characterize the complexity of UPT (L) and DOWNT (L) for all L , based on the com-

plexity of T :

2Note that what Harju and Ilie call monotone, we call compatible.

CHAPTER 6. TRAJECTORY-BASED CODES 139

Theorem 6.9.16 Let C be a cone. Let T ∈ F
(po)
H be an element of C. Then for all L ⊆ 6∗,

UPT (L) ∈ C and DOWNT (L) ∈ co-C.

Proof. Let L ⊆ 6∗. Then there exists F ⊆ 6∗ such that UPT (L) = UPT (F) = F T 6
∗. By

the closure properties of cones under T , UPT (L) ∈ C. A similar proof shows that DOWNT (L) ∈

co-C.

6.9.6 T -Convexity Revisited

We now turn to the complexity of T -convex languages:

Theorem 6.9.17 Let C be a cone. Let T ∈ F
(po)
H be an element of C. Then every T -convex language

is an element of C ∧ co-C.

Proof. Let T ∈ F
(po)
H . As T is a partial order, it is reflexive. Thus, if L is a T -convex language,

we have that L = UPT (L) ∩ DOWNT (L) by Corollary 6.6.2. Thus, by Theorem 6.9.16, the result

follows.

The following corollary is immediate, based on the closure properties of the recursive and reg-

ular languages:

Corollary 6.9.18 Let T ∈ REG (resp., REC) be such that T ∈ F
(po)
H . If L is a T -convex language,

then L ∈ REG (resp., REC).

Corollary 6.9.18 was known for the case of H = (0 + 1)∗ and L ∈ REG, see Thierrin [192, Cor.

to Prop. 3]. Further, we can also establish the following result:

Theorem 6.9.19 Let T ∈ FH be compatible. Then every T -convex language is regular.

Consider the sets En = {0, 1n}∗. As noted by Ehrenfeucht et al. [47], En ∈ FH . As En = E∗
n

and 0∗ ⊆ En , En is compatible. Thus, we have that every En-convex language is regular.

CHAPTER 6. TRAJECTORY-BASED CODES 140

6.10 Conclusions

We have introduced the notion of a T -code, and examined its properties. Many results which are

known in the literature are specific instances of general results on T -codes. However, the notion

of a T -code is not so general as to prevent interesting results from being obtained. We feel that

the framework of T -codes is very suitable for further analysis of the general structure of the many

classes of codes which it generalizes. Further research into this area should prove very useful.

