
Chapter 8

Iteration of Trajectory Operations

8.1 Introduction

Iterated concatenation, known as Kleene closure, is one of the defining operations of regular lan-

guages, and its properties are well known. As is commonly noted, “regular expressions without the

star operator define only finite languages ” [201, p. 77] (others, e.g., Salomaa [175] also express

the same idea). There are many fundamental and deep results in formal language theory related

to Kleene closure: we mention only the study of primitive words and star-height as examples. In

this chapter, we examine iteration of trajectory-based operations, such as iterated (arbitrary) shuffle,

which has been a topic for active research for the past 25 years [55, 85, 86, 87, 88, 93, 170, 182, 198].

We generalize the study of quotients and residuals with respect to an operation, which have

been studied for particular operations by Câmpeanu et al. [21], Ito et al. [78, 79] and Kari and

Thierrin [115]. We show that the smallest language containing L and closed under shuffle along T

(or deletion along T) is the (positive) iteration closure of L under T .

We also examine the concepts of shuffle bases and extended shuffle bases. These have been

previously studied by Ito et al. [82], Ito et al. [78, 79], Ito and Silva [80] and Hsiao et al. [69].

These notions are related to the concept of T -codes introduced in Chapter 6.

Some of the work in this chapter has previously appeared in the more general setting of word

171

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 172

operations, as studied by Hsiao et al. [69]. However, we present the results below for several im-

portant reasons. First, the framework on shuffle on trajectories and deletion along trajectories yields

closure properties which do not necessarily hold in the more general setting of word operations.

Further, we have presented our results with slightly modified definitions which we feel are more

natural. These modified definitions allow us to drop certain assumptions which were necessary in

the setting of word operations, and also allow us to make interesting conclusions to the classes of

T -codes which were not done in the more general setting.

8.2 Definitions

We first define the iterated shuffle operations relative to a given set T of trajectories. Let T ⊆ {0, 1}∗

be a set of trajectories. Then, for all languages L ⊆ 6∗ and all i ≥ 0, we define (T)
i(L) as

follows:

(T)
0(L) = {ǫ}

(T)
1(L) = L

(T)
i+1(L) =

(

(T)
i(L) T (T)

i (L)
)

∪ (T)
i(L) ∀i ≥ 1. (8.1)

Note that we do not require that T defines an associative operation. Further, we define (T)
∗(L)

and (T)
+(L) as

(T)
∗(L) =

⋃

i≥0

(T)
i (L);

(T)
+(L) =

⋃

i≥1

(T)
i (L).

Similarly, we define iterated deletion along a set T of trajectories. Let T ⊆ {i, d}∗ be a set of

trajectories. Then, for all L ⊆ 6∗ and all i ≥ 0, we define (;T)
i(L) as follows:

(;T)
0(L) = {ǫ};

(;T)
1(L) = L;

(;T)
i+1(L) =

(

(;T)
i (L) ;T (;T)

i(L)
)

∪ (;T)
i(L) ∀i ≥ 1. (8.2)

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 173

We again do not require that T defines an associative operation. Further, we define (;T)
∗(L) and

(;T)
+(L) as

(;T)
∗(L) =

⋃

i≥0

(;T)
i (L);

(;T)
+(L) =

⋃

i≥1

(;T)
i (L).

We also require an auxiliary operation L1[;T]i L2 which is defined recursively for all i ≥ 0 as

follows:

L1[;T]0L2 = L1

L1[;T]i+1 L2 = (L1[;T]i L2) ;T L2 ∀i ≥ 1.

We then set

L1[;T]∗L2 =
⋃

i≥0

L1[;T]i L2.

8.3 Iterated Shuffle on Trajectories

We begin our investigation with iterated shuffle on trajectories. We require some preliminary dis-

cussion regarding our definition and an alternate definition. Then we discuss some examples of

iterated shuffle on trajectories before beginning our examination of the operation.

8.3.1 Left-Associativity and a Simplified Definition

Let T ⊆ {0, 1}∗. We say that T is left-associative if, for all α, β, γ ∈ 6∗,

α T (β T γ) ⊆ (α T β) T γ.

Note that associativity implies left-associativity. Further, we can verify that T = 0∗1∗0∗ (insertion)

is left-associative but not associative. Initial literal shuffle, given by T = (01)∗(0∗+ 1∗), is not left-

associative. Left-associativity is also called left-inclusiveness [69]. Several of the results obtained

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 174

by Hsiao et al. [69] are similar to our results, but must include the condition of left-associativity,

due to a slightly less general definition of iterated operations, given by the recurrence

(T)
0
X (L) = {ǫ}

(T)
1
X (L) = L

(T)
i+1
X (L) = (T)

i
X (L) T L ∀i ≥ 1 (8.3)

instead of (8.1). Definitions (8.1 and (8.3) agree when the operation is left-associative. For example,

our Theorem 8.6.5 in Section 8.6.2 below is given by Hsiao et al. [69] for left-associative word

operations.

We now give a characterization of left-associativity. It is a weakening of the corresponding result

of Mateescu et al. [147] on associativity. Let D = {x, y, z}. Then let τ, σ, ϕ,ψ : D∗ → {0, 1}∗ be

the morphisms given by

σ (x) = 0, τ (x) = 0, ϕ(x) = 0, ψ(x) = ǫ,

σ (y) = 0, τ (y) = 1, ϕ(y) = 1, ψ(y) = 0,

σ (z) = 1, τ (z) = 1, ϕ(z) = ǫ, ψ(z) = 1.

Then the following result follows by the same proof as in Mateescu et al. [147, Prop. 4.7]:

Theorem 8.3.1 Let T ⊆ {0, 1}∗. Then T is left-associative if and only if

τ−1(T) ∩ ψ−1(T) ⊆ σ−1(T) ∩ ϕ−1(T).

Thus, if T is regular, it is decidable if T is left-associative.

Let (T)
∗
X , (T)

+
X be the iterated versions of T defined by (8.3) instead of (8.1), i.e.,

(T)
∗
X (L) =

⋃

i≥0

(T)
i
X (L); (8.4)

(T)
+
X (L) =

⋃

i≥1

(T)
i
X (L). (8.5)

(8.6)

Again, we note that it is not hard to establish that (T)
∗
X (L) = (T)

∗(L) for all L if T is

left-associative.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 175

8.3.2 Some examples

We begin by noting the most well-studied iteration operation, that of Kleene closure. If T = 0∗1∗,

then T defines the concatenation operation. Note that T = 0∗1∗ is associative. Thus

(·)∗(L) = L∗ = {w1w2w3 · · ·wn : n ≥ 0, wi ∈ L}.

We note that if L is regular, then L∗ is regular.

If T = (0 + 1)∗, we get the operation of shuffle-closure, which has been well-studied in the

literature (see Gischer [55], Jȩdrzejowicz [87, 88, 89, 91, 92], Kari and Thierrin [118], Ito et al. [79]

as well as much work in software specification [6, 83, 182, 170]). Let us denote this case by

()∗(L). We note that ()∗(L) does not preserve regularity, even if L is a singleton set, as

()∗({ab}) ∩ a∗b∗ = {anbn : n ≥ 0}.

We also note that the CFLs are not closed under ()∗, in fact, there exist a finite set F such that

()∗(F) is not a CFL. Let L = {abc, acb, bac, bca, cab, cba}. Then we can see that

()∗(L) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}.

Using a grammar-based argument, Gischer [55] proved that the closure of the regular languages

under ()∗ is a proper subset of the CSLs. For an LBA-based proof of inclusion, see Jȩdrzejowicz

[87]. We note that with a simple extension of the result of Jȩdrzejowicz, we can show that (T)
∗(L) ∈

CS for all T, L ∈ CS with T left-associative.

If T = 0∗1∗0∗, we get the insertion operation, ←. Iterated insertion has been studied by Ito

et al. [78], Kari and Thierrin [118] and Holzer and Lange [67]. Again, we note that (←)∗({ab}) ∩

a∗b∗ = {anbn : n ≥ 0}. Thus, iterated insertion of a singleton can result in non-regular sets.

If T = 0∗1∗ + 1∗0∗, T is the bi-catenation operation (see Shyr and Yu [187] or Hsiao et

al. [69]). Note that L1 T L2 = L1L2 + L2L1. Thus,

(T)
2(L) = L2 + L2 = L2

and (T)
∗(L) = L∗. Thus, iterated bi-catenation preserves regularity.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 176

8.3.3 Iteration and Density

We now turn to examining the relation of the density of a set of trajectories to the closure properties

of its iteration operation. Recall that the density of a language was defined in Section 4.3. We begin

by noting that preserving regularity is incomparable with density of T . We note that T = 0∗1∗

has density O(n), and that the associated operation (Kleene closure) preserves regularity. However,

there exist constant density sets of trajectories whose iteration closure does not preserve regularity,

even when applied to finite sets:

Lemma 8.3.2 Let T = 10∗1. Then pT (n) = 1 but (T)
∗({ab}) = {anbn : n ≥ 0}.

We now show that the set of trajectories in Lemma 8.3.2 can be considered the simplest constant-

density regular set of trajectories which does not preserve regularity, when considering (T)
∗
X . In

particular, we show that if T has constant density, then (T)
∗
X preserves finiteness unless T ⊇

u(0c)∗v for some u, v ∈ {0, 1}∗ and c ≥ 1.

Lemma 8.3.3 Let T = ∪k
i=1uiv

∗
i wi for ui , vi , wi ∈ {0, 1}∗ and |vi |1 > 0 for all 1 ≤ i ≤ k. Then

for all finite languages L, (T)
∗
X (L) is finite.

Proof. For all 1 ≤ i ≤ k, let βi = |uiwi |1 and ηi = |vi |1 > 0. Let β = max1≤i≤k{βi} and

η = max1≤i≤k{ηi}.

Let 1 ≤ i ≤ k. If, for all x ∈ L , there is no ℓ ≥ 0 such that |x| = βi + ℓηi , then for all X ⊆ 6∗,

X ui v
∗
i wi

L = ∅. Thus, without loss of generality, we can assume that for each 1 ≤ i ≤ k, there is

some x ∈ L and ℓ ≥ 0 such that |x| = βi + ℓηi , otherwise, we can replace T with

T ′ =
⋃

1≤ j≤k

j 6=i

u jv
∗
jw j .

For all 1 ≤ i ≤ k, let ℓi = max{ℓ ≥ 0 : ∃u ∈ L such that |u| = βi + ℓηi}. Since L is finite, ℓi

exists. Let λ = max1≤i≤k{ℓi}.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 177

Let x ∈ (T)
∗
X (L). We show that the length of x is bounded above by β + λη. As x ∈

(T)
∗
X (L), either x = ǫ, or there is some y ∈ (T)

∗
X (L) and z ∈ L such that x ∈ y T z. Let

1 ≤ i ≤ k and s ≥ 0 be such that x ∈ y t z where t = uiv
s
iwi .

As ηi 6= 0, |t|1 = βi + sηi > βi + ℓiηi . As |z| = |t|1, we have that s ≤ ℓi by choice of ℓi . Now

|x| = |t| = βi + sηi ≤ βi + ℓiηi ≤ β + λη.

Consider the following particular case of a result due to Szilard et al. [190]:

Lemma 8.3.4 Let L ⊆ 6∗ be a regular language such that pL(n) ∈ O(1). Then L is a finite union

of terms of the form uv∗w for words u, v,w ∈ 6∗.

Then, the following corollary is immediate.

Corollary 8.3.5 Let T ⊆ {0, 1}∗ be a regular set of trajectories such that pT (n) ∈ O(1), and the

closure of the finite languages under (T)
∗
X contains an infinite language. Then T ⊇ u(0c)∗v for

some u, v ∈ {0, 1}∗ and c ≥ 1.

We note, however, that if we drop the condition that we use (T)
∗
X instead of (T)

∗, the

result no longer holds. Consider T = (01)∗. Then we have that (T)
∗({ab}) ⊇ {anbn : n ≥ 0}.

We now turn to regular sets of trajectories whose iteration closure contains non-CF languages.

Note that if T = 10∗110∗, (T)
∗
X ({abc}) ∩ a∗b∗c∗ = {anbncn : n ≥ 0}. Thus, there is a linear

density regular set of trajectories whose iteration closure of singletons contains non-CF languages.

However, we also have the following example: for T = (01)∗, (T)
∗({abc}) = {a2n

b2n

c2n

: n ≥

0}. We summarize the minimal known density of regular languages and regular sets of trajectories

witnessing non-closure properties for iterated shuffle on trajectories in Table 8.1.

8.4 Iterated Deletion

We now consider iterated deletion operations. We first note that the finite languages are closed under

iterated deletion:

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 178

(T)
∗ (T)

∗
X

pT (n) pL(n) pT (n) pL(n)

non-regular O(1) O(1) O(1) O(1)

non-CF O(1) O(1) O(n) O(1)

Figure 8.1: Summary of minimum-density regular languages and regular sets of trajectories demon-

strating non-closure properties for iterated shuffle on trajectories.

Lemma 8.4.1 Let L ⊆ 6≤m for some m ≥ 0. Then for all T ⊆ {i, d}∗, (;T)
∗(L) ⊆ 6≤m .

Second, we show that an alternate definition will suffice for some operations we will consider

here. This alternate definition will somewhat simplify the results in this section. Call a set of

trajectories T ⊆ {i, d}∗ del-left-preserving if T ⊇ i∗. Consider the following definitions:

(;T)
0
X (L) = {ǫ}

(;T)
1
X (L) = L

(;T)
i+1
X (L) = (;T)

i
X (L) ;T ((;T)

i
X (L) ∪ {ǫ})∀i ≥ 1 (8.7)

We also define (;T)
∗
X and (;T)

+
X :

(;T)
∗
X (L) =

⋃

i≥0

(;T)
i
X (L); (8.8)

(;T)
+
X (L) =

⋃

i≥1

(;T)
i
X (L). (8.9)

The following result motivates the above definitions:

Theorem 8.4.2 Let T ⊆ {i, d}∗ be a del-left-preserving set of trajectories. Then for all L ⊆ 6∗,

(;T)
∗(L) = (;T)

∗
X (L).

Proof. The result is immediate on noting the following two identities, which are obvious from the

definition of ;T :

X ;T (Y + Z) = X ;T Y + X ;T Z ; (8.10)

X ;T {ǫ} = X ;T∩i∗ {ǫ}. (8.11)

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 179

Further, it is clear that X ;i∗ {ǫ} = X .

8.4.1 Iterated Scattered Deletion

In this section, we consider a problem of Ito et al. [79] on iterated scattered deletion1 . Recall that if

T = (0 + 1)∗, we denote ;T by ;. Ito et al. [79] asked whether the regular languages are closed

under (;)+. We show that they are not.

Let k ≥ 2 be arbitrary, and let 6k = {αi , βi , γi , ηi}ki=1. Then we define Lk ⊆ 6∗k as

Lk =
k

∏

i=1

(αiβi)
∗

k
∏

i=1

(γiηi)
∗ +

k
⋃

i=1

βiηi .

We claim that

(;)+(Lk) ∩
k

∏

i=1

α+i

k
∏

i=1

γ +i = {α
i1
1 α

i2
2 · · · α

ik
k γ

i1
1 γ

i2
2 · · · γ

ik
k : i j ≥ 1}. (8.12)

and that (;)+(Lk) cannot be expressed as the intersection of k − 1 context-free languages.

We first establish (8.12). Let (i1, i2, · · · , ik) ∈ N
k . Then note that

k
∏

j=1

α
i j

j

k
∏

j=1

γ
i j

j ∈ (· · · (
k

∏

j=1

(α jβ j)
i j

k
∏

j=1

(γ jη j)
i j)[;]i1β1η1) · · ·)[;]ikβkηk .

Intuitively, we delete matching pairs of β j and η j from the word θ =
∏k

j=1(α jβ j)
i j

∏k
j=1(γ jη j)

i j ,

and leave only occurrences of α j and γ j , of which we must necessarily have equal numbers, by

choice of our word θ . This establishes the right-to-left inclusion of (8.12). We now show the

reverse inclusion. First, note that if θ ∈ (;)+(Lk), then we can write θ = x1x2 · · · xk y1y2 · · · yk

where xi ∈ {αi , βi }∗ and yi ∈ {γi , ηi }∗. To prove the left-to-right inclusion of (8.12), we will

establish the following stronger claim:

Claim 8.4.3 Let x1x2 · · · xk y1y2 · · · yk ∈ (;)+(Lk) where xi ∈ {αi , βi}∗ and yi ∈ {γi, ηi }∗ for all

1 ≤ i ≤ k. Then for all 1 ≤ i ≤ k, the following equalities hold:

|xi |αi
− |xi |βi

= |yi |γi
− |yi |ηi

. (8.13)

1Note: Since this research appeared in Bull. EATCS [36], I have been informed that this problem has been previously

solved; see Ito and Silva [80], where the authors show that there exists a regular language R such that (;)+(R) is not a

CFL. We note that the results here were found independently, and extend those of Ito and Silva.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 180

Proof. Let z = x1x2 · · · xk y1y2 · · · yk ∈ (;)+(Lk). Then there exists some i ≥ 1 such that

z ∈ (;)i(Lk). The proof is by induction on i . For i = 1, z ∈ Lk . Thus, we see that either

(a) for all 1 ≤ ℓ ≤ k, xℓ = (αℓβℓ) jℓ for some jℓ ≥ 0 and yℓ = (γℓηℓ) j ′ℓ for some j ′ℓ ≥ 0, in which

case |xℓ|αℓ − |xℓ|βℓ = 0 = |yℓ|γℓ − |yℓ|ηℓ ; or

(b) z = βℓηℓ for some 1 ≤ ℓ ≤ k. Thus, |xℓ|αℓ − |xℓ|βℓ = −1 = |yℓ|γℓ − |yℓ|ηℓ and x j = y j = ǫ

for all 1 ≤ j ≤ k with j 6= ℓ.

Thus, the result holds for i = 1.

Assume the claim holds for all natural numbers less than i . Let z ∈ (;)i (Lk). Then there exists

some θ ∈ (;)i−1(Lk) and ζ ∈ (;)i−1(Lk)∪{ǫ} such that z ∈ θ ; ζ . If ζ = ǫ, then z = θ and the

result holds by induction. Thus, let

θ = u1u2 · · · ukv1v2 · · · vk

ζ = s1s2 · · · sk t1t2 · · · tk

with uℓ, sℓ ∈ {αℓ, βℓ}∗ and vℓ, tℓ ∈ {γℓ, ηℓ}∗ for all 1 ≤ ℓ ≤ k. Then note that for all 1 ≤ ℓ ≤ k,

|xℓ|αℓ = |uℓ|αℓ − |sℓ|αℓ ;

|xℓ|βℓ = |uℓ|βℓ − |sℓ|βℓ ;

|yℓ|γℓ = |vℓ|γℓ − |tℓ|γℓ ;

|yℓ|ηℓ = |vℓ|ηℓ − |tℓ|ηℓ .

Thus, by induction, we can easily establish that the desired equalities hold.

We now show that (;)+(Lk) cannot be expressed as the intersection of k − 1 context-free lan-

guages. Let CFk be the class of languages which are expressible as the intersection of k CFLs. The

following lemma is obvious, since the CFLs are closed under intersection with regular languages,

(for further closure properties of CFk , see, e.g., Latta and Wall [129]).

Lemma 8.4.4 CFk is closed under intersection with regular languages.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 181

We will also require the following lemma:

Lemma 8.4.5 Let L1, L2 ∈ CFk be such that there exist disjoint regular languages R1, R2 such that

L i ⊆ Ri for i = 1, 2. Then L1 ∪ L2 ∈ CFk .

Proof. Let X i ,Yi ∈ CF for 1 ≤ i ≤ k be chosen so that L1 = ∩k
i=1 X i and L2 = ∩k

i=1Yi . Then

without loss of generality, we may assume that X j ⊆ R1 and Y j ⊆ R2 for 1 ≤ j ≤ k; if not, we

may replace X i with X i ∩ R1 and Yi with Yi ∩ R2 as necessary. Both intersections are still CFLs.

Thus, note that L1 ∪ L2 = (X1 ∪ Y1)∩ · · · ∩ (Xk ∪ Yk). As X i ∪ Yi ∈ CF, the result immediately

follows.

The following result is due to Liu and Weiner [133, Thm. 8]:

Theorem 8.4.6 Let k ≥ 2. Let L ′′k = {α
i1
1 α

i2
2 · · · α

ik
k α

i1
1 α

i2
2 · · · α

ik
k : i j ≥ 0}. Then L ′′k ∈ CFk−CFk−1.

However, we prove the following corollary, which will be more useful to us:

Corollary 8.4.7 Let L ′k = {α
i1
1 α

i2
2 · · · α

ik
k α

i1
1 α

i2
2 · · · α

ik
k : i j ≥ 1}. Then L ′k ∈ CFk − CFk−1.

Proof. The sufficiency of k intersections is obvious, by Lemma 8.4.4. We prove only the necessity

of k intersections. The proof is by induction. For k = 2, the result can be established by the

pumping lemma. Let k > 2 and S ⊂ [k]. Denote by L
(S)
k the language

L
(S)
k = {

∏

j∈S

α
i j

j

∏

j∈S

α
i j

j : i j ≥ 1}.

Further, note that

L
(S)
k ⊆ (

∏

j∈S

α+j)
2.

Let RS = (
∏

j∈S α
+
j)

2. Then note that RS ∩ RS ′ = ∅ for all S, S′ ⊆ [k] (including the possibility

that S = [k]) with S 6= S′. If S ⊂ [k], where the inclusion is proper, then L
(S)
k ∈ CFk−1.

Assume that L ′k can be expressed as the intersection of k − 1 CFLs. We then note that

L ′′k = L ′k ∪
⋃

S([k]

L
(S)
k .

By Lemma 8.4.5, L ′′k ∈ CFk−1, a contradiction. This completes the proof.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 182

Thus, we may state our main result:

Theorem 8.4.8 For all k ≥ 2, there exists an O(n2k−1)-density bounded regular language Lk such

that (;)+(Lk) cannot be expressed as the intersection of k − 1 context-free languages.

Proof. Let1k = {γi , αi }ki=1. Let hk : 1∗k → 1∗k be given by hk(αi) = hk(γi) = αi for all 1 ≤ i ≤ k.

Let Dk = (;)+(Lk) and Rk =
∏k

i=1 α
+
i

∏k
i=1 γ

+
i . If Dk ∈ CFk−1, then Dk ∩ Rk ∈ CFk−1 as well,

by Lemma 8.4.4. We claim that this implies that hk(Dk ∩ Rk) is in CFk−1.

Let X1, X2, . . . , Xk−1 ∈ CF be chosen so that

Dk ∩ Rk = ∩k−1
i=1 X i .

The inclusion hk(Dk ∩ Rk) ⊆ ∩k−1
i=1 hk(X i) is easily verified. We now show the reverse inclusion.

First, we may assume without loss of generality that X j ⊆ Rk for all 1 ≤ j ≤ k − 1. If not, let

X ′j = X j∩Rk . By the closure properties of the CFLs, X ′j ∈ CF, and we still have Dk∩Rk = ∩k−1
i=1 X ′i .

Let x ∈ ∩k−1
i=1 hk(X i). Let yi ∈ X i be such that hk(yi) = x for 1 ≤ i ≤ k − 1. By assumption,

we can write

y j =
k

∏

i=1

α
ℓ
(j)
i

i

k
∏

i=1

γ
m
(j)
i

i

for some ℓ
(j)
i ,m

(j)
i ≥ 1 for 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1. Thus, by definition of hk ,

hk(y j) =
k

∏

i=1

α
ℓ
(j)
i

i

k
∏

i=1

α
m
(j)
i

i ,

for all 1 ≤ j ≤ k − 1. As hk(y j) = x , for all 1 ≤ j ≤ k − 1, we must have that ℓ
(j)
i = ℓ

(j ′)
i

and m
(j)
i = m

(j ′)
i for 1 ≤ i ≤ k and all 1 ≤ j, j ′ ≤ k − 1. Thus y1 = · · · = yk−1 ∈ ∩k−1

i=1 X i and

x ∈ hk(∩k−1
i=1 X i) = hk(Dk ∩ Rk). Therefore, hk(Dk ∩ Rk) = ∩k−1

i=1 hk(X i). As hk(X i) is a CFL for

all 1 ≤ i ≤ k − 1, hk(Dk ∩ Rk) ∈ CFk−1. But now note that

hk(Dk ∩ Rk) = L ′k,

by (8.12). This contradicts Corollary 8.4.7. Thus, Dk cannot be expressed as the intersection of

k − 1 CFLs.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 183

We now consider another example of representing non-regular languages by the iterated scat-

tered deletion of a regular language. Let 6̃ be a copy of 6. Recall that com(u) is the set of all

words which can be obtained by permuting the letters of u, i.e.,

com(u) = {v ∈ 6∗ : ∀a ∈ 6, |u|a = |v|a}.

Theorem 8.4.9 Let L = {uṽ : u ∈ 6∗, v ∈ com(u)}. Then there exist regular languages R1, R2

such that (;)+(R1) ∩ R2 = L.

Proof. Let 6̂, 6̌ be two additional copies of 6. Let R1 = (
⋃

a∈6(aâ))∗(
⋃

a∈6 ãǎ)∗ +
⋃

a∈6 âǎ.

Let R2 = 6∗6̃∗.

We can establish, in the same manner as Theorem 8.4.8, that (;)+(R1) ∩ R2 = L . Again, the

key step is to show that for all x1x2 ∈ (;)+(R1), where x1 ∈ (6 + 6̂)∗ and x2 ∈ (6̃ + 6̌)∗, the

following equality holds for all a ∈ 6:

|x1|a − |x1|â = |x2|ã − |x2|ǎ.

This is easily established by induction.

Note that L ∈ CF|6|. To see this, consider the language

La = {wũ : w, u ∈ 6∗, |w|a = |u|a}

for all a ∈ 6. Then La ∈ CF, and L = ∩a∈6La. The fact that L ∈ CF|6| is in contrast to the fact

that the language {ww̃ : w ∈ 6∗} is not in CFk for any k ≥ 1, which was established by Wotschke

[200]. Thus, there is a significant difference, in terms of descriptional complexity, between the

language of (marked) squares and the language L of (marked) “Abelian squares”. We refer the

reader to Jȩdrezejowicz and Szepietowski [93] for a discussion of L versus {ww : w ∈ 6∗} as it

relates to mildly context-sensitive families of languages and iterated shuffle.

We have the following open problem:

Open Problem 8.4.10 For all regular languages R, does there exist a k ≥ 1 such that (;)+(R) ∈

CFk?

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 184

8.4.2 Density and Iterated Deletion

From Theorem 8.4.8, we note that the O(n2)-density set T = i∗di∗di∗ of trajectories yields an

operation (;T)
∗ which does not preserve regularity. Indeed, if L = (ba)∗(ce)∗ + ac, then

(;T)
∗(L) ∩ b∗e∗ = {bnen : n ≥ 0}.

Is is open whether there is a set T of trajectories with pT (n) ∈ o(n2) which does not preserve

regularity.

We note by Theorem 8.4.8, there is an O(n)-density regular language L such that (;)∗(L) is

not regular. Thus, we can ask the following open question:

Open Problem 8.4.11 Given a regular language L such that pL(n) ∈ O(1), is (;)∗(L) regular?

We note that if T = i∗di∗di∗di∗ then using L = (a1a2)
∗(b1b2)

∗(c1c2)
∗ + a1b1c1, we see

that (;T)
∗(L) is not a CFL. Again, we do not know if there exists a regular set T ⊆ {i, d}∗

with pT (n) ∈ o(n3) such that the closure of the regular languages under (;T)
∗ contains non-CF

languages. We summarize the best-known minimal densities in Table 8.4.2.

pT (n) pL(n)

non-regular O(n2) O(n)

non-CF O(n3) O(n2)

Figure 8.2: Summary of minimum-density regular languages and regular sets of trajectories demon-

strating non-closure properties for iterated deletion along trajectories.

8.5 Additional Closure Properties

We now consider some additional closure properties. We are motivated by an open problem of

Ito and Silva [80] on the closure properties of the CSLs under iterated scattered deletion. We

will require the following theorem, which can be found, in a slightly less general version, in, e.g.,

Salomaa [174, Thm. 9.9]:

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 185

Theorem 8.5.1 Let 6 be an alphabet, and a /∈ 6. Let s ∈ �(log(n)) be any space constructible

function. Then for all L ∈ RE over 6, there exists L ′ ∈ NSPACE(s) such that L ′ ⊆ a∗L and for all

x ∈ L, there exists i ≥ 0 such that ai x ∈ L ′.

For all T ⊆ {i, d}∗, let suff(T) = {t ∈ {i, d}∗ : ∃t ′ ∈ {i, d}∗ such that t ′t ∈ T }. Our stated

closure property is given below:

Theorem 8.5.2 Let s ∈ �(log(n)) be a space-constructible function. Let d∗i∗ ⊆ T . If there exists

L such that (;suff(T))
+(L) ∈ RE − NSPACE(s), then NSPACE(s) is not closed under (;T)

+.

Proof. Let L ⊆ 6∗ be a language such that (;suff(T))
+(L) ∈ RE − NSPACE(s). Let a /∈ 6

and L0 ⊆ a∗
(

(;suff(T))
+(L)

)

be the language in NSPACE(s) described by Theorem 8.5.1. Let

L1 = L0 + a∗. Clearly, L1 ∈ NSPACE(s). We claim that (;T)
+(L1) ∩6+ = (;suff(T))

+(L).

(⊇): Let x ∈ (;suff(T))
+(L). Then there exists j ≥ 0 such that a j x ∈ L1. As a j ∈ L1 and

T ⊇ d∗i∗ ∋ d j i |x |, x ∈ a j x ;T a j ⊆ (;T)
+(L1).

(⊆): To prove this inclusion, we prove the stronger claim that

(;T)
+(L1) ⊆ a∗(;suff(T))

∗(L).

Let x ∈ (;T)
+(L1). Then there exists j ≥ 1 such that x ∈ (;T)

j (L1). The proof of our claim is

by induction on j .

For j = 1, x ∈ L1 ⊆ a∗(;suff(T))
+(L) + a∗. Thus, the result clearly holds. Let j > 1 and

assume the result holds for all natural numbers less than j . As x ∈ (;T)
j (L1), then either x ∈

(;T)
j−1(L1), whereby the result clearly holds by induction, or there exist x1, x2 ∈ (;T)

j−1(L1)

and t ∈ T such that x ∈ x1 ;t x2. By induction, xi = aki ui for ki ≥ 0, and ui ∈ (;suff(T))
∗(L), for

i = 1, 2.

There are three cases:

(a) u1, u2 ∈ (;suff(T))
+(L). Then x ∈ x1 ;t x2 implies that t = t1t2 where t1 satisfies |t1| = k1

and |t1|d = k2. Thus, x ∈ ak1−k2(u1 ;t2 u2). Let u ∈ u1 ;t2 u2 be such that x = ak1−k2 u. Then

note that t2 ∈ suff(T) and thus u ∈ u1 ;t2 u2 ⊆ (;suff(T))
+(L). Thus, x ∈ a∗(;suff(T))

∗(L).

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 186

(b) u2 = ǫ. Then x2 = ak2 and x1 = ak1 u1 where u1 ∈ (;suff(T))
∗(L1). Then note that necessarily,

x = ak2−k1 u1. Thus, x ∈ a∗(;suff(T))
∗(L1).

(c) u1 = ǫ and u2 ∈ (;T)
+(L) such that u2 6= ǫ. Then x1 ;t x2 = ∅.

Thus, we have established that

(;T)
+(L1) ∩6+ = (;suff(T))

+(L). (8.14)

Assume, contrary to what we want to prove, that NSPACE(s) is closed under (;T)
+. As L1 ∈

NSPACE(s), (;suff(T))
+(L) ∈ NSPACE(s) by (8.14). This contradicts our choice of L . Thus, we

have established the result.

For scattered deletion, T = (i + d)∗, and thus T = suff(T). Thus, if CS = NSPACE(n) is closed

under (;)+, then for all L ∈ RE − CS, (;)+(L) ∈ CS. The closure of CS under (;T)
+ is an open

problem posed by Ito and Silva [80].

8.6 T -Closure of a Language

We will now investigate the natural problem of, given L , finding the smallest language which is

closed under T and contains L . Classically, it is known that the smallest language containing

L which is closed under concatenation is L+. This question has also been examined by Ito et

al. [78, 79] and Kari and Thierrin [115] for other operations modeled by shuffle on trajectories. We

will require some notions about quotients and residuals, which we discuss first.

8.6.1 Shuffle-T Quotient

Let T ⊆ {0, 1}∗. In this section, we describe the shuffle-T quotient of a language L with respect to

a language L1, and show that if L , L1 and T are regular, the shuffle-T quotient of L1 with respect

to L is again regular.

Let 6 be an alphabet and L ⊆ 6∗. Then the shuffle-T quotient of L with respect to L1, denoted

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 187

sqT (L; L1), is given by

sqT (L; L1) = {x ∈ 6∗ : ∀y ∈ L1, y T x ⊆ L}.

For arbitrary shuffle T = (0+ 1)∗, the shuffle quotient has been examined by Câmpeanu et al. [21].

Ito et al. have examined (arbitrary) shuffle residual [79], which is given by sqT (L; L) for T =

(0+1)∗ and insertion residual [78], which is given by sqT (L; L) for T = 0∗1∗0∗. Kari and Thierrin

[115] have studied k-insertion residuals, given by sqT (L; L) for T = 0∗1∗0≤k for arbitrary k ≥ 0.

Hsiao et al. [69] consider right residuals for more general word operations. Our main result of this

section is the following:

Theorem 8.6.1 For all L ⊆ 6∗, sqT (L; L1) = (L ;π(T) L1). Thus, if L , L1, T are regular, so is

sqT (L; L1), and it can be effectively constructed.

Proof. Let x ∈ sqT (L; L1). Assume, contrary to what we want to prove, that x ∈ L ;π(T) L1.

Thus, there exist t ∈ T , y ∈ L and z ∈ L1 such that x ∈ y ;π(t) z. By Theorem 5.8.2, y ∈ z t x .

As x ∈ sqT (L; L1) and z ∈ L1, z t x ⊆ L . However, y ∈ L , a contradiction.

Let x /∈ sqT (L; L1). Thus, there exists some u ∈ L1 such that u T x ∩ L 6= ∅. Let y be

some word in this intersection, and let t ∈ T be such that y ∈ u t x . Thus by Theorem 5.8.2,

x ∈ y ;π(t) u ⊆ L ;π(T) L1. Thus, we conclude that sqT (L; L1) ⊆ L ;π(T) L1.

The fact that the regular languages are effectively closed under deletion along regular trajectories

implies that sqT (L; L1) is a regular language. This completes the proof.

Note that Theorem 8.6.1 gives an alternate proof that if L1, L2 are regular, then the (arbitrary)

shuffle quotient of L1 and L2 is regular (this was originally proven by Câmpeanu et al. [21, Lemma

4]). Further, Theorem 8.6.1 was proven for L = L1 and T = (0+ 1)∗ by Ito et al. [79, Prop. 2.4],

for L = L1 and T = 0∗1∗0∗ by Ito et al. [78, Prop. 2.3], and for L = L1 and T = 0∗1∗0≤k for fixed

k ≥ 0 by Kari and Thierrin [115, Prop. 2.3]. An equivalent formulation of Theorem 8.6.1 was given

by Hsiao et al. [69, Prop. 30], but without explicitly using the notion of inverse operations. Further,

in their framework of word operations, we cannot conclude any closure properties.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 188

8.6.2 T -closure

Let rT (L) = sqT (L; L), which we call the shuffle-T residual of L . A language L ⊆ 6∗ such that

L ⊆ rT (L) is said to be shuffle-T closed. Define

CT (L) = {L ′ ⊆ 6∗ : L ⊆ L ′ ⊆ rT (L
′)}.

Then CT (L) is the set of all shuffle-T closed languages containing L (CT (L) 6= ∅ as 6∗ ∈ CT (L)).

Further, define

clT (L) =
⋂

L ′∈CT (L)

L ′.

Then clT (L) is the smallest T -closed language containing L; we call clT (L) the shuffle-T closure

of L .

Proposition 8.6.2 Let T ⊆ {0, 1}∗. Then L is shuffle-T closed if and only if L T L ⊆ L.

Proof. Let L be shuffle-T closed. Then for all x ∈ L , we have x ∈ rT (L). Thus, for all u ∈ L ,

u T x ⊆ L . Clearly then, L T L ⊆ L .

For the reverse implication, let L T L ⊆ L . Then let x ∈ L; we show x ∈ rT (L). As

L T L ⊆ L , for all y ∈ L , y T x ⊆ L . Thus, by definition, x ∈ rT (L).

Proposition 8.6.2 was noted for scattered deletion by Ito et al. [79], for sequential deletion by

Ito et al. [78] and for k-deletion by Kari and Thierrin [115]. For catenation, a weakened version

of the only-if portion of the result is sometimes given as an easy undergraduate exercise (see, e.g.,

Martin [141, Ex. 2.22]). In the framework of general word operations, a variant of Proposition 8.6.2

is given by Hsiao et al. [69, Prop. 24].

Corollary 8.6.3 Let T ⊆ {0, 1}∗ be a regular set of trajectories. Given a regular language L, it is

decidable whether L is shuffle-T closed.

We now seek to give a characterization of clT (L) for all T ⊆ {0, 1}∗. The following fact is

obvious from the definition of (T)
i :

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 189

Fact 8.6.4 For all L ⊆ 6∗ and all i ≥ 1, (T)
i (L) ⊆ (T)

i+1(L).

Theorem 8.6.5 Let T ⊆ {0, 1}∗. Then clT (L) = (T)
+(L).

Proof. Note that L = (T)
1(L) ⊆ (T)

+(L). To show that clT (L) ⊆ (T)
+(L), it suffices

to show that (T)
+(L) is shuffle-T closed. We appeal to Proposition 8.6.2. In particular, we

show that (T)
+(L) T (T)

+(L) ⊆ (T)
+(L). Let x, y ∈ (T)

+(L). Then there exist

j, k ≥ 1 such that x ∈ (T)
j (L) and y ∈ (T)

k(L). Let m = max(j, k). Then clearly

x, y ∈ (T)
m(L). Thus, by definition of (T)

m(L),

x T y ⊆ (T)
m+1(L) ⊆ (T)

+(L).

The inclusion is proven.

We now show that (T)
+(L) ⊆ clT (L). Again, the proof is by induction on i : we show

(T)
i(L) ⊆ clT (L) for all i ≥ 1.

For i = 1, L ⊆ clT (L) by definition of clT (L). Now let i > 1 and assume the result holds for

all integers less than i . Consider

(T)
i(L) =

(

(T)
i−1(L) T (T)

i−1(L)
)

+ (T)
i−1(L)

⊆ (clT (L) T clT (L))+ clT (L)

⊆ clT (L)+ clT (L) = clT (L)

where the first inclusion is by induction on i , and the second inclusion is by the fact that clT (L) is

T -closed (by definition of clT (L)), and Proposition 8.6.2.

Theorem 8.6.5 was also proven for sequential insertion by Ito et al. [78, Prop. 2.4], and for

arbitrary shuffle by Ito et al. [79, Prop. 2.6].

Recall that (T)
∗
X is the iterated version of T defined by (8.4). As we have stated, it is

not hard to establish that (T)
∗
X (L) = (T)

∗(L) for all L if T is left-associative. Thus, we

can conclude that if T is left-associative, clT (L) = (T)
+
X(L) for all L . We now show that the

requirement that T be left-associative is necessary for clT (L) = (T)
+
X (L).

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 190

Lemma 8.6.6 There exist a singleton language L and set T of non-left-associative trajectories such

that clT (L) 6= (T)
+
X (L).

Proof. We show, in fact, that infinitely many pairs (L , T) exist satisfying the lemma. Let k ≥ 1,

and Tk = 0∗1∗0≤k . Then Tk
= k←, the k-insertion operation, studied by Kari and Thierrin [115].

For each k ≥ 1, we define Lk = {bak}. Then we claim that

clTk
(Lk) 6= (

k←)+X (Lk). (8.15)

We establish first that

{biaki : i ≥ 1} ⊆ clTk
(Lk).

As Lk ⊆ clTk
(Lk), bak ∈ clTk

(Lk). For each i > 1, bak, bi aki ∈ clTk
(Lk) imply that bi+1ak(i+1) ∈

bak k← bi aki ⊆ clTk
(Lk).

Now, we note that b3(a + b)∗ ∩ (k←)+X (Lk) = ∅. To see this, note that if x ∈ (k←)iX (Lk), then

|x| = ki and |x|b = i . We can then prove, by induction, that at most 2 occurrences of b can occur

at the start of any word in (
k←)iX(Lk), since k-insertions always happen “close to the right end” of

the word. Thus, we can establish (8.15).

Note that Lemma 8.6.6 corrects an error in Kari and Thierrin [115, Prop. 2.4], where it is claimed

that clTk
(L) = (Tk

)+X (L) for each Tk = 0∗1∗0≤k .

8.6.3 Codes and Shuffle-Closed Languages

We now show that T -codes are shuffle-T closed if and only if they are trivially shuffle-T closed.

Lemma 8.6.7 Let T ⊆ {0, 1}∗. Let L ∈ PT (6). Then L is shuffle-T closed if and only if L T L =

∅.

Proof. If L T L = ∅, then clearly L T L ⊆ L , and L is shuffle-T closed.

Let L ∈ PT (6). Then note that necessarily L ⊆ 6+. Let L be shuffle-T closed. Assume there

exist x, y ∈ L such that x T y 6= ∅. Let z ∈ x T y. Thus, z ∈ L as L is shuffle-T closed.

Therefore, z ∈ L ∩ (L T 6
+), contradicting that L is a T -code.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 191

Corollary 8.6.8 Let T ⊆ {0, 1}∗ be complete. Let L ∈ PT (6). Then L is shuffle-T closed if and

only if L = ∅.

8.7 Deletion Closure of a Language

We now consider the problem of, given a language L , finding the smallest language which contains

L and is closed under ;T .

8.7.1 Del-T Quotient

Let T ⊆ {i, d}∗. In this section, we describe the del-T quotient of a language with respect to a

language L , and show that if L , L1, T are regular, the del-T quotient of L1 with respect to L is

again regular.

We define the set of T -scattered subwords as follows:

scsT (L) = L ;symd (T) 6
∗.

Note that

scsT (L) = {u ∈ 6∗ : ∃v ∈ 6∗ such that u π−1(T) v ∩ L 6= ∅}.

Further, note that if L , T are regular, then scsT (L) is regular. As examples, note that

(a) when T = i∗d∗i∗, we have scsT (L) = sub(L), the subwords of L (e.g., Ito et al. [78]), given

by

sub(L) = {u ∈ 6∗ : ∃x, y ∈ 6∗ such that xuy ∈ L}.

(b) if T = (i + d)∗, we have that scsT (L) = sps(L), the scattered (or sparse) subwords of L (e.g.,

Ito et al. [79]), given by

sps(L) = {u ∈ 6∗ : ∃v ∈ 6∗ such that u v ∩ L 6= ∅}.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 192

Let6 be an alphabet and L ⊆ 6∗. Then the deletion-T quotient of L with respect to L1, denoted

dqT (L; L1), is given by

dqT (L; L1) = {x ∈ scsT (L) : ∀y ∈ L1, y ;T x ⊆ L}.

Ito et al. have examined scattered deletion residual [79], which is given by dqT (L; L) for T =

(i + d)∗ and deletion residual [78], which is given by dqT (L; L) for T = i∗d∗i∗. For k ≥ 1, Kari

and Thierrin [115] have studied k-deletion residual, which is given by dqT (L; L) for T = i∗d∗i≤k .

Note that we could also define

dq ′T (L; L1) = {x ∈ 6∗ : ∀y ∈ L1, y ;T x ⊆ L}.

In this case, we get

dq ′T (L; L1) = dqT (L; L1) ∪ scsT (L).

Our main result of the section is the following:

Theorem 8.7.1 For all L ⊆ 6∗, dqT (L; L1) = (L1 ;symd (T) L) ∩ scsT (L). Thus, if L , L1, T are

regular, so is dqT (L; L1), and it can be effectively constructed.

Proof. Let x ∈ dqT (L; L1). Immediately, we have that x ∈ scsT (L). Assume, contrary to what

we want to prove, that x ∈ L1 ;symd (T) L . Thus, there exist t ∈ T , y ∈ L and z ∈ L1 such that

x ∈ z ;symd (t) y. By Theorem 5.8.3, y ∈ z ;t x . As x ∈ dqT (L; L1) and z ∈ L1, z ;t x ⊆ L .

However, y ∈ L, a contradiction.

Let x ∈ L1 ;symd (T) L ∩ scsT (L). Assume, contrary to what we want to prove, that x /∈

dqT (L; L1). As x ∈ scsT (L), this implies that there exists a word y ∈ L1 such that y ;T x∩L 6= ∅.

Let u be some word in this intersection. Thus, there is some t ∈ T such that u ∈ y ;t x . By

Theorem 5.8.3, x ∈ y ;symd (t) u ⊆ L1 ;symd (T) L. This contradicts our choice of x .

Theorem 8.7.1 was proven by Ito et al. for the cases where L = L1 and T = (i + d)∗ [79, Prop.

4.2] as well as L = L1 and T = i∗d∗i∗ [78, Prop. 3.2]. Theorem 8.7.1 was proven by Kari and

Thierrin [115] for the case of L = L1 and T = i∗d∗i≤k for fixed k ≥ 1.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 193

8.7.2 T -del-closure

Let T ⊆ {i, d}∗ Let drT (L) = dqT (L; L), which we call the del-T residual of L . A language L

such that L ∩ scsT (L) ⊆ drT (L) is said to be del-T closed.

We first note a class of trajectories for which the annoyance of dealing with scsT (L) is removed.

We call a set T ⊆ {i, d}∗ del-left-preserving with respect to L if i |x | ∈ T for all x ∈ L . Note that if

T is del-left-preserving with respect to every language L then T is del-left-preserving. If symd(T)

is del-left-preserving (with respect to L), we say that T is sym-del-left-preserving (with respect to

L), or sdl-preserving.

Lemma 8.7.2 Let L ⊆ 6∗. If T is sdl-preserving with respect to L, then L ⊆ scsT (L).

Proof. Note in this case that scsT (L) = L ;symd (T) 6
∗ ⊇ L ;symd (T) {ǫ} = L , as symd(T) is

del-left-preserving.

Note that if T is sdl-preserving, T ⊇ d∗. This is satisfied by, for example, right- and left-

quotient, and sequential, bi-polar, k- and scattered deletion.

Consider that if L ⊆ scsT (L), then clearly L = scsT (L) ∩ L . This leads to the following

observation:

Proposition 8.7.3 Let T be sdl-preserving with respect to L. Then L is del-T closed if and only if

L ⊆ drT (L).

For defining the T -del-closure of a language, we need the following notation. Define

dCT (L) = {L ′ ⊆ 6∗ : L ⊆ L ′ and L ′ ∩ scsT (L
′) ⊆ drT (L

′)}.

Then dCT (L) is the set of all del-T closed languages containing L (dCT (L) 6= ∅ as 6∗ ∈ dCT (L)).

Further, define dclT (L) = ∩L ′∈dCT (L)L
′. It is not hard to see that

scsT (dclT (L)) ⊆
⋂

L ′∈dCT (L)

scsT (L
′), (8.16)

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 194

and that

dclT (L) ∩ scsT (dclT (L)) ⊆
⋂

L ′∈dCT (L)

drT (L). (8.17)

With this, we can see that dclT (L) is the smallest T -del-closed language containing L; we call

dclT (L) the del-T closure of L .

Proposition 8.7.4 Let T ⊆ {i, d}∗. Then L is del-T closed if and only if L ;T (L ∩ scsT (L)) ⊆ L.

Proof. The proof is similar to that of Lemma 8.6.2. Let L be del-T closed. Then for all x ∈

L ∩ scsT (L), we have x ∈ drT (L). Thus, for all u ∈ L , u ;T x ⊆ L . Clearly then, L ;T

(L ∩ scsT (L)) ⊆ L .

For the reverse implication, let L ;T (L ∩ scsT (L)) ⊆ L . Consider x ∈ L ∩ scsT (L); we show

x ∈ drT (L). As L ;T (L ∩ scsT (L)) ⊆ L , for all y ∈ L , y ;T x ⊆ L . Thus, by definition, as

x ∈ scsT (L), we also have x ∈ drT (L).

Corollary 8.7.5 Let L ⊆ 6∗. Let T ⊆ {i, d}∗ be sdl-preserving with respect to L. Then L is

del-T -closed if and only if L ; L ⊆ L.

Corollary 8.7.5 was noted by Ito et al. for T = (i + d)∗ [79] and T = i∗d∗i∗ [78]. We can also

generalize an interesting result of Ito et al. [78, 79] and Kari and Thierrin [115, Prop. 3.3]. Call a

set of trajectories T square-enabling if 9(T) ⊇ {(n, n) : n ≥ 0}.

Lemma 8.7.6 Let T ⊆ {0, 1}∗ be square-enabling, and such that τ(T) is sdl-preserving. Let L be

a shuffle-T closed language. Then L is del-τ(T) closed if and only if L = L ;τ (T) L.

Proof. If L = L ;τ (T) L , then by Corollary 8.7.5, L is τ(T)-del-closed.

Now, assume that L is τ(T)-del-closed. Again by Corollary 8.7.5, L ⊇ L ;τ (T) L . Thus, let

x ∈ L . we must show x ∈ L ;τ (T) L .

As L is shuffle-T closed, x T x ⊆ L . As T is square-enabling, x T x 6= ∅. Thus, let t ∈ T

and y ∈ L be chosen so that y ∈ x t x . By Theorem 5.8.2, x ∈ y ;τ (t) x . Thus, x ∈ L ;τ (T) L ,

as required.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 195

Let T ⊆ {i, d}∗. Let L be a language. We now give a characterization of the T -del-closure of a

language L , when T is sdl-preserving.

Fact 8.7.7 For all T ⊆ {i, d}∗ and L ⊆ 6∗, (;T)
i(L) ⊆ (;T)

i+1(L).

Theorem 8.7.8 Let L ⊆ 6∗ be a language and T ⊆ {i, d}∗ be sdl-preserving. Then dclT (L) =

(;T)
+(L).

Proof. Note that L ⊆ (;T)
+(L). Then to show that dclT (L) ⊆ (;T)

+(L), it suffices to show that

(;T)
+(L) is del-T closed. We appeal to Corollary 8.7.5. In particular, we show that

(;T)
+(L) ;T (;T)

+(L) ⊆ (;T)
+(L).

Let u, v ∈ (;T)
+(L). Then there exist i, j ≥ 1 such that u ∈ (;T)

i(L) and v ∈ (;T)
j (L).

Let k = max(i, j). This implies that u, v ∈ (;T)
k(L). Thus, u ; v ⊆ (;T)

k+1(L) by definition

of (;T)
k . We conclude that (;T)

+ is del-T closed and thus dclT (L) ⊆ (;T)
+(L).

To show the reverse inclusion, we show by induction on i that (;T)
i(L) ⊆ dclT (L) for all

i ≥ 1. For i = 1, L ⊆ dclT (L) by definition of dclT (L). Now assume the result holds for all

natural numbers less than i . Consider

(;T)
i(L) =

(

(;T)
i−1(L) ;T (;T)

i−1(L)
)

+ (;T)
i−1(L);

⊆ (dclT (L) ;T dclT (L))+ dclT (L);

⊆ (dclT (L))+ dclT (L) = dclT (L),

where the first inclusion is by induction on i , and the second inclusion is by Corollary 8.7.5, and the

fact that dclT (L) is T -del-closed.

Theorem 8.7.8 was proven by Ito et al. in the case of scattered [79, Prop. 4.4] and sequential

[78, Prop. 3.4] deletion. Theorem 8.7.8 was proven by Kari and Thierrin [115, Prop. 3.4] for the

case of k-deletion.

We now show that sdl-preservation is necessary in the alternate definition of (;T)
+
X (L) given

by (8.9):

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 196

Lemma 8.7.9 There exist a set of trajectories T and infinitely many languages L such that T is not

sdl-preserving with respect to L and dclT (L) 6= (;T)
+
X (L).

Proof. We introduce a rather extreme example of a set T satisfying the conditions. Let T = d∗.

Then note that unless L ⊆ {ǫ}, T is not sdl-preserving with respect to L . Further, note that

L1 ;T L2 =









{ǫ} if L1 ∩ L2 6= ∅.

∅ otherwise.

Then let L be any language such that {ǫ} is properly contained in L . Then L ;T L = {ǫ} and

by induction, we can show that (;T)
i
X (L) ;T ((;T)

i
X (L) + ǫ) = {ǫ}, for all i ≥ 2. Thus,

(;T)
+
X (L) = {ǫ}. But clearly in this case, dclT (L) 6= {ǫ}, since L ⊆ dclT (L) by definition.

8.8 T -Shuffle Base

We now extend the notion of shuffle base, examined by Ito et al. [78, 79] and Kari and Thierrin

[115]. Let L ⊆ 6+ be a shuffle-T -closed language (the following definitions can be given for

L ⊆ 6∗, as was done by Ito et al. [78, 79] and Kari and Thierrin [115], but we restrict this possibility

to allow for simpler definitions; the results below can also be given for the more complete definitions

of Ito et al. and Kari and Thierrin without much difficulty). The shuffle-T base of L , denoted by

JT (L), is the set of words in L which cannot be expressed as the shuffle along T of words in L .

Thus,

JT (L) = {u ∈ L : u /∈ L T L}.

Proposition 8.8.1 Let T be left-associative and L ⊆ 6+ be shuffle-T closed. Then

L = (T)
+(JT (L)). (8.18)

Proof. As L is shuffle-T closed, L = (T)
+(L). Thus, it suffices to show that (T)

+(L) =

(T)
+(JT (L)). As T is left-associative, we reduce this to showing following equality:

(T)
+
X (L) = (T)

+
X (JT (L)).

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 197

To see that (T)
+
X (JT (L)) ⊆ (T)

+
X (L), we note that JT (L) ⊆ L and (T)

+
X is a monotone

operator, since T is. For the reverse inclusion, let x ∈ (T)
+
X (L). Then we note that as ǫ /∈ L ,

if x ∈ (T)
i
X (L), then i ≤ |x|. Thus, let hx be the maximum i such that x ∈ (T)

i
X (L). We

prove that x ∈ (T)
+
X(JT (L)) by induction on hx .

For hx = 1, x ∈ L and x /∈ (T)
2
X (L) = L T L . Thus, by definition, x ∈ JT (L) ⊆

(T)
+
X (JT (L)). Assume the result holds for all x with hx < h for some h > 1. Let x be a word

such that hx = h. Then x ∈ (T)
h
X (L), and there exist y ∈ (T)

h−1
X (L) and z ∈ L such that

x ∈ y T z. By induction, y ∈ (T)
+
X (JT (L)). If z ∈ JT (L), we are done. Therefore, assume

that z ∈ L − JT (L). There exist u, v ∈ L such that z = u T v . Thus, x ∈ y T (u T v) ⊆

(y T u) t v , as T is left-associative. But now y ∈ (T)
h−1
X (L), u, v ∈ L imply that x ∈

(T)
h+1
X (L), a contradiction to our choice of x . Thus, z ∈ JT (L) and x ∈ (T)

+
X (JT (L)).

We now demonstrate that if L and T are regular and L is shuffle-T closed, then JT (L) is also

regular.

Lemma 8.8.2 Let T ⊆ {0, 1}∗ be a regular set of trajectories. If L ⊆ 6+ is regular and shuffle-T -

closed, then JT (L) is regular.

Proof. The proof will rely on establishing that

L − JT (L) = L T L . (8.19)

Let x ∈ L − JT (L). Then as x /∈ JT (L), there exist u, v ∈ L such that x ∈ u T v . Thus

x ∈ L T L . Now, let x ∈ L T L . As L is shuffle-T -closed, L T L ⊆ L . Thus x ∈ L . As

x ∈ L T L , x /∈ JT (L) by definition. This establishes (8.19). Now, as L T L , JT (L) ⊆ L , we

have that JT (L) = L − L T L . Since L and L T L are regular, JT (L) is regular.

Lemma 8.8.2 offers alternate proofs of the corresponding results by Ito et al. for scattered dele-

tion [79, Prop. 5.1] and sequential deletion [78, Prop. 5.1], and by Kari and Thierrin for k-insertion

[115, Prop. 2.5].

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 198

8.9 Shuffle-Free Languages

In this section, we consider the notion of shuffle-free languages. This was first examined by Ito et

al. [82]. Hsiao et al. [69, Sect. 5] also considered a similar notion for arbitrary word operations.

We show that for shuffle on trajectories, we can obtain results relating shuffle-free languages and

T -codes.

We adopt the following shorthand:

(T)
≥2(L) =

⋃

i≥2

(T)
i(L).

Let T ⊆ {0, 1}∗. Then we say that ∅ 6= L ⊆ 6+ is sh-T -free if

(T)
≥2(L) ∩ L = ∅.

Thus, L is sh-T -free if, for all u1, u2, . . . , uk ∈ L (k ≥ 2), there is no way to shuffle the u j s together

with T to get a word from L . The concept of sh-T -free is an extension of the corresponding

notion, sh-free, for arbitrary shuffle; this was introduced by Ito et al. [82].

The following lemma will be useful:

Lemma 8.9.1 Let T ⊆ {0, 1}∗. Let L1, L2 be two sh-T -free languages such that (T)
+(L1) =

(T)
+(L2). Then L1 = L2.

Proof. Assume not. Let x ∈ L1 − L2, without loss of generality. Since x ∈ L1 ⊆ (T)
+(L1) =

(T)
+(L2), either x ∈ L2 or there exist u1, u2 ∈ (T)

+(L2) such that x ∈ u1 T u2. As x /∈ L2

by assumption, let x ∈ u1 T u2. We now note that u1, u2 ∈ (T)
+(L2) = (T)

+(L1). Thus,

x ∈ (T)
+(L1) T (T)

+(L1) ⊆ (T)
≥2(L1). This contradicts that L1 is sh-T -free.

Let L ⊆ 6∗. We say that BT (L) ⊆ L ∩6+ is an extended sh-T -base of L if BT (L) is sh-T -free

and L ∩6+ ⊆ (T)
+(BT (L)).

Lemma 8.9.2 Let T ⊆ {0, 1}∗ and let L ⊆ 6∗. Then the extended sh-T -base of L is unique.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 199

Proof. Let B1, B2 be two extended sh-T -bases of L .

Let x ∈ B1. Then x 6= ǫ by definition. Further, x ∈ 6+ ∩ L ⊆ (T)
+(B2), by the fact that B2

is an extended-T -base of L . Thus, B1 ⊆ (T)
+(B2), and

(T)
+(B1) ⊆ (T)

+((T)
+(B2)) ⊆ (T)

+(B2),

where the last inclusion is valid by Theorem 8.6.5. By symmetry, we also have that (T)
+(B2) ⊆

(T)
+(B1).

As B1, B2 are sh-T -free, we have that B1 = B2, by Lemma 8.9.1.

We now show that every language has a sh-T -base. Consider the following languages [69, 82]:

B0 = ∅;

Ki = L − (T)
+(

i−1
⋃

j=0

H j); ∀i ≥ 1

Bi = {x : x ∈ Ki and |x| ≤ |y| ∀y ∈ Ki}; ∀i ≥ 1

B =
⋃

i≥1

Bi .

Then it is straight-forward to establish that B is a sh-T -base for L (see, e.g., Hsiao et al. [69, Prop.

12]).

There is an interesting relation between extended sh-T -bases and T -codes. This emphasizes the

naturalness of the definition of T -codes.

Lemma 8.9.3 Let T ⊆ {0, 1}∗ be a set of trajectories such that π(T) is sdl-preserving. If BT (L) is

the extended sh-T -base of any del-π(T) closed language L, then BT (L) is a T -code.

Proof. Let BT (L) be the extended sh-T -base of L . Suppose BT (L) is not a T -code. Then there exist

u, v ∈ BT (L) ⊆ L such that v ∈ u T w for some w ∈ 6+. By Theorem 5.8.2, w ∈ v ;π(T) u.

As u, v ∈ L , w ∈ L by Corollary 8.7.5. Thus, w ∈ L ∩ 6+ ⊆ (T)
+(BT (L)). But then

v ∈ u T w ⊆ (T)
≥2(BT (L)). Thus, v ∈ BT (L) ∩ (T)

≥2(BT (L)), a contradiction.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 200

Lemma 8.9.3 was established in a slightly weaker form by Ito and Silva [80, Prop. 3.2] for the

case T = (0+ 1)∗. Hsiao et al. [69, Prop. 22] note the result for T = 0∗1∗ + 1∗0∗.

The converse is given in a more general form as follows:

Lemma 8.9.4 Let T ⊆ {0, 1}∗ be a set of trajectories such that π(T) is sdl-preserving. Let L ∈

PT (L). Then L ∪ {ǫ} is del-π(T) closed.

Proof. As L ∈ PT (L), L ;π(T) L ⊆ {ǫ}, by (6.8). Consider that

L ∪ {ǫ};π(T) L ∪ {ǫ}

= (L ;π(T) L) ∪ ({ǫ};π(T) L ∪ {ǫ}) ∪ (L ;π(T) {ǫ})

⊆ {ǫ} ∪ {ǫ} ∪ L = L ∪ {ǫ}.

Therefore, L ∪ {ǫ} is del-π(T) closed, by Corollary 8.7.5.

8.10 T -Primitive Words

A word w ∈ 6∗ is said to be primitive if w = uk implies u = w and k = 1. For instance, the

words aab and ababbb are primitive, while aabaab = (aab)2 is not. The concept of primitive

words is one of the most studied in formal language theory, and poses one of the most well-known

of all open problems in formal language theory concerning the complexity of the set of all primitive

words. The concept of a primitive word has been extended from concatenation to insertion and

shuffle by Kari and Thierrin [118] and to arbitrary word operations by Hsiao et al. [69]. In this

section, we consider primitivity with respect to a given shuffle on trajectories operation. We show

that under our general definition of (T)
∗, every word has a T -primitive root. We also consider

analogues of the Lyndon-Schützenberger Theorems for shuffle on trajectories.

8.10.1 T -Primitivity and T -roots

In this section, we consider primitive words with respect to a set of trajectories. Our definition will

be with respect to our definition of iteration, which will alleviate certain restrictions which were

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 201

imposed by Hsiao et al. [69].

Let T ⊆ {0, 1}∗. Given a word w ∈ 6∗, we say that w is T -primitive if w ∈ (T)
n(u) implies

u = w and n = 1. Let QT (6) be the set of all T -primitive words over an alphabet 6. For all

T ⊆ {0, 1}∗ and w ∈ 6∗, let

T
√
w = {u ∈ QT (6) : w ∈ (T)

+(u)}.

We call T
√
w the set of T -primitive roots of w.

It is well known (see, e.g, Lothaire [140, Prop. 1.3.1]) that every non-empty word has a unique

primitive (i.e., T -primitive for T = 0∗1∗) root, that is, for T = 0∗1∗, | T
√
w| = 1 for all w ∈ 6+.

Kari and Thierrin [118] note that for T = 0∗1∗0∗, this does not hold, as, e.g., babb, bbab ∈
T
√

(b2a)n+1bn+1 for all n ≥ 1. However, we now note that for all T , every non-empty word has at

least one T -primitive root. We will require the following lemma:

Lemma 8.10.1 Let u ∈ 6∗. Then (T)
+((T)

+(u)) ⊆ (T)
+(u).

Proof. The proof follows by the fact that (T)
+(u) is shuffle-T closed, by Theorem 8.6.5.

Theorem 8.10.2 Let T ⊆ {0, 1}∗. Let w ∈ 6+. Then | T
√
w| ≥ 1.

Proof. Let w ∈ 6+ be arbitrary. If w ∈ QT (6), then we are done, as w ∈ T
√
w. Thus, assume that

w is not T -primitive.

Let w ∈ (T)
i(u) for some u ∈ 6∗ and i ≥ 2. If u is T -primitive, then we are done, as

u ∈ T
√
w.

Note that |u| < |w| as i ≥ 2. Now, if u is not T -primitive, then u ∈ (T)
j (v) for some

v ∈ 6∗ and j ≥ 2. Note that w ∈ (T)
+((T)

+(v)) ⊆ (T)
+(v). Thus, if v is T -primitive,

we are done.

Otherwise, as |v| < |u| < |w|, we note that as we continue this process, we eventually reach a

word x such that w ∈ (T)
+(x) and x is T -primitive. This completes the proof.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 202

8.10.2 Freeness and Uniqueness of T -Primitive Roots

We now turn to uniqueness of T -primitive roots. We will require the notion of a free semigroup, see,

e.g., Shyr [184]. Recall that a semigroup is a set S equipped with an associative binary operation; it

does not necessarily have an identity element. Let M be a semigroup. A non-empty subset B ⊆ M

is said to be a base for M if and only if for all u1, u2, . . . , un, v1, v2, . . . , vm ∈ B, the equality

u1u2 · · · un = v1v2 · · · vm

implies that n = m and ui = vi for all 1 ≤ i ≤ n. Note that6 is a base for6+ as a semigroup under

concatenation. A semigroup M is said to be free if there exists some base B such that B∗ = M (it

can be easily shown that such a base must be unique). Levi [132] gives conditions on a semigroup

being free. Let T be an associative, deterministic set of trajectories. We say that T is free if the

semigroup M = (6+, T) is free2.

As we will be dealing exclusively with associative sets of trajectories, we will use the operation

(T)
+
X , which we gave in (8.5).

We first note that, besides concatenation, there exist non-trivial operations which are free. For

instance, the operation of balanced insertion, given by T = {0k12 j 0k : k, j ≥ 0} is both deter-

ministic and associative (see Mateescu et al. [147]) and is free, as is easily verified using Levi’s

conditions.

We now give an open problem concerning freeness:

Open Problem 8.10.3 Given T regular (or context-free), is it decidable whether T is free?

It does not seem that Levi’s conditions are helpful in this regard. Further, consider the following

test: let L = 6+−(6+ T 6
+). Test if L is a ∗-T-code (i.e., every word in (T)

+(L) is uniquely

generated). Then T is free if and only if L is a ∗-T-code.

2We could also easily frame the current discussion in terms of free monoids (i.e., semigroups with identities), and say

that T is free if the monoid M = (6∗, T , ǫ) is free. However, as noted by Mateescu et al. [147, Rem. 4.7], we only

need to require that 0∗ + 1∗ ⊆ T to ensure that ǫ is the identity element for M .

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 203

Since T is regular implies that L is regular, we expect that this would a plausible test for the

freeness of T , since it is decidable whether a regular language is a ∗-code. However, the well-known

algorithm to determine if a regular language is a ∗-code (e.g., Berstel and Perrin [18, Thm. I.3.1])

relies on the fact that 6∗ is a free monoid under concatenation. Thus, it does not seem immediately

possible to generalize this proof to other T ⊆ {0, 1}∗.

Levi’s conditions are occasionally referred to as Levi’s Lemma (see, e.g., Allouche and Shallit

[3, Sect. 1.4]), which can be stated as follows for our purposes:

Lemma 8.10.4 Let T be deterministic, associative and free. Then for all u, v, x, y ∈ 6∗, u T v =

x T y implies that there exists z ∈ 6∗ such that either u = x T z or x = u T z.

Levi’s lemma (with T = 0∗1∗) is necessary for two of the most fundamental and elegant theo-

rems in formal language theory and combinatorics on words, the Lyndon-Schützenberger Theorems

(see, e.g., Allouche and Shallit [3, Sect. 1.4]):

Theorem 8.10.5 Let x, z ∈ 6+, y ∈ 6∗. Then the following are equivalent:

(a) xy = yz;

(b) there exist u, v ∈ 6∗, e ≥ 0 such that x = uv , z = vu and y = (uv)eu.

Theorem 8.10.6 Let x, y ∈ 6+. Then the following three conditions are equivalent:

(a) xy = yx;

(b) there exist integers i, j > 0 such that x i = y j ;

(c) there exist z ∈ 6+ and integers k, ℓ > 0 such that x = zk and y = zℓ.

We now show that freeness is the essential property in proving a generalization of the Lyndon-

Schützenberger Theorems for T .

The additional condition necessary to generalize the first Lyndon-Schützenberger Theorem is

the possession of a unit element (see Mateescu et al. [147, Sect. 4.4]), which is the condition that

0∗ + 1∗ ⊆ T . Thus, if T has a unit element, x ∈ (x T ǫ) ∩ (ǫ T x) for all x ∈ 6∗.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 204

Theorem 8.10.7 Let T be an associative, deterministic, free set of trajectories with a unit element.

Let x, z ∈ 6+ and y ∈ 6∗ be such that x T y, y T z 6= ∅. Then the following are equivalent:

(a) x T y = y T z;

(b) there exist u, v ∈ 6∗, e ≥ 0 such that

x = u T v,

z = v T u,

y = (T)
e
X (u T v) T u.

Proof. ((a) ⇒ (b)): Let x T y = y T z. The proof is by induction on |y|. The base case

for y ∈ 6∗ is |y| = 0. In this case, x = x T ǫ and z = ǫ T z, as x T ǫ, ǫ T z 6= ∅, by

assumption. We conclude that x = z and (b) holds with u = ǫ, v = x = z and e = 0.

Assume the result holds for all words y′ with 0 ≤ |y′| < |y|. Let x T y = y T z. By

Lemma 8.10.4, there exists w ∈ 6∗ such that either x = y T w and z = w T y or y = x T w

and y = w T z.

In the first case, let u = y, v = w and e = 0. Then y = u = (T)
e
X (u T v) T u, as T is

ST-strict. Further, x = u T v and z = v T u.

In the second case, we have that x T w = w T z. Note that |w| = |y|−|z| < |y| as z ∈ 6+.

Therefore, by induction, there exist u, v ∈ 6∗ and e ≥ 0 such that x = u T v , z = v T u and

w = (T)
e
X (u T v) T u. Note that

y = x T w = (u T v) T (T)
e
X (u T v) T u = (T)

e+1
X (u T v) T u,

by the associativity of T . Thus, (b) is satisfied.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 205

((b)⇒ (a)): Note that

x T y = (u T v) T (T)
e
X (u T v) T u

= u T v T (u T v) T · · · T (u T v)
︸ ︷︷ ︸

e times.

T u

= (u T v) T · · · T (u T v)
︸ ︷︷ ︸

e times.

T u T v T u

= y T z.

This proves the desired equality.

Call a set T of trajectories concatenation-like if T is deterministic, associative, free, and satisfies

the following property, which we call power-enabling: for all n, k ≥ 0, (kn, n) ∈ 9(T) ⇒ ((k +

1)n, n) ∈ 9(T). Note that balanced insertion is power-enabling and hence concatenation-like.

We will require the following proposition, which is easily proven by induction:

Proposition 8.10.8 Let T be associative. Then for all k, ℓ > 0, and all z ∈ 6+,

(T)
k
X ((T)

ℓ
X (z)) = (T)

kℓ
X (z).

We may now state and prove our second generalized Lyndon-Schützenberger Theorem:

Theorem 8.10.9 Let T be concatenation-like. Let x, y ∈ 6+ be words such that x T y and

y T x are non-empty. Then the following three conditions are equivalent:

(a) x T y = y T x;

(b) there exist integers i, j > 0 such that ∅ 6= (T)
i
X (x) = (T)

j

X (y);

(c) there exist z ∈ 6+ and k, ℓ > 0 such that x = (T)
k
X (z) and y = (T)

ℓ
X (z).

Proof. ((a) ⇒ (c)): Assume that x 6= y and ∅ 6= x T y = y T x . We show the result by

induction on |xy|. As x, y ∈ 6+, the base case is |xy| = 2. Thus, x, y ∈ 6. Thus, x T y =

y T x , and T deterministic implies that x = y, contrary to our assumption.

Assume that the result holds for all x, y ∈ 6+ with |xy| < n. Let |xy| = n. Let |x| ≥ |y|.

As x T y = y T x , by Levi’s property, there exists w ∈ 6∗ such that x = y T w. Note that

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 206

y T x = x T y = (y T w) T y = y T (w T y) by the associativity of T . Thus, by the

determinism of T , x = w T y and w T y = y T w.

If w = y, then x = y T y, and (c) follows with z = y and k = 2, ℓ = 1. Thus, assume that

w 6= y.

If |w| = 0, then x = y T w implies that x = y. Again, this contradicts our assumptions on

x, y. Thus, |w| > 0. Note that |wy| = |x| < |xy|. Thus, as w T y = y T w, by induction there

exist z ∈ 6+, k, ℓ > 0 such that w = (T)
k
X (z) and y = (T)

ℓ
X (z). Thus,

x = (T)
ℓ
X (z) T (T)

k
X (z).

Thus, x ∈ (T)
+
X (z) by the closure of (T)

+
X (z) under T . As T is deterministic, we have that

there is some m > 0 such that x = (T)
m
X (z). Thus, (c) is satisfied.

((c) ⇒ (b)): Let z ∈ 6+, k, ℓ > 0 be such that x = (T)
k
X (z) and y = (T)

ℓ
X (z). Using

Proposition 8.10.8, we note that

(T)
ℓ
X (x) = (T)

ℓ
X ((T)

k
X (z)) = (T)

ℓk
X (z) = (T)

k
X ((T)

ℓ
X (z)) = (T)

k
X (y).

By the fact that (T)
k
X (z) = x , ((k − 1)|z|, |z|) ∈ 9(T). Thus, ((ℓ · k − 1)|z|, |z|) ∈ 9(T) and

both (T)
ℓ
X (x) and (T)

k
X (y) are non-empty. Thus, (b) is satisfied.

((b)⇒ (a)): Let i, j > 0 be such that ∅ 6= (T)
i
X (x) = (T)

j

X (y). Note that if |x| = |y|, then

|(T)
i
X (x)| = |(T)

j

X (y)| implies that i = j . Thus, by the determinism of T , x = y and (a)

holds.

Thus, without loss of generality, assume that |x| > |y|. Thus, by the associativity of T ,

x T (T)
i−1
X (x) = (T)

i
X (x) = (T)

j

X (y) = y T (T)
j−1

X (y).

(We let (T)
j−1

X (y) = ǫ if j = 1, and similarly for x and i .) Thus, by Levi’s property, there exists

some w ∈ 6+ such that x = y T w. Thus,

(T)
j

X (y) = (T)
i
X (x) = (T)

i
X (y T w).

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 207

Note that

(T)
i
X (y T w) = (y T w) T (y T w) T · · · T (y T w).

︸ ︷︷ ︸

i times

By the determinism of T , (T)
j

X (y) = (T)
i
X (y T w) implies that

(T)
j−1

X (y) = w T (T)
i−1
X (y T w)

⇒ (T)
j−1

X (y) T y = w T (T)
i−1
X (y T w) T y

⇒ (T)
j

X (y) = (T)
i
X (w T y)

⇒ (T)
i
X (y T w) = (T)

i
X (w T y).

By the determinism of T , y T w = w T y. Thus,

x T y = (y T w) T y

= y T (w T y)

= y T x .

Thus, (a) is satisfied, as y 6= x and y T x = x T y 6= ∅.

Our main corollary of the generalized Lyndon-Schützenberger Theorems concerns the unique-

ness of T -primitive roots:

Corollary 8.10.10 Let T be concatenation-like. Then for all u ∈ 6+, u has a unique T -primitive

root.

Proof. Let u ∈ 6+, and assume that v1, v2 ∈ T
√

u. Then as T is concatenation-like, we have

u = (T)
i1(v1) and u = (T)

i2(v2) for some i1, i2 ≥ 1. Thus, there exist j1, j2 such that

u = (T)
j1
X (v1) and u = (T)

j2
X (v2).

By Theorem 8.10.9, there exist z ∈ 6+ and k1, k2 ≥ 1 such that v1 = (T)
k1

X (z) and v2 =

(T)
k2

X (z). As v1, v2 ∈ QT (6), we must have that k1 = k2 = 1 and z = v1 = v2. Thus, | T
√

u| = 1,

as required.

Thus, we see that if T is catenation-like, then each word has a unique T -primitive root. This

applies, e.g., to balanced insertion.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 208

8.11 Language Equations Revisited

In Chapter 7, we have studied language equations involving shuffle and deletion along trajectories.

In this section, we revisit this topic to consider some equation forms which we did not consider in

Chapter 7.

In particular, we note that all of language equations we have considered have the form

L = X ⋄ Y

where X,Y (and occasionally ⋄) may be unknown, but the language L is always fixed. We recall

that, in the terminology of, e.g., Leiss [131, Sect. 2.6], such equations are called implicit language

equations. In this section, we consider explicit language equations, which we recall are of the

form X = α where X is unknown, and α is an equation involving constants, language operations

(including T) and unknowns.

Clearly, explicit language equations are of considerable interest; indeed, the fundamental notion

of CFGs is equivalent to explicit systems of language equations of the form X = α where α is an

expression involving catenation and union [10, Sect. 2]. Extensions of the context-free grammar

formalism to capture larger classes of languages via grammars have also been studied, for example,

conjunctive [157] and Boolean [159] grammars, both recently introduced by Okhotin. Explicit

language equations are crucial to both these studies.

Consideration of language equations with unknowns on both sides of the equality sign must

involve some caution, however, especially with regard to our interest thus far in answering ques-

tions such as “is it decidable whether this equation has a solution?” Consider the equation X =

L1 T L2, where L1, L2 are languages and T is a set of trajectories. Clearly, this equation has

a solution X = L1 T L2. Note that this assumes nothing about the complexity of L1, L2 or T .

Other equations possess trivial solutions; X = X T L has a solution X = ∅ regardless of L and

T .

Thus, in this section, our focus will shift somewhat from decidability, which is often trivial, to

characterizations of solutions. Our results will be similar in spirit to Arden’s Lemma (Arden [9],

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 209

cf., Salomaa [173, Ch. 3]) which states that the equation X = X R1+ R2 has a unique solution R∗1 R2

if ǫ /∈ R1. Further, R∗1 R2 is the least solution (by inclusion) of X = X R1 + R2, independent of

R1 (see, e.g., Conway [28, Thm. 3, p. 27]). We will see that such results can be extended to T ,

under certain assumptions on T , and that related equations have similar characterizations.

8.11.1 Arden-like Equations

Our first consideration will be the following equation:

X = X T L1 + L2,

where X is unknown, and L1, L2 are arbitrary languages. In the case where T = 0∗1∗, the char-

acterization of the unique solution of this equation (under the assumption that ǫ /∈ L1) is known

as Arden’s Lemma (however, the identity L2L∗1 = L2L∗1 L1 + L2 was previously known, see, e.g.,

Kleene [119, Eq. (9), p. 24]). We will require some conditions on T in order for a similar result to

hold.

Theorem 8.11.1 Let T ⊆ {0, 1}∗ be left-preserving and associative. Let L1, L2 be arbitrary lan-

guages. The least solution to the equation

X = X T L1 + L2, (8.20)

is the language L2 T (T)
∗(L1).

Proof. As T is associative, it will suffice to establish that the language L2 T (T)
∗
X (L1) is the

least solution to (8.20). Recall that (T)
∗
X is defined by (8.4).

We first show that L = L2 T (T)
∗
X (L1) is a solution to (8.20). We establish the inclusion

L T L1 + L2 ⊆ L , by proving that

L2 ⊆ L2 T (T)
∗
X (L1) (8.21)

and that

(

L2 T (T)
i
X (L1)

)

T L1 ⊆ L2 T (T)
∗
X (L1) (8.22)

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 210

for all i ≥ 0. We note that (8.21) holds since T is left-preserving and ǫ ∈ (T)
∗
X (L1). We now

establish (8.22) for all i ≥ 0. Note that for arbitrary i ≥ 0,

(L2 T (T)
i
X (L1)) T L1 = L2 T ((T)

i
X(L1) T L1)

= L2 T (T)
i+1
X (L1)

⊆ L2 T (T)
∗
X (L1).

We now establish the inclusion L T L1 + L2 ⊇ L . Let x ∈ L = L2 T (T)
∗
X (L1). Then

there exists i ≥ 0 such that x ∈ L2 T (T)
i
X (L1). For i = 0, x ∈ L2 T {ǫ} ⊆ L2. Thus,

x ∈ L2 ⊆ L T L1 + L2. Let i > 0. Then

x ∈ L2 T (T)
i
X (L1)

= L2 T ((T)
i−1
X (L1) T L1)

= (L2 T (T)
i−1
X (L1)) T L1

⊆ (L2 T (T)
∗
X (L1)) T L1 + L2.

Thus, L is a solution to (8.20). We now show that it is the least solution to this equation. Let X0 be

the least solution to (8.20). We show that X0 ⊇ L . First, we note that

X0 = X0 T L1 + L2 ⊇ L2 = L2 T (T)
0
X (L1).

Let i ≥ 0. Assume that X0 ⊇ L2 T (T)
i
X (L1). Then we have that

X0 ⊇ X0 T L1 ⊇ (L2 T (T)
i
X (L1)) T L1

⊇ L2 T ((T)
i
X (L1) T L1)

⊇ L2 T (T)
i+1
X (L1).

Thus, X0 ⊇ L2 T (T)
∗
X (L1) = L . This completes the proof.

We can also give the following symmetric result.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 211

Theorem 8.11.2 Let T ⊆ {0, 1}∗ be right-preserving and associative. Let L1, L2 be arbitrary

languages. Then the least solution to the equation

X = L1 T X + L2, (8.23)

is the language (T)
∗(L1) T L2.

Further results in this area are likely. For instance, Salomaa considers systems of equations of

the form

X i =
n

∑

j=1

X j L j,i + Ri

for 1 ≤ i ≤ n, and investigates their solutions [173, Ch. 3, Sect. 2]. Systems of this form with

X j T L j,i are clear generalizations (for a single fixed T ⊆ {0, 1}∗), and results can likely be

obtained in the same manner as Theorems 8.11.1 and 8.11.2.

8.11.2 A Language Equation for (T)
+(L)

Due to the conditions placed on T in the previous section, the following question seems natural:

given arbitrary T and L , can we find a language equation for which (T)
+(L) is the minimal

solution? We give this equation in the following theorem:

Theorem 8.11.3 Let T ⊆ {0, 1}∗. For any language L ⊆ 6∗, the least solution to the equation

X = X T X + L (8.24)

is X = (T)
+(L).

Proof. We first show that (T)
+(L) is a solution of (8.24). Consider that

(T)
+(L) T (T)

+(L)+ L ⊆ (T)
+(L)+ L

⊆ (T)
+(L).

The last inclusion is by definition of (T)
+(L) and the first is by Proposition 8.6.2 and Theo-

rem 8.6.5. To prove the reverse inclusion, let x ∈ (T)
+(L). Then there exists i ≥ 1 such that x ∈

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 212

(T)
i(L). If i = 1, then x ∈ L ⊆ (T)

+(L) T (T)
+(L)+ L , and the inclusion holds. As-

sume then that i > 1 and for all y ∈ (T)
j (L) with j < i , y ∈ (T)

+(L) T (T)
+(L)+ L .

Let x ∈ (T)
i (L). Then by definition, x ∈ (T)

i−1(L) or x ∈ (T)
i−1(L) T (T)

i−1(L).

In the first case, the result holds by induction. Otherwise,

x ∈ (T)
i−1(L) T (T)

i−1(L)

⊆ ((T)
+(L) T (T)

+(L)+ L) T ((T)
+(L) T (T)

+(L)+ L)

⊆ ((T)
+(L)+ L) T ((T)

+(L)+ L)

⊆ (T)
+(L) T (T)

+(L)+ L .

Here, the first inclusion is by induction, the second is by Proposition 8.6.2 and Theorem 8.6.5, and

the third is by the distributivity of (T)
+ over union. Thus,

(T)
+(L) = (T)

+(L) T (T)
+(L)+ L .

Let X0 ⊆ 6∗ be the least solution of (8.24). As (T)
+(L) is a solution of (8.24), X0 ⊆

(T)
+(L). It remains to show the reverse inclusion, which is again accomplished by induction,

by showing that (T)
i(L) ⊆ X0 for all i ≥ 1.

For i = 1, L ⊆ L + X0 T X0 = X0. Let i > 1 and assume that (T)
i−1(L) ⊆ X0. Then

note that

X0 = X0 T X0 + L

⊇ X0 T X0

⊇ (T)
i−1(L) T (T)

i−1(L).

Thus X0 ⊇ (T)
i−1(L) and X0 ⊇ (T)

i−1(L) T (T)
i−1(L), i.e., X0 ⊇ (T)

i−1(L) +

(T)
i−1(L) T (T)

i−1(L) = (T)
i(L). This establishes the inclusion. Thus, X0 = (T)

+(L),

establishing the result.

CHAPTER 8. ITERATION OF TRAJECTORY OPERATIONS 213

8.12 Conclusions

In this chapter, we have considered the iteration of shuffle on trajectory and deletion on trajectory

operations. Our work generalizes previous work by Ito et al. [78, 79] and Kari and Thierrin [115]

on particular shuffle and deletion along trajectories operations. Our work is also similar to that of

Hsiao et al. [69] on iteration of arbitrary word operations. However, by considering a more general

definition of iterated shuffle on trajectories, we are able to overcome some of the conditions imposed

by Hsiao et al. in their study of iterated binary word operations.

After considering iterated shuffle and deletion along trajectories and the closure of languages un-

der shuffle and deletion along trajectories, we have investigated the notions of shuffle base, extended

shuffle base, primitivity and the Lyndon-Schützenberger Theorems, all considered in trajectory-

based contexts. These notions generalize well to shuffle and deletion along trajectories, and many

key concepts hold. We note that in the context of investigating the Lyndon-Schützenberger The-

orems, we raise the problem of when T defines a free operation. This fundamental problem

remains open.

Finally, we have returned to the topic of language equations. For explicit equations, the problem

of decidability of the existence of solutions becomes trivial, and we have instead focused on char-

acterizing least solutions to language equations. We have found explicit least solutions for two key

explicit language equations involving T . One generalizes a well-known language equation for

Kleene closure which has been studied for fifty years. The second is a general language equation

formulated so that its least solution is (T)
+(L).

