
1

Mechanism Design-Based Secure Leader Election
Model for Intrusion Detection in MANET
Noman Mohammed, Hadi Otrok, Lingyu Wang, Mourad Debbabi and Prabir Bhattacharya

Computer Security Laboratory
Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Quebec, Canada
Email:{no moham, h otrok, wang, debbabi, prabir}@ciise.concordia.ca

Abstract—In this paper, we study leader election in the
presence of selfish nodes for intrusion detection in mobile ad
hoc networks (MANETs). To balance the resource consumption
among all nodes and prolong the lifetime of a MANET, nodes
with the most remaining resources should be elected as the
leaders. However, there are two main obstacles in achieving
this goal. First, without incentives for serving others, a node
might behave selfishly by lying about its remaining resources and
avoiding being elected. Second, electing an optimal collection of
leaders to minimize the overall resource consumption may incur
a prohibitive performance overhead, if such an election requires
flooding the network. To address the issue of selfish nodes, we
present a solution based on mechanism design theory. More
specifically, the solution provides nodes with incentives in the
form of reputations to encourage nodes in honestly participating
in the election process. The amount of incentives is based on the
Vickrey, Clarke, and Groves (VCG) model to ensure truth-telling
to be the dominant strategy for any node. To address the optimal
election issue, we propose a series of local election algorithms
that can lead to globally optimal election results with a low
cost. We address these issues in two possible application settings,
namely, Cluster Dependent Leader Election (CDLE) and Cluster
Independent Leader Election (CILE). The former assumes given
clusters of nodes, whereas the latter does not require any pre-
clustering. Finally, we justify the effectiveness of the proposed
schemes through extensive experiments.

Index Terms—Leader election, intrusion detection systems,
mechanism design and MANET security.

I. INTRODUCTION

Unlike traditional networks, the Mobile Ad hoc Networks
(MANET) have no fixed chokepoints/bottlenecks where In-
trusion Detection Systems (IDSs) can be deployed [3], [7].
Hence, a node may need to run its own IDS [14], [1] and
cooperate with others to ensure security [15], [26]. This
is very inefficient in terms of resource consumption since
mobile nodes are energy-limited. To overcome this problem, a
common approach is to divide the MANET into a set of one-
hop clusters where each node belongs to at least one cluster.
The nodes in each cluster elect a leader node (cluster head)
to serve as the IDS for the entire cluster. The leader-IDS
election process can be either random [16] or based on the
connectivity [19]. Both approaches aim to reduce the overall
resource consumption of IDSs in the network. However, we
notice that nodes usually have different remaining resources
at any given time, which should be taken into account by an
election scheme. Unfortunately, with the random model, each

node is equally likely to be elected regardless of its remaining
resources. The connectivity index-based approach elects a
node with a high degree of connectivity even though the node
may have little resources left. With both election schemes,
some nodes will die faster than others, leading to a loss in
connectivity and potentially the partition of network. Although
it is clearly desirable to balance the resource consumption of
IDSs among nodes, this objective is difficult to achieve since
the resource level is the private information of a node. Unless
sufficient incentives are provided, nodes might misbehave by
acting selfishly and lying about their resources level to not
consume their resources for serving others while receiving
others services. Moreover, even when all nodes can truthfully
reveal their resource levels, it remains a challenging issue to
elect an optimal collection of leaders to balance the overall
resource consumption without flooding the network. Next, we
motivate further discussions through a concrete example.

A. Motivating Example

Figure 1 illustrates a MANET composed of ten nodes
labeled from N1 to N10. These nodes are located in 5 one-
hop clusters where nodes N5 and N9 belong to more than one
cluster and have limited resources level. We assume that each
node has different energy level, which is considered as private
information. At this point, electing nodes N5 and N9 as leaders
is clearly not desirable since losing them will cause a partition
in the network and nodes will not be able to communicate with
each other. However, with the random election model [16],
nodes N5 and N9 will have equal probability, compared to
others, in being elected as leaders. The nodes N5 and N9

will definitely be elected under the connectivity index-based
approach due to their connectivity indices [19]. Moreover, a
naive approach for electing nodes with the most remaining
resources will also fail since nodes’ energy level is considered
as private information and nodes might reveal fake information
if that increases their own benefits. Finally, if the nodes N2,
N5 and N9 are selfish and elected as leaders using the above
models, they will refuse to run their IDS for serving others.
The consequences of such a refusal will lead normal nodes to
launch their IDS and thus die faster.

B. Our Proposed Solution

In this paper, we propose a solution for balancing the
resource consumption of IDSs among all nodes while pre-

Digital Object Indentifier 10.1109/TDSC.2009.22 1545-5971/$25.00 © 2009 IEEE

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

2

�� �
�� ��

�

Fig. 1. An Example Scenario of Leader Election in MANET

venting nodes from behaving selfishly. To address the selfish
behavior, we design incentives in the form of reputation to
encourage nodes to honestly participate in the election scheme
by revealing their cost of analysis. The cost of analysis is
designed to protect nodes’ sensitive information (resources
level) and ensure the contribution of every node on the election
process (fairness). To motivate nodes in behaving normally
in every election round, we relate the amount of detection
service that each node is entitled to the nodes’ reputation
value. Besides, this reputation value can also be used to
give routing priority and to build a trust environment. The
design of incentives is based on a classical mechanism design
model, namely, Vickrey, Clarke, and Groves (VCG) [21]. The
model guarantees that truth-telling is always the dominant
strategy for every node during each election phase. On the
other hand, to find the globally optimal cost-efficient leaders,
a leader election algorithm is devised to handle the election
process, taking into consideration the possibility of cheating
and security flaws, such as replay attack. The algorithm
decreases the percentage of leaders, single node clusters,
maximum cluster size and increases average cluster size.
Last but not least, we address these issues in two possible
settings, namely, Cluster Independent Leader Election (CILE)
and Cluster Dependent Leader Election (CDLE). In the former,
the leaders are elected according to the received votes from
the neighbor nodes. The latter scheme elects leaders after the
network is formulated into multiple clusters. In both schemes,
the leaders are elected in an optimal way in the sense that the
resource consumption for serving as IDSs will be balanced
among all nodes overtime. Finally, we justify the correctness of
proposed methods through analysis and simulation. Empirical
results indicate that our scheme can effectively improve the
overall lifetime of a MANET. The main contribution of this
paper is a unified model that is able to: (1) Balance the IDS
resource consumptions among all nodes by electing the most
cost-efficient leaders. (2) Motivate selfish nodes to reveal their
truthful resources level.

C. Possible Applications of Leader Election Scheme

The problem of selfishness and energy balancing exists
in many other applications to which our solution are also
applicable. Like in IDS scheme, leader election is needed for

routing [5] and key distribution [6], [10] in MANET. In key
management, a central key distributer is needed to update
the keys of nodes. In routing, the nodes are grouped into
small clusters and each cluster elects a cluster head (leader)
to forward the packets of other nodes. Thus, one node can
stay alive while others can be in the energy-saving mode.
The election of leader a node is done randomly, based on
connectivity (nodes’ degree) or based on a node’s weight
(here the weight refers to the remaining energy of a node
[34]). We have already pointed out the problems of random
model and connectivity model. We believe that a weight-
based leader election should be the proper method for election.
Unfortunately, the information regarding the remaining energy
is private to a node and thus not verifiable. Since nodes might
behave selfishly, they might lie about their resource level to
avoid being the leader if there is no mechanism to motivate
them. Our method can effectively address this issue.

D. Paper Outline

The rest of this paper is organized as follows: Section
II formulates the problem. Section III describes our leader
election mechanism where the cost of analysis function,
reputation model and payment design are given. Section IV
analyzes our mechanisms against selfish and malicious nodes.
Section V devises the election algorithm needed to handle the
election process. Section VI provides the proof of correctness
and security properties of the algorithm. Section VII presents
empirical results. Section VIII reviews related work. Finally,
Section IX concludes the paper and discusses our future work.

II. PROBLEM STATEMENT

We consider a MANET where each node has an IDS and
a unique identity. To achieve the goal of electing the most
cost efficient nodes as leaders in the presence of selfish and
malicious nodes, the following challenges arise: First, the
resource level that reflects the cost of analysis is considered
as a private information. As a result, the nodes can reveal
fake information about their resources if that could increase
their own benefits. Second, the nodes might behave normally
during the election but then deviate from normal behavior by
not offering the IDS service to their voted nodes.

In our model, we consider MANET as an undirected graph
G = (N, L) where N is the set of nodes and L is the
set of bidirectional links. We denote the cost of analysis
vector as C = {c1, c2, . . . , cn} where n is the number of
nodes in N . We denote the election process as a function
vtk(C, i) where vtk(C, i) = 1 if a node i votes for a node k;
vtk(C, i) = 0, otherwise. We assume that each elected leader
allocates the same budget B (in the number of packets) for
each node that has voted for it. Knowing that, the total budget
will be distributed among all the voting nodes according to
their reputation. This will motivate the nodes to cooperate
in every election round that will be held on every time
TELECT . Thus, the model will be repeatable. For example,
if B = 25 packet/sec and the leader gets 3 votes, then the
leader’s sampling budget is 75 packet/sec. This value is
divided among the 3 nodes based on their reputation value.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

3

The objective of minimizing the global cost of analysis while
serving all the nodes can be expressed by the following Social
Choice Function (SCF):

SCF = S(C) = min
∑
k∈N

ck · (
∑
i∈N

vtk(C, i) · B) (1)

Clearly, in order to minimize this SCF, the following must
be achieved. First, we need to design incentives for encour-
aging each node in revealing its true cost of analysis value
c, which will be addressed in Section III. Second, we need
to design an election algorithm that can provably minimize
the above SCF while not incurring too much of performance
overhead. This will be addressed in Section V.

III. LEADER ELECTION MECHANISM

In this section, we present our leader election mechanism
for truthfully electing the leader nodes. To make the paper
self-contained, the background on mechanism design is given
in Subsection III-A. Subsection III-B formulates our model
using the standard mechanism design notations. To achieve
the design goal, the cost of analysis function is given in
Subsection III-C followed by the reputation system model
given in Subsection III-D. Finally, the design of the payment
for the two models is given in Subsection III-E.

A. Mechanism Design Background

Mechanism design is a sub-field of microeconomics and
game theory [21]. Mechanism design uses game theory [25]
tools to achieve the desired goals. The main difference between
game theory and mechanism design is that the former can be
used to study what could happen when independent players
act selfishly. On the other hand, mechanism design allows a
game designer to define rules in terms of the Social Choice
Function (SCF) such that players will play according to these
rules. The balance of IDS resource consumption problem can
be modeled using mechanism design theory with an objective
function that depends on the private information of the players.
In our case, the private information of the player is the
cost of analysis which depends on the player’s energy level.
Here, the rational players select to deliver the untruthful or
incomplete information about their preferences if that leads
to individually better outcomes [31]. The main goal of using
mechanism design [17] is to address this problem by: 1)
Designing incentives for players (nodes) to provide truthful
information about their preferences over different outcomes. 2)
Computing the optimal system-wide solution, which is defined
according to Equation 1.

A mechanism design model consists of n agents where each
agent i ∈ {1, . . . , n} has a private information, θi ∈ Θi,
known as the agent’s type. Moreover, it defines a set of
strategies Ai for each agent i. The agent can choose any
strategy ai ε Ai to input in the mechanism. According to
the inputs (ai, . . . , an) of all the agents, the mechanism
calculates an output o = o(a1, . . . , an) and payment vector
p = (p1, . . . , pn) where pi = pi(a1, . . . , an). The preference
of each agent from the output is calculated by a valuation

function, vi(θi, o). This is a quantification in terms of a real
number to evaluate the output for an agent i. Thus, the utility
of a node is calculated as ui = pi − vi(θi, o). This means,
the utility is the combination of output measured by valuation
function and the payment it receives from the mechanism.

In direct revelation mechanism [17], every agent i has a
type, θi. Each agent gives an input ai(θi) to the mecha-
nism. The agent chooses the strategy according to its type,
where ai(θi) = θi, which is chosen from the strategy set
Θ = {Selfish, Normal}. We assume that normal agents follow
the protocol whereas selfish agents deviate from the defined
protocol if the deviation leads to a higher utility. Although the
prime objective of these agents is not to actively harm others
but their presence can passively harm others.

Last but not least, the mechanism provides a global output
from the input vector and also computes a specific payment for
each agent. The goal is to design a strategy-proof mechanism
where each agent gives an input based on its real type θi

(known as the dominant strategy) such that it maximizes its
utility regardless of the strategies of others. A strategy is
dominated by another strategy if the second strategy is at
least as good as the other one regardless of the other players’
strategy. This is expressed as follows:

pi − vi(θ
∗
i , o) = u∗i ≥ ui = pi − vi(θi, o)

where θ∗i denotes non-selfishness and θi denotes selfishness.
Note that ui is maximized only when pi is given by the
mechanism. The question is: How to design the payments
in a way that makes truth-telling the dominant strategy? In
other words, how to motivate nodes to reveal truthfully their
valuation function vi(θ

∗
i , o)? The VCG mechanism answers

this question by giving the nodes a fixed payment independent
of the nodes’ valuation, which is equal to the second best val-
uation. The design of the payment, according to our scenarios,
is given in the following subsections. A general overview of
mechanism design can be found in [17], [21], [28].

B. The Mechanism Model

We treat the IDS resource consumption problem as a game
where the N mobile nodes are the agents/players. Each
node plays by revealing its own private information (cost of
analysis) which is based on the node’s type θi. The type θi

is drawn from each player’s available type set Θi={Normal,
Selfish}. Each player selects his own strategy/type according to
how much the node values the outcome. If the player’s strategy
is normal then the node reveals the true cost of analysis. In
Section IV a detailed analysis is given. We assume that each
player i has a utility function [21]:

ui(θi) = pi − vi(θi, o(θi, θ−i)) (2)

where,
• θ−i is the type of all the other nodes except i.
• vi is the valuation of player i of the output o ∈ O,

knowing that O is the set of possible outcomes. In our
case, if the node is elected then vi is the cost of analysis
ci. Otherwise vi is 0 since the node will not be the leader
and hence there will be no cost to run the IDS.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

4

• pi ∈ � is the payment given by the mechanism to the
elected node. Payment is given in the form of reputation.
Nodes that are not elected receive no payment.

Note that, ui(θi) is what the player usually seeks to max-
imize. It reflects the amount of benefits gained by player i
if he follows a specific type θi. Players might deviate from
revealing the truthful valuation for the cost of analysis if that
could lead to a better payoff. Therefore, our mechanism must
be strategy-proof where truth-telling is the dominant strategy.
To play the game, every node declares its corresponding cost
of analysis where the cost vector C is the input of our
mechanism. For each input vector, the mechanism calculates
its corresponding output o = o(θ1, . . . , θn) and a payment
vector p = (p1, . . . , pn). Payments are used to motivate
players to behave in accordance with the mechanism goals.

In the following subsections, we will formulate the follow-
ing components:

1) Cost of analysis function: It is needed by the nodes to
compute the valuation function.

2) Reputation system: It is needed to show how:

a) Incentives are used once they are granted.
b) Misbehaving nodes are catched and punished.

3) Payment design: It is needed to design the amount of
incentives that will be given to the nodes based on VCG.

C. Cost of Analysis Function

During the design of the cost of analysis function, the
following two problems arise: First, the energy level is con-
sidered as private and sensitive information and should not
be disclosed publicly. Such a disclosure of information can be
used maliciously for attacking the node with the least resources
level. Second, if the cost of analysis function is designed only
in terms of nodes’ energy level, then the nodes with the low
energy level will not be able to contribute and increase their
reputation values.

To solve the above problems, we design the cost of analysis
function with the following two properties: Fairness and
Privacy. The former is to allow nodes with initially less
resources to contribute and serve as leaders in order to increase
their reputation. On the other hand, the latter is needed to avoid
the malicious use of the resources level, which is considered
as the most sensitive information. To avoid such attacks and to
provide fairness, the cost of analysis is designed based on the
reputation value, the expected number of time slots that a node
wants to stay alive in a cluster and energy level. Note that the
expected number of slots and energy level are considered as
the nodes’ private information.

To achieve our goal, we assume that the nodes are divided
into l energy classes with different energy levels. The lifetime
of a node can be divided into time-slots. Each node i is
associated with an energy level, denoted by Ei, and the number
of expected alive slots is denoted by nTi. Based on these
requirements, each node i has a power factor PFi = Ei/nTi.
We introduce the set of l − 1 thresholds P = {ρ1, . . . , ρl−1}
to categorize the classes as in Equation 3.

TABLE I
PS CALCULATED BY PROPOSED COST FUNCTION

PS(Percentage of sampling) Class4 Class3 Class2 Class1

After 200 sec 55% 20% 15% 10%
After 600 sec 45% 24% 18% 13%
After 1000 sec 40% 26% 20% 14%

CL =

⎧⎨
⎩

cl1 if PF < ρ1

cli if ρi−1 ≤ PF < ρi; i ∈ [2, l − 1]
cll if PF ≥ ρl−1

(3)

The reputation of node i is denoted by Ri. Every node has
a sampling budget based on its reputation. This is indicated by
the percentage of sampling, PSi = Ri∑

N

i=1
Ri

. The ci notation
represents the cost of analysis for a single packet and Eids

is used to express the energy needed to run the IDS for one
time slot. The cost of analysis of each node can be calculated
based on energy level. However, we considered energy level,
expected lifetime and the present PS of node to calculate the
cost of analysis. We can extend the cost of analysis function
to more realistic settings by considering the computational
level and cost of collecting and analyzing traffic. Our cost-
of-analysis function is formulated as follows:

ci =

⎧⎨
⎩

∞ if (Ei < Eids)

PSi

PFi
=

Ri∑
N
i=1

Ri

×nTi

Ei
otherwise

(4)

According to the above formulation, the nodes have an
infinite cost of analysis if its remaining energy is less than the
energy required to run the IDS for one time slot. This means
that its remaining energy is too low to run the IDS for an entire
time-slot. Otherwise, the cost of analysis is calculated through
dividing the percentage of sampling by the power factor. The
cost of analysis c is proportional to the percentage of sampling
and is inversely proportional to the power factor. The rationale
behind the definition of the function is the following. If the
nodes have enough PS, they are not willing to loose their
energy for running the IDS. On the other hand, if PF is larger,
then the cost-of-analysis becomes smaller since the nodes have
higher energy levels. In the rest of the paper, we will use cost
and cost-of-analysis interchangeably.

We show the effect of our cost function over PS through an
example. Table I shows the PS for 20 nodes divided equally
in 4 energy classes where nodes in class 4 have the most
resources. Table I indicates that initially nodes belonging to
lower energy level have a small budget. As the time goes by,
the nodes belonging to lower energy class gains more budget
while the budget of higher classes decreases. This justifies that
our cost function is able to balance the energy of the nodes
and gives a fair budget to all nodes.

D. Reputation System Model

Before we design the payment, we need to show how the
payment in the form of reputation can be used to: (1) Motivate
nodes to behave normally and (2) punish the misbehaving
nodes. Moreover, it can be used to determine whom to trust.
To motivate the nodes in behaving normally in every election

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

5

round, we relate the cluster’s services to nodes’ reputation.
This will create a competition environment that motivates the
nodes to behave normally by saying the truth. To enforce our
mechanism, a punishment system is needed to prevent nodes
from behaving selfishly after the election. Misbehaving nodes
are punished by decreasing their reputation and consequently
are excluded from the cluster services if the reputation is less
than a predefined threshold. As an extension to our model,
we can extend our reputation system to include different
sources of information such as routing and key distribution
with different assigned weights. Figure 2 shows the abstract
model of our reputation system where each node has the
following components:

Fig. 2. Reputation System Model

• Monitor or Watchdog: It is used to monitor the behavior
of the elected leader. To reduce the overall resource
consumption, we randomly elect a set of nodes, known as
checkers, to perform the monitoring process. The selected
checkers mirror a small portion of the computation done
by the leader so the checkers can tell whether the leader
is actually carrying out its duty. We assume the checkers
are cooperative because the amount of computation they
conduct for monitoring the leader only amounts to a
marginal resource consumption, which is dominated by
the benefit of receiving intrusion detection service from
the leader [29].

• Information Exchange: It includes two types of informa-
tion sharing: (1) The exchange of reputation with other
nodes in other clusters (i.e., for services purposes). (2) To
reduce the false positive rate, the checkers will exchange
information about the behavior of the leader to make
decision about the leader’s behavior.

• Reputation System: It is defined in the form of a table
that contains the ID of other nodes and their respective
reputation R. The node that has the highest reputation
can be considered as the most trusted node and is given
priority in the cluster’s services. Therefore, the rational
nodes are motivated to increase their reputation value by
participating in the leader election.

• Threshold Check: It has two main purposes: (1) To verify
whether nodes’ reputation is greater than a predefined
threshold. If the result is true then nodes’ services are
offered according to nodes’ reputation. (2) To verify
whether a leader’s behavior exceeds a predefined misbe-
having threshold. According to the result, the punishment

system is called.
• Service System: To motivate the nodes to participate in

every election round, the amount of detection service
provided to each node is based on the node’s reputation.
Each elected leader has a budget for sampling and thus
only limited services can be offered. This budget is
distributed among the nodes according to their reputation.
Besides, this reputation can also be used for packet for-
warding. Packets of highly reputed nodes should always
be forwarded. On the other hand, if the source node has
an unacceptably low reputation then its packet will have
less priority. Hence, in every round, nodes will try to
increase their reputation by becoming the leader in order
to increase their services.

• Punishment System: To improve the performance and
reduce the false-positive rate of checkers in catching and
punishing a misbehaving leader, we have formulated in
[29] a cooperative game-theoretical model to efficiently
catch and punish misbehaving leaders with low false pos-
itive rate. Our catch-and-punish model was made up of
k detection-levels, representing different levels of selfish
behaviors of the leader-IDS. This enables us to better
respond to the misbehaving leader-IDS depending on
which detection-level it belongs to. Hence, the percentage
of checkers varies with respect to the detection-level.
Once the detection exceeds a predefined threshold, the
leader will be punished by decreasing its reputation value.

E. CILE Payment Design

In Cluster Independent Leader Election (CILE), each node
must be monitored by a leader node that will analyze the
packets for other ordinary nodes. Based on the cost of analysis
vector C, nodes will cooperate to elect a set of leader nodes
that will be able to analyze the traffic across the whole
network and handle the monitoring process. This increases the
efficiency and balances the resource consumption of an IDS in
the network. Our mechanism provides payments to the elected
leaders for serving others (i.e., offering the detection service).
The payment is based on a per-packet price that depends on
the number of votes the elected nodes get. The nodes that do
not get any vote from others will not receive any payment.
The payment is in the form of reputations, which are then
used to allocate the leader’s sampling budget for each node.
Hence, any node will strive to increase its reputation in order
to receive more IDS services from its corresponding leader.

Theorem 1: Using the following design of payment, truth-
telling is the dominant strategy:

Pk =
∑
i∈N

vtk(C, i)Bρk, where (5)

ρk = ck +
1∑

i∈N vtk(C, i)
×

[
∑
j∈N

cj

∑
i∈N

vtj(C|ck = ∞, i) −
∑
j∈N

cj

∑
i∈N

vtj(C, i)] (6)

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

6

Proof: Given any cost vector C, the total cost of node k
can be expressed as follows:

Tk(C) = ck

∑
i∈N

vtk(C, i)B (7)

Using the above equation, our Social Choice Function (SCF)
can be denoted as:

S(C) =
∑
k∈N

ck

∑
i∈N

vtk(C, i)B =
∑
k∈N

Tk(C) (8)

where the objective function is the sum of all players’ val-
uations [27]. Here valuation refers to the total cost incurred
by a node. According to [18], the strategy-proof payment for
minimizing a function should have the following generalized
form.

Pk = Tk(C) − S(C) + hk(c−k) (9)

where hk(c−k) is an arbitrary function of c−k. When ck = ∞,
the node is not elected due to no vote being received from its
neighbors. Hence, its utility and payment will be zero. Thus,

hk(c−k) =
∑
j∈N

cj

∑
i∈N

vtj(C|ck = ∞, i)B (10)

This means,
Pk = ck

∑
i∈N

vtk(C, i)B+

∑
j∈N

cj

∑
i∈N

vtj(C|ck = ∞, i)B −
∑
j∈N

cj

∑
i∈N

vtj(C, i)B (11)

=
∑
i∈N

vtk(C, i)B{ck +
1∑

i∈N vtk(C, i)
×

[
∑
j∈N

cj

∑
i∈N

vtj(C|ck = ∞, i) −
∑
j∈N

cj

∑
i∈N

vtj(C, i)]} (12)

=
∑
i∈N

vtk(C, i)Bρk (13)

where,

ρk = ck +
1∑

i∈N vtk(C, i)
×

[
∑
j∈N

cj

∑
i∈N

vtj(C|ck = ∞, i) −
∑
j∈N

cj

∑
i∈N

vtj(C, i)] (14)

This concludes the proof since the designed payment is in
the generalized form of strategy-proof payment. �

In the above proof, it can be noticed that excluding a node
k from election will affect only the two-hop away nodes,
since new leaders may need to be elected within the two-hop
neighbors of node k.

Example 1: To show how the payment is calculated and
used, we consider a MANET with ten nodes as shown in
Figure 3. Since our model is repeatable, we present the election
process at the 10th round. The reputation at the 9th round is
given in the first row of Table II. To elect a new leader in the
10th round, the nodes will first compute their cost of analysis
using the cost of analysis function given in Section III-C. The
corresponding revealed cost is presented in the second row of

Fig. 3. An example of leader election

TABLE II
LEADER-IDS ELECTION EXAMPLE

Nodes N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Reputation 9th 120 140 100 80 130 60 90 160 10 110
Cost of Analysis 3 5 4 12 7 8 6 4 2 11
Reputation 10th 165 140 195 80 170 60 90 160 110 110

Table II. Given the nodes’ cost and network topology, node 9
will be the leader among its neighbor since it has the lowest
cost of analysis. Equation 5 is used to calculate the payment
of node 9, which is in the form of reputation. The payment
per packet is ρ9 = 2 + 1

4
(8 × 1 + 4 × 3 − 2 × 4) = 5.

This is because if node 9’s cost is ∞ then node 10 would
have voted for node 6 and node 7, 8 and 9 would have
voted for node 8. Hence the total cost would have been
20 instead of 8. Therefore, the given payment of node 9 is
P9 =

∑
v9Bρ9 = 4 × 5 × 5 = 100 where B= 5 packets/sec

is the sampling budget. After election, leader N9 distributes
the IDS sampling budget over the protected nodes N7, N8,
N9 and N10, according to their reputation, as follows: S =
{S7 = 90×20

470
, S8 = 160×20

470
, S9 = 110×20

470
, S10 = 110×20

470
}.

The details of the election algorithm will be presented in the
example of Section V. �

F. CDLE Payment Design

In Cluster Dependent Leader Election (CDLE), the whole
network is divided into a set of clusters where a set of one-hop
neighbor nodes forms a cluster. Here, we use the scheme of
[20] to cluster the nodes into one-hop clusters. Each cluster
then independently elects a leader among all the nodes to
handle the monitoring process based on nodes’ analysis-cost.
Our objective is to find the most cost-efficient set of leaders
that handle the detection process for the whole network.
Hence, our social choice function is still as in Equation 1.

To achieve the desired goal, payments are computed using
the VCG mechanism where truth-telling is proved to be
dominant. Like CILE, CDLE provides payment to the elected
node and the payment is based on a per-packet price that
depends on the number of votes the elected node gets.

Theorem 2: Using the following design of payment, truth-
telling is the dominant strategy:

Pk =
∑
i∈N

vtk(C, i)Bρk, where (15)

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

7

ρk = min
∑

j∈−nk

vj(θj , o(θj , θ−j)) (16)

Proof: According to the standard notation in mechanism
design [27], the second best price is the simplest form of VCG
mechanism. Here,

∑
j∈−nk

vj(θj , o(θj , θ−j)) denotes the best
cost excluding nk. This is because nodes in the cluster have to
select one node from the same cluster to be a leader. Unlike
CILE where nodes can vote to its one-hop neighbor and then
clusters are formed. �

IV. SECURITY ANALYSIS OF THE MECHANISM

The main objective of our mechanism is to motivate selfish
nodes and enforce them to behave normally during and after
the election process. Here, we analyze the election mechanism
in the presence of selfish and malicious nodes.

A. Presence of Selfish Nodes

A selfish node i will deviate from our mechanism if doing so
increases its utility, ui. Here we consider two type of untruthful
revelation, namely, node i might either under-declare or over-
declare the true value ci of its cost of analysis.

Node i may under-declare its valuation function with a fake
value ĉi(ĉi < ci). By under-declaring, node i pretends that it
has a cheaper valuation function than reality. Since payments
are designed based on VCG, playing by under-declaration will
not help the node for two reasons. First, suppose the node i
indeed has the lowest cost of analysis ci, so it will win the
election even by declaring its true value. In this case, reporting
a lower value ĉi will not benefit the node because the payment
is calculated based on the second best price and does not
depend on the value declared by node i. Therefore, the utility
of node i remains the same because it will be the difference
between the payment and the real value ci. Second, suppose
that the node i does not have the cheapest valuation function
but tries to win the election by revealing a lower value ĉi. This
will help the node i to win the election but it will also lead to
a negative utility function ui for node i, because the payment
it receives will be less than the real cost of analysis. That is,
the node i will have to work more than what it has paid for.

On the other hand, the node i might over-declare its
valuation by revealing a fake ĉi(ĉi > ci). Following such
a strategy would never make a player happier in two cases.
First, if the node i indeed has the cheapest valuation function,
then following this strategy may prevent the node from being
elected, and therefore it will lose the payment. On the other
hand, if node i still wins, then its utility remains the same
since the payment does not depend on the value it reports.
Second, suppose the real valuation function ci of node i is not
the lowest, then reporting a higher value will never help the
node to win. Last but not least, the checkers are able to catch
and punish the misbehaving leaders by mirroring a portion
of its computation from time to time. A caught misbehaving
leader will be punished by receiving a negative payment. Thus
it discourages any elected node from not carrying out its
responsibility. We can thus conclude that our mechanism is
truthful and it guarantees a fair election of the most cost-
efficient leader.

B. Presence of Malicious Nodes

A malicious node can disrupt our election algorithm by
claiming a fake low cost in order to be elected as a leader.
Once elected, the node does not provide IDS services, which
eases the job of intruders. To catch and punish a misbehaving
leader who does not serve others after being elected, we have
proposed in [29] a decentralized catch-and-punish mechanism
using random checker nodes to monitor the behavior of the
leader.

Although not repeated here, this scheme can certainly
be applied here to thwart malicious nodes by catching and
excluding them from the network. Due to the presence of
checkers, a malicious node has no incentive to become a leader
since it will be caught and punished by the checkers. After a
leader is caught misbehaving, it will be punished by receiving
a negative reputation and is consequently excluded from future
services of the cluster. Thus, our mechanism is still valid even
in the presence of a malicious node.

V. LEADER ELECTION ALGORITHM

To run the election mechanism given in Section III, we
propose a leader-election algorithm that helps to elect the
most cost-efficient leaders with less performance overhead
compared to the network flooding model. We devise all the
needed messages to establish the election mechanism taking
into consideration cheating and presence of malicious nodes.
Moreover, we consider the addition and removal of nodes
to/from the network due to mobility reasons. Finally, the
performance overhead is considered during the design of
the given algorithm where computation, communication and
storage overhead are derived.

A. Objectives and Assumptions

To design the leader election algorithm, the following
requirements are needed: (1) To protect all the nodes in a
network, every node should be monitored by a leader. (2) To
balance the resource consumption of IDS service, the overall
cost of analysis for protecting the whole network is minimized.
In other words, every node has to be affiliated with the most
cost efficient leader among its neighbors. Our algorithm is
executed in each node taking into consideration the following
assumptions about the nodes and the network architecture:
• Every node knows its (2-hop) neighbors, which is rea-

sonable since nodes usually maintain a table about their
neighbors for routing purposes.

• Loosely synchronized clocks are available between nodes.
• Each node has a key (public, private) pair for establishing

a secure communication between nodes.
• Each node is aware of the presence of a new node or

removal of a node.
For secure communication, we can use a combination of

TESLA [30] and public key infrastructure. With the help
of TESLA, loosely synchronized clocks can be available.
Nodes can use public key infrastructure during election and
TESLA in other cases. Recent investigations showed that
computationally limited mobile nodes can also perform public
key operations [13].

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

8

B. Leader Election

To start a new election, the election algorithm uses four
types of messages. Hello, used by every node to initiate
the election process; Begin-Election, used to announce the
cost of a node; Vote, sent by every node to elect a leader;
Acknowledge, sent by the leader to broadcast its payment, and
also as a confirmation of its leadership. For describing the
algorithm, we use the following notation:

• service-table(k): The list of all ordinary nodes, those
voted for the leader node k.

• reputation-table(k): The reputation table of node k. Each
node keeps the record of reputation of all other nodes.

• neighbors(k): The set of node k’s neighbors.
• leadernode(k): The ID of node k’s leader. If node k is

running its own IDS then the variable contains k.
• leader(k): A boolean variable that sets to TRUE if node

k is a leader and FALSE otherwise.

Initially, each node k starts the election procedure by
broadcasting a Hello message to all the nodes that are one
hop from node k and starts a timer T1. This message contains
the hash value of the node’s cost of analysis and its unique
identifier (ID). This message is needed to avoid cheating where
further analysis is conducted in Section VI-B.

Algorithm 1 (Executed by every node)
/* On receiving Hello, all nodes reply with their cost */
1. if (received Hello from all neighbors) then
2. Send Begin-Election (IDk , costk);
3. else if(neighbors(k)=Ø) then
4. Launch IDS.
5. end if

On expiration of T1, each node k checks whether it has
received all the hash values from its neighbors. Nodes from
whom the Hello message have not received are excluded from
the election. On receiving the Hello from all neighbors, each
node sends Begin-Election as in Algorithm 1, which contains
the cost of analysis of the node and then starts timer T2. If
node k is the only node in the network or it does not have
any neighbors then it launches its own IDS.

Algorithm 2 (Executed by every node)
/* Each node votes for one node among the neighbors */
1. if (∀ n ε neighbor(k), ∃ i ε n : ci ≤ cn) then
2. send V ote(IDk, IDi, costj �=i);
3. leadernode(k):= i;
5. end if

On expiration of T2, the node k compares the hash value of
Hello to the value received by the Begin-Election to verify the
cost of analysis for all the nodes. Then node k calculates the
least-cost value among its neighbors and sends Vote for node
i as in Algorithm 2. The Vote message contains the IDk of
the source node, the IDi of the proposed leader and second
least cost among the neighbors of the source node costj �=i.
Then node k sets node i as its leader in order to update later
on its reputation. Note that the second least cost of analysis is
needed by the leader node to calculate the payment. If node

k has the least cost among all its neighbors then it votes for
itself and starts timer T3.

Algorithm 3 (Executed by Elected leader node)
/* Send Acknowledge message to the neighbor nodes */
1. Leader(i) := TRUE;
2. Compute Payment, Pi;
3. updateservice−table(i);
4. updatereputation−table(i);
5. Acknowledge = Pi + all the votes;
6. Send Acknowledge(i);
7. Launch IDS.

On expiration of T3, the elected node i calculates its
payment using equation 5 and sends an Acknowledge message
to all the serving nodes as in Algorithm 3. The Acknowledge
message contains the payment and all the votes the leader
received. The leader then launches its IDS.

Each ordinary node verifies the payment and updates its
reputation table according to the payment. All the messages
are signed by the respective source nodes to avoid any kind of
cheating. At the end of the election, nodes are divided into two
types: Leader and ordinary nodes. Leader nodes run the IDS
for inspecting packets, during an interval TELECT , based on
the relative reputations of the ordinary nodes. We enforce re-
election every period TELECT since it is unfair and unsafe for
one node to be a leader forever. Even if the topology remains
same after TELECT time, all the nodes go back to initial stage
and elect a new leader according to the above algorithms.

Example 2: Continue from Example 1. To illustrate the
election algorithm, we consider the same network topology
presented in Figure 3. To elect a new leader in the 10th round,
every node sends a Hello message that contains the node’s
ID and the hash value of the computed cost. After receiving
the Hello messages, the nodes send a Begin-Election message
according to Algorithm 1. Nodes reveal their cost of analysis
to the mechanism based on their type (Selfish or Normal). As
mentioned, the corresponding cost is given in the second row
of Table II. Then, nodes 7, 8, 9 and 10 vote for node 9 using
the Vote message as in Algorithm 2. Similarly, node 6 votes for
node 5; nodes 3, 4 and 5 vote for node 3; nodes 1 and 2 vote
for node 1. After getting the votes, leader nodes 1, 3, 5 and
9 will calculate their payment using equation 5 as shown in
Example 1. Respectively, the payment for elected leaders N1,
N3 and N5 will be 45, 95 and 40. Finally, the leader nodes will
send Acknowledge message using Algorithm 3 to all neighbors
and run their own IDS. Upon receiving the Acknowledge, all
the neighboring nodes increase the reputation of the elected
leaders, as shown in the third row of Table II. �

C. Adding a new node

When a new node is added to the network, it either launches
its own IDS or becomes an ordinary node of any leader node.
To include a new node to the IDS service, four messages are
needed: Hello, Status, Join and Acknowledge. Hello is sent by
a new node n to announce its presence in the network. This
Hello message is similar to the one presented in the previous
section. Upon receiving the Hello, all the neighbors of the new

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

9

Fig. 4. A MANET after adding a new node

node, reply with a Status message. If the neighbor node k is a
leader node, then the Status message contains its cost. On the
other hand, if node k is an ordinary node, the Status message
contains the ID of its leader node as in Algorithm 4.

Algorithm 4 (Executed by neighboring nodes)
/* The neighboring nodes send ’Status’ to new node */
1. if (leader(k) = TRUE) then
2. Status := Costk;
3. else
4. Status := leadernode(k);
5. end if;
6. send Status(k, n);

On receiving the Status messages from the neighbors, the
new node n sends Join to the leader node. If two of its
neighbors are leaders with the same cost, then the new node
can send Join to any of the nodes depending on its physical
location (i.e; signal strength). We assume that an ordinary node
have no interest to be a leader during the service time since
it will not receive any payment from others. The algorithm
does not make the new node as a leader for others before the
new election (i.e., to reduce performance overhead). Detailed
analysis is presented in Section VI. If the new node has
the least cost, it can either send Join to the leader node or
launches its own IDS. After getting the Join message, the
leader node adds the new node to its service list and divides
its budget according to nodes’ reputation. We do not give any
new payment to the leader as the leader node has the same
budget. A problem can arise from keeping the same sampling
budget for every added node. It causes the voting nodes to
have less IDS service compared to what they have payed for
at the election time. Thus, less sampling is offered to the voting
nodes, which will ease the job of an attacker. An attacker can
take an advantage from this technique only if the network is
static. On the other hand, in a dynamic network, which is the
case of MANET, nodes are dynamically added and removed
from the network due to mobility. As a result, the average
value of the budget will remain the same. Thus, the security
of nodes will not be effected.

Finally, the leader node sends an Acknowledge message, that
includes its payment, to the new node so that the new node
can update its reputation table. Note that new nodes can still

use their reputation value for having detection service.
Example 3: Let us consider a new node that will be added

to the network in Figure 3. The resulting network is shown in
Figure 4. The new node 11 is connected with node 3, 5 and 6.
The cost of node 11 is 6. Node 11 sends a Hello message to
all its neighbors. All the nodes reply with the Status message
as in Algorithm 4. Node 11 sends Join message to leader node
3 as it has the least cost. Finally, leader node 3 adds node 11
in its serving list. �

D. Removing a node

When a node is disconnected from the network due to
many reasons; such as, mobility or battery depletion, then the
neighbor nodes have to reconfigure the network. We assume
that whenever a node dies, its neighbors are aware of it. At first
a Dead(n) message is circulated to all neighbors to confirm
the removal of node n. On receiving the Dead(n) message,
the neighbor node k checks whether node n is its leader node
or not. If node n is the leader node of node k, then node k
announce a new election and updates its reputation table. On
the other hand, if node n is an ordinary node then its leader
node update its serving list.

Algorithm 5 (Executed by neighboring nodes)
/* The neighboring nodes reconfigure the network and */
/* declare new election if necessary*/
1. if (leadernode(k) = n) then
2. leadernode(k):= NULL;
3. updatereputation(k);
4. send Begin − Election as in Algorithm 1;
5. end if;
6. if (leader(k) = TRUE) then
7. if (n ε service(k)) then
8. updateservice();
9. end if;
10. end if;

Example 4: Here, we consider the removal either of an
ordinary node or a leader node. Considering the network in
Figure 3, let us assume that node 7 has left the network or
died. In other words, the links between the node 7 and others
have been broken. Immediately, node 8 and 9 will be aware
of the failure. On receiving the Dead(7) message, nodes 8 and
9 check whether node 7 is their leader or it’s being served
by them following the steps of Algorithm 5. As node 7 is
an ordinary node, node 8 does nothing. In case of node 9, it
updates its serving list. Assume now that the links of node 9
have been broken as shown in Figure 5. Then the neighboring
nodes 7, 8 and 10 will discover that node 9 is their leader using
Algorithm 5. Immediately, they will go for a new election by
sending a Begin-Election message as in Algorithm 1. Thus,
node 8 will become the new leader due to its lowest cost. In
the case of node 10, it will launch its own IDS since it has
no neighboring leader node. It cannot even join node 6, since
node 6 is an ordinary node and is being served by node 5.
Therefore, it has to wait for the expiration of TELECT for a
new election. The resulting network is shown in Figure 5. �

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

10

� �

� �

� �

� �

� � �

� �

� �

� 	

�

� �
 � � �

� �
 � � �

� �
 � � �
� �
 � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � � � �

� � �

� ! � "

� �
 � � �
� $ � % $ & ' (

) � �

Fig. 5. A MANET after adjustment

E. Performance Analysis

In this section, we analyze the performance overhead of
our proposed leader algorithm. In summary, our algorithm has
four steps. In the first 3 steps, all the nodes broadcast Hello,
Begin-Election and Vote messages consecutively. In the last
step, only the leader node sends an Acknowledge message to
others.

1) Computation Overhead: Each node i signs its messages
sent in the first 3 steps. Also, each node verifies the messages
it received in these steps. In the 4th step, the leader node
signs the Acknowledge message and others verify. Hence
each normal node signs 3 messages and verifies 3|Ngi| + 1
messages where Ngi is the number of neighboring nodes.
On the other hand, the leader node signs 4 messages and
verifies 3|Ngi| messages. Note that each node must find
the least cost node which requires O(log(Ngi)). Therefore,
each node approximately performs O(Ngi) verifications, O(1)
signatures and O(log(Ngi)) to calculate the least cost node.
Thus the computation overhead for each node is O(Ngi) +
O(1) + O(log(Ngi)) ≈ O(Ngi). Since our algorithm involves
more verification than signing, nodes can use the public key
cryptosystem of [13] to verify a signature in 0.43s. Since
leader election will take place after a certain interval, this
computational overhead is tolerable.

2) Communication Overhead: Each node i broadcasts one
message in the first 3 steps and only the leader node broadcasts
a final Acknowledge message in the 4th step. Hence, the total
communication overhead of our election algorithm is 3|Ngi|+
1 ≈ O(Ngi), where |Ngi| is the number of neighboring nodes.

3) Storage Overhead: According to the algorithm, each
node maintains a reputation-table, neighbors list and two
variables: Leadernode and leader. The leader node keeps an
extra service-table. Hence, each normal node needs |Ni| +
|Ngi| + 2 storage and the leader node needs |Ni| + |Ngi| +
|Vi| + 2. Knowing that |Ni| is the number of nodes in the
network, |Vi| is the number of votes the leader node received
where |Ni| > |Ngi| > |Vi|. Therefore, the total storage for
each node is in the order of O(Ni).

For CDLE, the network has to be initially clustered. Hence
there is an extra overhead for clustering. A comparison of
different clustering algorithms is presented in [20].

VI. CORRECTNESS AND SECURITY PROPERTIES OF THE

ALGORITHM

In this section, we discuss the correctness and security prop-
erties of our election algorithm. We prove that our algorithm
satisfies the requirements and provides the necessary security
properties for secure election.

A. Algorithmic Correctness

Here, we prove that our algorithm achieves our objectives
mentioned in section V-A.
Proposition 1: Our algorithm confirms that each node is
monitored by a leader node.

Proof: It is easily noticeable that after executing the elec-
tion algorithm, each node is assigned a role. According to
Algorithm 2, a nodes is either a leader or ordinary within a
finite time. Note that an ordinary node could be a checker
that monitors the behavior of the leader [29]. After receiving
Hello and Begin-Election messages from all the neighbor
nodes within (T1 + T2) time, nodes are sorted according to
their cost of analysis. By executing Algorithm 2, each node
sets its variable leadernode(k) to k if node k has the least
cost of analysis. Nodes can not do anything but to send the
Vote message to the deserving candidate. If a node does not
have any neighbor, it becomes the leader node according to
Algorithm 1. Besides, if a node loses its connection with the
leader due to change in the network topology, it can always
get associated with another leader through Algorithms 4 and
5. Thus, in all cases a node is either a leader or ordinary
(monitored by a leader node). �

Proposition 2: The overall cost of analysis for protecting
the whole network is minimized.

Proof: According to proposition 1, each node is assigned a
role and the role is decided according to the cost of analysis.
Each node sends a V ote message to the node which has the
least cost of analysis. Thus, our election scheme minimizes the
SCF function depicted in equation 1 through assigning each
node to the most cost-efficient leader. Since each node can
affect only two-hop away nodes, the locally optimal election
results are sufficient to yield the globally optimal result (that is,
the minimized SCF function). One exception can occur when
a node is added after the election and the new node has the
minimum cost of analysis. We don’t elect the new node as a
leader since it will cause communication overhead (frequent
leader change) in the network and could be used maliciously
to disrupt the IDS service. The new node has to wait for the
expiration of TELECT to participate in the new election. �

B. Security Concerns

Our proposed algorithm itself has to be secure along with
its algorithmic correctness, which we believe it is hard to
achieve especially in a distributed environment. Even though,
our algorithm is able to prevent some security flaws such as
reply attack and avoid cheating. In the following, we discuss
some of the security properties of our algorithm.

Algorithm security properties: Since we assume the pres-
ence of TESLA and PKI protocols, all the messages are signed

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

11

by the source node and verified by others. Thus, integrity is
provided and the possibility of altering the Vote messages
is prevented. Moreover, the source authentication is granted
since PKI allows the recipient to verify the identity of the
sender through its signature. Additionally, the freshness of
messages is provided through TESLA that synchronizes the
clocks among the nodes and consequently avoids reply attacks.
Finally, to avoid nodes from not continuing the execution of
the algorithm after discovering their loss, a fairness property
must be given to avoid such a flaw. This will be granted
through excluding the nonparticipating nodes from having the
cluster’s services.

The algorithm is cheat-proof: We claim that our algorithm is
cheat-proof because a node, which does not have the least cost
of analysis among its neighbors cannot be elected as a leader.
To prevent a node from revealing its cost after observing
others, we design our cost revaluation procedure in two rounds:
First, each node computes the hash of its cost where all the
nodes use the same hash function. Then, nodes broadcast the
hash value using the Hello message. Second, upon receiving
the hash values from all the nodes, each node reveals its
cost of analysis. Since the hash values are already available,
every node verifies the cost of analysis of the other nodes.
In this way, we are able to prevent cheating by declining the
revelation of the announced cost of analysis value or changing
it later on.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our model
(CILE) with respect to random and connectivity models. We
simulate the schemes using Network Simulator 2 (NS2).

A. Performance Metrics

The main objective of our simulation results is to study
the effect of node selection for IDS on the life of all nodes.
To show the negative impact of selfish node, we conducted
two experiments: Time taken for the first node to die and
percentage of packet analysis. Besides, we use the following
metrics to evaluate our algorithm against others: Percentage
of alive nodes, energy level of nodes, percentage of leader
node, average cluster size, maximum cluster size and number
of single node clusters. Our experiments have been conducted
in both static and dynamic networks. For a static network,
we compare our algorithm with both random and connectivity
models, while for dynamic network, we only compare with
connectivity model since we believe that the random model
will perform almost the same as in static one. Our experimental
results have a 95% confidence and a 5% precision.

B. Simulation Environment

To implement the models, we modify the energy model
to measure the effect of running IDS. Initially, we randomly
assign 60 to 100 joules to each node. We assume that the
energy required for running the IDS for one time slot as 10
joules. We ignore the energy required to live and transmit
packets to capture the silent aspect of the problem. We set the
transmission radius of each node to 200 meters. Two nodes

TABLE III
SIMULATION PARAMETERS

Parameter Value

Simulation Time 2000 seconds
Simulation Area 500 × 500 m
Number of Nodes 20, 30, 40, 50
Transmission Range 200 m
Movement Model Random Waypoint Model
Maximum Speed 15 meters/sec
Pause Time 200 s
Traffic Type CBR/UDP
Packet Rate 4 packets/sec
TELECT 20 sec

are considered as neighbors if their Euclidean distance is less
than or equal to 200 meters.

Besides, we deploy different number of nodes, which varies
from 20 to 50 in an area of 500 × 500 square meters.
It helps us to measure the performance of the nodes from
sparse networks to dense networks. Table III summarizes our
simulation parameters.

C. Experimental Results

Nodes can behave selfishly before and after the election.
A node shows selfishness before election by refusing to
be a leader. On the other hand, selfishness after election
is considered when nodes misbehave by not carrying out
the detection service after being a leader. Both kinds of
selfishness have a serious impact on the normal nodes. To
show the seriousness and impact of selfishness before election
on resource consumption, Figure 6.(a) depicts the impact of
selfish nodes on the life of normal nodes. The result indicates
that the normal nodes will carry out more duty of intrusion
detection and die faster when there are more selfish nodes.
Figure 6.(b) shows the impact of selfishness after election on
security. We consider the presence of 20% of selfish nodes
out of 10 nodes. As selfish nodes do not exhaust energy to
run the IDS service, it will live longer than the normal nodes.
Thus, the more the time goes, the more the chances that the
selfish node will be the leader node. Hence, the percentage of
packet analysis decreases with time, which is shown in Figure
6.(b). This is a severe security concern since fewer packets are
analyzed.

In Figure 6.(c), we compare our model with the other two
models to show the percentage of alive nodes with respect to
time. We simulate our model in a network of 10 mobile nodes
as shown in Figure 3 with the presence of 20% of selfish
nodes. We consider nodes 4 and 7 to be selfish and study
their impact on our model, random and connectivity models
with no mobility. The nodes repetitively elect a set of leaders
every TELECT seconds. The election is based on the proposed
scheme. The experiment indicates that our model results in a
higher percentage of alive nodes, in contrast to other models.
On the other hand, the random model elects leaders without
considering the energy level and leads nodes with low energy
to die fast. Finally, the connectivity model elects leaders based
on their number of connections. In the case of static scenarios,
the model elects the same node repeatedly, which causes the
normal nodes to die very fast. In our model, the node that has
the least cost of analysis becomes the leader. In this way, all
the nodes can keep a balance of their energy level with time.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

12

0 5 10 15 20 25 30 35 40 45 50
500

550

600

650

700

750

800

850

900
10 Nodes

% of Selfish Nodes

T
im

e
(s

ec
s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100
10 Nodes

Time(sec)

P
ac

ke
t A

na
ly

si
s

(%
)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Time(sec)

A
liv

e
no

de
s

(%
)

10 Nodes

CILE
Random Model
Connectivity Model

Fig. 6. (a) Time for Normal Node to Die (b) Percentage of Packet Analysis (c) Percentage of Alive Nodes

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Nodes

E
ne

rg
y

Le
ve

l

CILE

After 300 sec
After 150 sec
Initially

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Nodes

E
ne

rg
y

Le
ve

l

Random Model

After 300 sec
After 150 sec
Initially

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Nodes

E
ne

rg
y

Le
ve

l

Connectivity Model

After 300 sec
After 150 sec
Initially

Fig. 7. (a) Energy Level of Our Model (b) Energy Level of Random Model (c) Energy Level of Connectivity Model

Hence, all the nodes will live long and die at the same time
which is clearly shown in Figure 7. Figure 7.(a) indicates that
our model is able to balance the resource consumption among
all nodes. On the other hand, the random (Figure 7.(b)) and
connectivity (Figure 7.(c)) models result in unbalanced energy
consumption and several dead nodes.

Now, we evaluate the performance of our algorithm in a
dynamic network for different number of nodes from 20 to
50. The simulation parameters are mentioned in Table III.
We compare our model only with the connectivity model
since we believe that the expected performance of the random
model will be close to the one given with low mobility (static
network). Figure 8 shows that more nodes are alive in our
model compared to the connectivity one. As the number of
nodes increases, the life of nodes also increases since there
are more nodes to act as leaders. Thus, the detection service
is distributed among the nodes which prolongs the live time
of the nodes in MANET.

Last but not least, we compare some of the cluster charac-
teristics of our model with those of the connectivity model.
Figure 9.(a) shows the percentage of the leader nodes. The
percentage of leaders for our model is less as compared to
those of the connectivity model that saves the energy of nodes.
Figure 9.(b) compares the average cluster size of both the
models for different number of nodes. Our model has a higher
average cluster size than the other one. This proves that our
model is able to uniformly distribute the load of the leaders.
Figure 10.(a) illustrates the size of the maximum cluster.
The maximum cluster size for both models is increasing
with the number of nodes. For our model, the maximum

cluster size is less and thus avoid many problems; such as,
message collisions, transmission delays and etc. This could
also improves the detection probability since more number of
packets is analyzed per node compared to the other model.
Moreover, our model is able to reduce the number of single
node clusters as the density of nodes is increasing. This shown
in Figure 10.(b).

From these experiments, we can conclude that our model
is able to balance the IDS resource consumption in the
presence of selfish nodes. Moreover, it is able to reduce single
node clusters and also the maximum cluster size. Besides, it
achieves more uniform clusters with less leader nodes. Finally,
these properties improve the efficiency of the IDS on detecting
intrusions since the sampling budget is distributed over less
number of nodes compared to the other model.

VIII. RELATED WORK

This section reviews related work on intrusion detection in
MANET, the application of mechanism design to networks
and application of leader election scheme to routing and key
distribution.

A. Intrusion Detection Systems in MANET

The difference between wired infrastructure networks and
mobile ad hoc networks raises the need for new IDS models
that can handle new security challenges [23]. Due to the
security needs in MANET, a cooperative intrusion detection
model has been proposed in [35], where every node partic-
ipates in running its IDS in order to collect and identify
possible intrusions. If an anomaly is detected with a weak

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

13

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

20 Nodes

Time(sec)

A
liv

e
no

de
s

(%
)

CILE
Connectivity Model

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

30 Nodes

Time(sec)

A
liv

e
no

de
s

(%
)

CILE
Connectivity Model

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

40 Nodes

Time(sec)

A
liv

e
no

de
s

(%
)

CILE
Connectivity Model

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

50 Nodes

Time(sec)

A
liv

e
no

de
s

(%
)

CILE
Connectivity Model

Fig. 8. Percentage of Alive Nodes

20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Number of Nodes

Le
ad

er
 N

od
e

(%
)

CILE
Connectivity Model

20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Number of Nodes

A
ve

ra
ge

 C
lu

st
er

 S
iz

e

CILE
Connectivity Model

Fig. 9. (a) Percentage of Leader Node (b) Average Cluster Size

20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Number of Nodes

M
ax

im
um

 C
lu

st
er

 S
iz

e CILE
Connectivity Model

20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Number of Nodes

S
in

gl
e

N
od

e
C

lu
st

er
s

CILE
Connectivity Model

Fig. 10. (a) Size of Maximum Cluster (b) Number of Single Node Clusters

evidence, then a global detection process is initiated for further
investigation about the intrusion through a secure channel.
An extension of this model was proposed in [16], where a
set of intrusions can be identified with their corresponding
sources. Moreover, the authors address the problem of run-
time resource constraints through modeling a repeatable and
random leader election framework. An elected leader is re-
sponsible for detecting intrusions for a predefined period of
time. Unlike our work, the random election scheme does not
consider the remaining resources of nodes or the presence
of selfish nodes. In [19], a modular IDS system based on
mobile agents is proposed and the authors point out the
impact of limited computational and battery power on the
network monitoring tasks. Again, the solution ignores both the
difference in remaining resources and the selfishness issue.
To motivate the selfish nodes in routing, CONFIDANT [8]
proposes a reputation system where each node keeps track of
the misbehaving nodes. The reputation system is built on the
negative evaluations rather than positive impression. Whenever
a specific threshold is exceeded, an appropriate action is taken

against the node. Therefore, nodes are motivated to participate
by punishing the misbehaving ones through giving a negative
reputation. As a consequence of such a design, a malicious
node can broadcast a negative impression about a node in order
to be punished. On the other hand, CORE [22] is proposed as a
cooperative enforcement mechanism based on monitoring and
reputation systems. The goal of this model is to detect selfish
nodes and enforce them to cooperate. Each node keeps track
of other nodes cooperation using reputation as a metric. CORE
ensures that misbehaving nodes are punished by gradually
excluding them from communication services. In this model,
the reputation is calculated based on data monitored by local
nodes and information provided by other nodes involved
in each operation. In contrast to such passive approaches,
our solution proactively encourage nodes to behave honestly
through computing reputations based on mechanism design.
Moreover, it is able to punish misbehaving leaders through
a cooperative punishment system based on cooperative game
theory [29]. In addition to this, a non-cooperative game is
designed to help the leader IDS to increase the probability of
detection by distributing the node’s sampling over the most
critical links.

B. Application of Mechanism Design

As a sub-field of microeconomics and game theory, mecha-
nism design has received extensive studies in microeconomics
for modeling economical activities, such as auctions [21].
Nisan and Ronen applies mechanism design for solving the
least-cost path and task scheduling problem [27]. Distributed
mechanism design based on VCG is first introduced in a direct
extension of Border Gateway Protocol (BGP) for computing
the lowest-cost routes [11]. Moreover, in [12] the authors out-
lined the basics of distributed mechanism design and reviewed
the results done on multi-cast cost sharing and inter-domain
routing. Mechanism design has been used for routing purposes
in MANETs, such as a truthful adhoc-VCG mechanism for
finding the most cost-efficient route in the presence of selfish
nodes [2]. In [9], the authors provide an incentive compati-
ble auction scheme to enable packet forwarding services in
MANETs using VCG; a continuous auction process is used
to determine the distribution of bandwidth and incentives
are given as monetary rewards. To our best knowledge, this
work is among the first efforts in applying mechanism design
theory to address the security issues in MANETs, in particular,
the leader-election for intrusion detection. This paper is the
extension of [24] where we presented the leader election mech-
anism in a static environment without addressing different
performance overhead.

C. Leader Election applications

Distributed algorithms for clustering and leader election
have been addressed in different research work [20], [4], [33],
[32]. These algorithms can be classified into two categories
[32]: Cluster-first or leader-first. In the cluster-first approach
[20], a cluster is formed and then the nodes belonging to
that cluster elect a leader node. In the leader-first approach
[4], a set of leader nodes is elected first then the other nodes
are assigned to different leader nodes. Some of the methods

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

14

assume there exist a weight associated with each node [5]
or there exist a trusted authority [33] to certify each node’s
metric (weight) which is used to elect a leader. We consider
these assumptions as quite strong for MANET. Our model is
able to run in a clustered and non-clustered networks where
we are able to perform better results with respect to different
performance metrics.

IX. CONCLUSION AND FUTURE WORK

The unbalanced resource consumption of IDSs in MANET
and the presence of selfish nodes have motivated us to propose
an integrated solution for prolonging the lifetime of mobile
nodes and for preventing the emergence of selfish nodes. The
solution motivated nodes to truthfully elect the most cost-
efficient nodes that handle the detection duty on behalf of
others. Moreover, the sum of the elected leaders is globally
optimal. To achieve this goal, incentives are given in the
form of reputations to motivate nodes in revealing truthfully
their costs of analysis. Reputations are computed using the
well known VCG mechanism by which truth-telling is the
dominant strategy. We also analyzed the performance of the
mechanisms in the presence of selfish and malicious nodes. To
implement our mechanism, we devised an election algorithm
with reasonable performance overheads. We also provided
the algorithmic correctness and security properties of our
algorithm. We addressed these issues into two applications:
CILE and CDLE. The former does not require any pre-
clustering whereas CDLE requires nodes to be clustered before
running the election mechanism. Simulation results showed
that our model is able to prolong the lifetime and balance
the overall resource consumptions among all the nodes in the
network. Moreover, we are able to decrease the percentage
of leaders, single node clusters, maximum cluster size and
increase average cluster size. These properties allow us to im-
prove the detection service through distributing the sampling
budget over less number of nodes and reduce single nodes to
launch their IDS.

REFERENCES

[1] T. Anantvalee and J. Wu. A survey on intrusion detection in mobile ad
hoc networks. Wireless/Mobile Network Security, 2006.

[2] L. Anderegg and S. Eidenbenz. Ad hoc-VCG: A truthful and cost-
efficient routing protocol for mobile ad hoc networks with selfish agents.
In proc. of the ACM International Conference on Mobile Computing and
Networking (MobiCom), 2003.

[3] F. Anjum and P. Mouchtaris. Security for Wireless Ad Hoc Networks.
John Wiley & Sons. Inc., USA, 2007.

[4] S. Basagni. Distributed and mobility-adaptive clustering for multimedia
support in multi-hop wireless networks. In proc. of the IEEE Interna-
tional Vehicular Technology Conference (VTC), 1999.

[5] S. Basagni. Distributed clustering for ad hoc networks. In proc. of the
IEEE International Symposium on Parallel Architectures, Algorithms,
and Networks (ISPAN), 1999.

[6] M. Bechler, H. Hof, D. Kraft, F. Pahlke, and L. Wolf. A cluster-
based security architecture for ad hoc networks. In proc. of the IEEE
INFOCOM, 2004.

[7] P. Brutch and C. Ko. Challenges in intrusion detection for wireless ad-
hoc networks. In proc. of the IEEE Symposium on Applications and the
Internet (SAINT) Workshop, 2003.

[8] S. Buchegger and J. L. Boudec. Performance analysis of the
CONFIDANT protocol (cooperation of nodes - fairness in dynamic ad-
hoc networks). In proc. of the ACM MOBIHOC, 2002.

[9] K. Chen and K. Nahrstedt. iPass: An incentive compatible auction
scheme to enable packet forwarding service in MANET. In proc. of
the International Conference on Distributed Computing Systems, 2004.

[10] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose,
D. Towsley, S. Vasudevan, and C. Zhang. Secure group communications
for wireless networks. In proc. of the IEEE Military Communications
Conference (MILCOM), 2001.

[11] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP based
mechanism for lowest-cost routing. In proc. of the ACM symposium on
Principles of distributed computing (PODC), 2002.

[12] J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism
design: Recent results and future directions. In proc. of the AMM
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), 2002.

[13] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing
elliptic curve cryptography and RSA on 8-bit CPUs. In proc. of the
Cryptographic Hardware and Embedded Systems (CHES), 2004.

[14] S. Gwalani, K. Srinivasan, G. Vigna, E. M. Beding-Royer, and R. Kem-
merer. An intrusion detection tool for AODV-based ad hoc wireless
networks. In proc. of the IEEE Computer Security Applications Confer-
ence (CSAC), 2004.

[15] Y. Hu, A. Perrig, and D. B. Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. In proc. of the ACM International
Conference on Mobile Computing and Networking (MOBICOM), 2002.

[16] Y. Huang and W. Lee. A cooperative intrusion detection system for ad
hoc networks. In proc. of the ACM Workshop on Security of Ad Hoc
and Sensor Networks, 2003.

[17] L. Hurwicz and S. Reiter. Designing Economic Mechanisms. Cambridge
University Press, 1st edition, 2008.

[18] J.Green and J.Laffont. Incentives in Public Decision-Making. Springer
Netherlands, USA, 1996.

[19] O. Kachirski and R. Guha. Efficient intrusion detection using multiple
sensors in wireless ad hoc networks. In proc. of the IEEE Hawaii
International Conference on System Sciences (HICSS), 2003.

[20] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-
based approach for routing in dynamic networks. In proc. of the ACM
SIGCOMM Computer Communication Review, 1997.

[21] A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory.
Oxford University Press, New York, 1995.

[22] P. Michiardi and R. Molva. Analysis of coalition formaton and
cooperation strategies in mobile adhoc networks. Journal of Ad hoc
Networks, 3(2):193 – 219, 2005.

[23] A. Mishra, K. Nadkarni, and A. Patcha. Intrusion detection in wireless
ad hoc networks. IEEE Wireless Communications, 11(1):48 – 60, 2004.

[24] N. Mohammed, H. Otrok, L. Wang, M. Debbabi, and P. Bhattacharya.
A mechanism design-based multi-leader election scheme for intrusion
detection in manet. In proc. of the IEEE Wireless Communications &
Networking Conference (WCNC), 2008.

[25] P. Morris. Introduction to Game Theory. Springer, 1st edition, 1994.
[26] P. Ning and K. Sun. How to misuse AODV: A case study of insider

attacks against mobile ad-hoc routing protocols. In proc. of the IEEE
Information Assurance Workshop, 2003.

[27] N. Nisan and A. Ronen. Algorithmic mechanism design. In Games and
Economic Behavior, pages 129–140, 1999.

[28] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 1st edition, 2007.

[29] H. Otrok, N. Mohammed, L. Wang, M. Debbabi, and P. Bhattacharya.
A game-theoretic intrusion detection model for mobile ad-hoc networks.
Journal of Computer Communications, 31(4):708 – 721, 2008.

[30] A. Perrig, R. Canetti, D. Tygar, and D. Song. The TESLA broadcast
authentication protocol. RSA Cryptobytes, 5(2):2 – 13, 2002.

[31] J. Shneidman and D. Parkes. Specification faithfulness in networks
with rational nodes. In proc. of the ACM Symposium on Principles
of Distributed Computing, 2004.

[32] K. Sun, P. Peng, P. Ning, and C. Wang. Secure distributed cluster
formation in wireless sensor networks. In proc. of the IEEE Computer
Security Applications Conference (ACSAC), 2006.

[33] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley.
Leader election algorithms for wireless ad hoc networks. In proc. of
the IEEE DARPA Information Survivability Conference and Exposition
(DISCEX III), 2003.

[34] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a
leader election algorithm for mobile ad hoc networks. In proc. of the
IEEE International Conference on Network Protocols (ICNP), 2004.

[35] Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc networks.
In proc. of the ACM International Conference on Mobile Computing and
Networking (MobiCom), 2000.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

15

Noman Mohammed received the M.A.Sc. degree
in Information Systems Security from Concordia
University, Canada in 2008 and the B.S. degree
in Computer Science from North South University,
Bangladesh in 2005. He is currently pursuing his
Ph.D. in Computer Science at Concordia University
with the Alexander Graham Bell Canada Graduate
Scholarship from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). His
research interests include data privacy, economics of
network security and secure distributed computing.

Hadi Otrok holds a Ph.D. in Electrical and Com-
puter Engineering (ECE) from Concordia University,
Montreal, Canada. During his Ph.D., he worked on
network security, more specifically, on intrusion de-
tection systems in Mobile Ad hoc Networks. He used
game theory and mechanism design to formulate and
solve intrusion detection problems. He received his
Masters degree from Lebanese American University
(LAU) where he worked on security testing and
evaluation of cryptographic algorithms. Currently, he
holds a Post-Doctoral position at Ecole de Technolo-

gie Superieure (University of Quebec). He is working on secure resource
allocation for virtual private networks. His research interests are mainly
on network security, application security, and middleware security. He is
serving as technical program committee member for different international
conferences and reviewer for prestigious international journals.

Lingyu Wang is an Assistant Professor of the
Concordia Institute for Information Systems Engi-
neering (CIISE) at Concordia University, Canada.
He received his Ph.D. degree in Information Tech-
nology from George Mason University, USA. His
current research interests include database security,
data privacy, vulnerability analysis, intrusion detec-
tion, and security metrics. His research has been
supported in part by the Discovery Grants from the
Natural Sciences and Engineering Research Council
of Canada (NSERC) and by Fonds de recherche sur

la nature et les technologies (FQRNT).

Mourad Debbabi received the Ph.D. and M.Sc.
degrees in computer science from Paris-XI Orsay,
University, France. He is currently a Full Profes-
sor and the Director of the Concordia Institute for
Information Systems Engineering, Concordia Uni-
versity, Montreal, Quebec, Canada. He holds the
Concordia Research Chair Tier I in Information
Systems Security. He is also the Vice-President
of the National Cyber Forensics Training Alliance
(NCFTA Canada). He is the founder and one of the
leaders of the Computer Security Laboratory (CSL)

at Concordia University. He is the Specification Lead of four Standard JAIN
(Java Intelligent Networks) Java Specification Requests (JSRs) dedicated to
the elaboration of standard specifications for presence and instant messaging.
In the past, he served as Senior Scientist at the Panasonic Information and
Network Technologies Laboratory, Princeton, New Jersey, USA; Associate
Professor at the Computer Science Department of Laval University, Quebec,
Canada; Senior Scientist at General Electric Research Center, New York,
USA; Research Associate at the Computer Science Department of Stanford
University, California, USA; and Permanent Researcher at the Bull Corporate
Research Center, Paris, France. He published more than 150 research papers
in journals and conferences on computer security, formal semantics, Java
security and acceleration, cryptographic protocols, malicious code detection,
programming languages, type theory and specification and verification of
safety-critical systems. He supervised to successful completion more than 50
graduate students at M.Sc. and Ph.D. levels.

Prabir Bhattacharya (SM’92, F’02) received the
D.Phil. degree in 1979 from the University of Ox-
ford, U.K and did his undergraduate studies at the
University of Delhi, India. He is currently a Full
Professor at the Concordia Institute for Information
Systems Engineering, Concordia University, Mon-
treal, Quebec, Canada where he holds a Canada
Research Chair, Tier 1. During 1986-99, he served at
the Department of Computer Science and Engineer-
ing, University of Nebraska, Lincoln, USA where he
was a Full Professor from 1994. During 1999-2004,

he worked at the Panasonic Information Technologies Laboratory in Princeton,
NJ, USA as a Principal Scientist and a Project Leader. He is a Fellow of the
IEEE, the International Association for Pattern Recognition and the Institute
for Mathematics and Its Applications, UK. During 2006-07 he served as the
Associate Editor-in-Chief of the IEEE Transactions on Systems, Man and
Cybernetics, Part B (Cybernetics). He is currently an Associate Editor of six
journals including the IEEE Transactions on SMC-B. He was a Distinguished
Visitor of the IEEE Computer Society during 1996-1999. In 2008 he received
an Outstanding Service award from the IEEE Systems, Man and Cybernetics
Society. He has authored or co-authored about 236 publications including 100
journal papers, and co-authored three books; also he holds four US Patents.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on September 25, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

