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Abstract: We describe a new estimator of population size that can be formed when independent 

sightings are made of marked and unmarked animals in a closed population where a subset of the 

population is individually marked.  Each marked animal must bear a unique mark but the number 

of marked animals alive in the population is unknown.  The estimate can be used when no 

recaptures or removals of animals are possible during the experiment.  An example is estimating 

the number of immature bald eagles (Haliaeetus  leucocephalus) on a lake some years after 

banding of nestlings.  We derive the maximum likelihood estimates for population size and 

number of marks, and we show how to develop confidence intervals and perform goodness-of-fit 

tests.  Criteria are developed for determining the number of sightings required to yield 

satisfactory estimates. 
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We derived a new estimator of population size that makes use of data from animal marking 

and sighting experiments.  The estimator applies to experiments in which an unknown number of 

uniquely marked animals exists in the population at the time when the population is surveyed.  

The population is surveyed multiple times and is assumed to be closed throughout the time of the 

surveys;  that is, it is not subject to any significant additions or losses during this period.    

During the surveys, sightings are made by spotting or locating animals and recording whether the 

animal is marked or unmarked and, if marked,  its identity.    Animals are neither captured nor 

removed during the surveys, so no marking of unmarked animals takes place at this time.  

Sightings can be made with no physical handling of the animal.  The essential feature of a 

sighting is that the marked status and identity of the animal can be determined but, unlike when 

sampling or capturing animals, the marked status cannot change, and the animal cannot be 

removed.  At the end of the survey period, the experimenter knows how many different marked 

animals were sighted and how often each was sighted.  The experimenter also knows the total 

number of unmarked sightings but not how many different animals this represents nor how many 

marked or unmarked animals were never seen.  There are 2 unknown quantities to be estimated:  

N, the total population size at the time of the surveys and M, the number of marked animals in 

the population.  That M is unknown is what makes this estimator distinct from any existing 

estimator of closed population size. 

The experiment permits considerable flexibility in how the M marked animals were 

established in the population prior to the survey.  Animals may have been captured, marked, and 

released at a single point in time prior to the survey or over an extended period of time;  the 

marked subset can be formed by the addition of new, marked animals, prior to the survey.   

Marked animals could then be lost through emigration, death, or tag loss prior to the onset of the 

survey period.  Any type of marking method that permits unique identification of the animal at 

sighting, including radio telemetry or self-markings where animals are identifiable from 

individual physical characteristics, may be used .  An important assumption of our method is that 
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marks are read accurately and that marked and unmarked animals are equally likely  to  be 

sighted, so the choice of mark and marking method must be made carefully. 

A boat survey of bald eagles on Besnard Lake, Saskatchewan, carried out over several years 

to monitor both adult and immature numbers of eagles (Gerrard et al. 1990) motivated the 

development of our estimator.  In 1973-75, 56 nestling eagles were color-marked with patagial 

tags.  During 16-30 July 1977, sightings of immature eagles were made daily on an opportunistic 

basis while the experimenters were conducting a nest survey.  On most days, only a few (1-3) 

immature eagles were sighted per day.  On 2 occasions however, 24-27 July and 25-29 July, a 

more systematic and intense census of the entire lake was made.  A census involved an 

examination of every second 8-km section (out of 50 sections on the lake in total) of shoreline by 

observers traveling in a boat at 8-16 km/hr, approximately 100 m from the shoreline. The 2 

censuses produced 36 and 23 sightings, respectively.  Surveys were done when weather was calm 

and visibility was good. Each day, the observers recorded the number of unmarked birds and the 

identities of all marked birds seen.    Throughout this period, immatures frequently occurred in 

groups, and the numbers per sector were clumped.  However, immature birds did not tend to be 

seen repeatedly in the same sections, but were highly mobile and moved around the lake rather 

than occupying particular areas or territories.  Although there are neighboring lakes also 

populated with eagles, the birds on Besnard Lake probably spent little, if any, time off the lake 

during the survey period.  The census data provides a direct estimate of population size (Gerrard 

et al. 1990) which is a helpful check on the estimate we developed. 

Related Methods:−−Experiments that involve marking and sightings have been called tag-

resighting (Brownie and Robson  1983),  mark-resight (Brownie 1987),  or capture-resight  

(Minta and Mangel 1989) experiments.  These terms most appropriately apply to the 

generalization of the Jolly-Seber (Seber 1982:196-217) open-population mark-recapture 

experiment in which some samples or intersample periods involve sightings only of marked 

animals;  unmarked sightings are either unrecorded or ignored.  All other sample times involve 

capture of animals, recording of marked and unmarked,  and the application of marks to the 
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unmarked animals before all, with the exception of losses-on-capture, are returned to the 

population.  This process, whereby all unmarked animals in a sample are removed by loss-on-

capture or are marked before being released, is called continuous marking by Minta and Mangel 

(1989).   If continuous marking takes place, all sightings are re-sightings.  The experiment 

described by Minta and Mangel (1989) does not involve continuous marking; it is identical to the 

one that we propose with the crucial distinction that they assume that M is known.  In both cases, 

the unmarked sightings may involve animals sighted for the first time so we suggest the term 

marking and sighting experiments.  

The mark-recapture alternatives to marking and sighting experiments for closed populations 

are the Petersen method and its extension to multiple samples with continuous marking, i.e., the 

Schnabel method (Otis et al. 1978).  The Petersen estimate, in its simplest form, applies to a 2-

sample experiment where M animals out of N are marked in a first sample and, in a second 

sample of n distinct animals,  m are found to be marked.   The single unknown, N, can then be 

estimated from the Petersen ratio equation:      
N
M = 

n
m  (1) 

The Petersen equation also applies to the marking and sighting experiments of Minta and 

Mangel (1989) where M is known.  In this case, the second "sample" is the aggregate of all 

surveys, and m is the total number of sightings of marked animals out of n sightings.  We show 

(Appendix) that, provided the assumptions of the Petersen method are met, the information on 

the number of distinctly marked animals seen and on the frequency of sightings of the marked 

animals,  can be ignored for purposes of estimating N, but is still useful for testing assumptions.  

The crucial assumption for an unbiased simple Petersen estimate is that inclusion of an animal in 

the second sample is independent of its inclusion in the first (Seber 1970).  Minta and Mangel 

(1989) give a good discussion of what this assumption implies for conducting sighting 

experiments.  To form a standard error or confidence interval for N, all animals in the second 

sample are assumed to be independently and equally catchable.  In extending the Petersen 

estimate to marking and sighting experiments, these assumptions must apply at every sighting 

survey. 
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Minta and Mangel (1989) make a detailed argument as to when and why marking and 

sighting experiments are to be preferred over 2-sample Petersen and multi-sample, continuous-

marking experiments.  They argue that sightings are cheaper and easier than recaptures; that the 

assumption of independence between capture probability of the initial marking and subsequent 

resighting,  although still critical,  is more likely to be satisfied;  that sightings permit estimation 

from continuous surveys involving different  degrees of effort without artificially grouping them 

into sample times.  Minta and Mangel (1989) then develop a Monte Carlo method that permits 

them to relax the assumption of equal catchability  (but not the independence assumptions) for 

purposes of estimating the confidence interval for N.  When surveys are regular, involve equal 

sighting effort, and yield reasonable numbers of sightings per survey, the Petersen ratio can be 

applied to each survey and the estimates combined to form a single estimate of N  (Bartmann et 

al. 1987).   These appear to be the only methods for use with sighting data from closed 

populations, and both were designed for use with radio telemetry where it is reasonable to 

assume and possible to confirm that M, the number of transmitter-equipped animals,  is known. 

Several studies from the literature on mark-recapture are relevant to our study.  Otis et al. 

(1978) gave a thorough treatment of continuous-marking methods for closed populations, 

including the Schnabel model and extensions that relax its assumptions of equal and independent 

catchability.  Darroch and Ratcliff (1980) and Sprott (1981) have studied the Schnabel estimate 

with continuous sampling; that is, where every capture is considered a sample of size 1.  This is 

the continuous-marking analog of our sighting experiment.  Chao (1988, 1989) has extended the 

work of Otis et al (1978) on methods that are robust to unequal catchability.   

The problem of estimating population size from sighting data is statistically similar to 

problems in estimating the number of different classes in a population.  These problems arise 

when trying to estimate the number of species in a community, or the number of genes on a 

chromosome.  In our case, the number of classes is the number of uniquely marked animals.  

Lewontin and Prout (1956) discussed the case where classes are equi-probable.   The work of 

Lewontin and Prout (1956) applies to situations in which N = M because all animals are uniquely 
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identifiable, so there are no unmarked sightings.  Our problem is to extend the result of Lewontin 

and Prout (1956) to account for the n - m unmarked sightings which then permits estimation of N 

and M. 

This work was supported by Natural Sciences and Engineering Research Council of Canada 

operating grants to A.N.A. and C.J.S. and by financial support to J.M.G. from the World Wildlife 

Fund (Canada), the National Wildlife Federation, and the Eagle Foundation.  We thank the 

reviewers for suggestions on improving the clarity of the presentation. 

THE ESTIMATOR AND ITS PROPERTIES 

Definitions.−−The following summarizes the notation and assumptions for the method.  

Later, we will discuss the extent to which the assumptions can be relaxed. 

 1. The population is made up of a fixed but unknown number (N) of animals, and the 

population is closed to changes in size (through immigration, emigration, recruitment, and 

mortality).  The population contains a fixed but unknown number (M) of marked animals, 

each of which is uniquely identifiable, without error, if it is sighted. 

2. A survey is carried out in which a total of n independent sightings of animals occur.  We 

assume that, at each sighting, every animal has an equal probability of being sighted and that 

each sighting is independent.  

3. The data obtained from the surveys is the total number of sightings of unmarked animals, 

and the frequency of sightings of the marked animals.   

We will use the following notation:  

fi = number of marked animals seen i times, where i = 1, 2, ...; note that no fi nor i itself can 

exceed n and that f0, the number of marked animals that are never sighted, is unknown.  
m′ = total number of different marked animals seen,  so m′ = ∑

>0i
if = M - f0 . 

m = total number of sightings of marked animals, so m = ∑
>0i

iif . 

There will also be multiple sightings of animals among the n - m unmarked sightings, and 

presumably these will occur with similar frequencies as among the marked animals, but these 
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frequencies are unknown.   Although estimates of N are of primary interest in the case of our 

eagle data, there may be situations when estimates of M are of equal interest  because they permit 

estimation of a survival rate.  If all the marks were released t time units prior to the onset of the 

surveys and the durations of the marking period and of the survey period are short relative to the 

elapsed time t, then a survival rate could be estimated.  If the number of marked releases M0  is 

known, then the survival rate per t time units is φ = M / M0 .  We will show how to estimate both 

M and N and their confidence intervals. 

Statistical Methods. −− Estimates are obtained by the method of maximum likelihood:  that is 

we write down the probability of what was seen (n - m and the fi) as a function of the sample size 

(n) and the unknown parameters (N, M).  The maximum likelihood estimates,  N�  and M� , are 

the values that make this likelihood function, denoted as L(N, M), as large as possible.  Further 

discussion of maximum likelihood, as applied to mark-recapture models, can be found in 

Appendix A of Otis et al. (1978).   

There are several practical problems that arise in the use and interpretation of the estimates:  

when are the data useable to form estimates, how to find the maximum likelihood estimates,  

how to deal with the constraint that arises from knowing that M must be at least as large as the 

number of different marked animals sighted (m′ ),  how to form confidence intervals so that they 

give proper coverage of the true values,  when do the estimates give adequate precision,  and how 

to form tests of the assumptions of the model.  Many of these problems are most easily 

investigated by using  a computer to simulate the sighting experiment in a population of N 

animals with M of them marked.  We randomly selected n animals out of N with replacement in 

such a way that the assumptions of independence and equal sightability were satisfied.  The 

computer program kept track of which animals were marked,  their sighting frequencies (fi ), and 

the number of unmarked sightings,  and used them to form the estimates, standard errors, and 

confidence intervals. The properties of these quantities, for given n, N, and M can then be studied 

by replicating this sampling experiment hundreds of times.   
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Computing Estimates. −− There is no explicit expression for the maximum likelihood 

estimates N� and M� but we show, in the Appendix, that  the unconstrained estimates satisfy  

 
N
M
�
�

= 
n
m ,  (2) 

(the Petersen ratio, except that m and n can both include multiply sighted animals), and 

 
M
m
� = .

)1(�
1...

1�
1

�
1










−′−
+

−
+

mMMM
 (3) 

The individual fi  do not appear in these 2 equations and are not needed to form the maximum 

likelihood estimates. We need only the 2 statistics computed from the fi :  m and m′ .   In 

statistical estimation theory, m and m′  are said to be sufficient for inference about N and M, 

given n.  Equation 3 defines the maximum likelihood estimate for M without reference to N and 

may be solved first by trial and error or computer search.  The solution, however, may violate the 

constraint  M� ≥ m′ .  There may also be a constraint on the highest possible value for  M� if we 

know the total number of marks that were ever released into the population (M0 ).  When the 

maximum likelihood estimate violates either constraint, it is said to be inadmissible.  The usual 

practice in mark-recapture studies is simply to adjust the estimate to the nearest integer within the 

constraint boundaries (Otis et al. 1978,  Appendix A).  However, we used the unadjusted M� to 

compute N� (eq. 2) and the standard errors and confidence intervals because our simulation study 

showed that use of the adjusted  M� introduces substantial bias in N� ,  its standard error,  and the 

confidence interval coverage for N and can cause computation problems such as zero divides and 

negative variances.   After evaluating the estimates associated with N, M� and its confidence 

interval can be adjusted.  Thus, even though M is an integer and must be greater than m′,  

M� should be estimated to  ≥ 2 decimal places and without constraint:  there are 4 possible cases: 

(1) m′ = 0,  m = 0.  No marked animals are sighted.  The experiment is uninformative and no 

estimates can be formed. 

(2) m′ = 1,  m > 1.  A single marked animal is sighted several times.  The likelihood L(N,M) 

is unbounded at  N = 0.  This means that the unconstrained maximum likelihood 

estimates and their standard errors cannot be formed. The adjusted estimate is M� = m′ = 1 
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which, in  equation 2, gives  N� = n/m, but no standard error or confidence interval can be 

formed for this adjusted N� . 

(3) m′ = m,  m ≥ 1.  No marked animal is sighted more than a single time.  This can happen 

only if m ≤ M.  N� is infinite and, as in case (2), no standard error or confidence interval 

can be formed. 

(4) In all cases other than (1)-(3), equation 3 has a unique solution with M� > m′ - 1.    When 

m′ - 1 < M� < m′,   M� is inadmissible,  but the inadmissible value is used to find  N� using 

equation 2  and then the standard errors and confidence intervals before adjusting  N� and 

M� to  m′  and n m′ / m, respectively.  

The variance-covariance matrix for  N� and M� is formed from the inverse of the actual 

information matrix (Appendix) and gives the following standard error formulae: 

    )(NS ��  =  [(A + B) / D]1/2  ,  

and    )(MS ��  =  [(A - C) / D]1/2  , 

where  D   =  A.B - C(A+B) 

and  A  =  (n-m) / ( N� - M� )2 , 

  B =  ,








−′(−(
1...+

1)−(
1+

) 222 ))1���(
1

mMMM
 

and  C  =  n / N� 2  . 

The covariance between  N� and  M� is  A / D .  Our simulations showed that the usual 

method of constructing a 95% confidence interval for N as  N� ± 1.96 )(NS ��  gives poor coverage; 

that is, intervals formed in this way actually cover the true N in far fewer than 95% of the 

replications. This results from small sample bias, correlation in N� and )(NS �� , and non-normality 

in the distribution of N� .  All are problems that frequently affect mark-recapture estimates 

(Manly 1984) and which can be dealt with by transformation methods (Otis et al. 1978, Sprott 

1981),  by profile relative likelihoods (Morgan and Freeman 1989),  and by data intensive 

techniques such as Monte Carlo (Minta and Mangel 1989), jackknife, and bootstrapping 

methods.  We did not investigate the latter methods because we found the simpler methods 
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worked adequately.  Otis et al. (1978) investigated the effect of a number of transformations on 

confidence interval coverage of N and found none of them worked very well.  However, Sprott 

(1981) showed analytically that the most appropriate transformation for Schnabel-type estimates 

was one which was not investigated by Otis et al. (1978).  Because of the close resemblance of 

our estimator to the one investigated by Sprott, we were not surprised to find that his inverse 

cube root transformation greatly improved confidence interval coverage for N.  The 95%  

confidence interval,  (NL, NU),  will not be symmetric about N� .  It is formed as follows: 

  T� = N� -1/3 

  )(TS �� = T� . )(NS �� / (3 N� ) 

  (TL, TU) = T� ± 1.96 )(TS ��  

  (NL, NU) = (1/T 3
U   ,  1/T 3

L  ) 

The transformation is effective at improving the approximation to normality even for very small 

samples and numbers of marks, and its effectiveness improves rapidly with larger values of M 

(Fig. 1).   

Interval estimates for M can be formed by the method of profile relative likelihoods.  The 

method is outlined in the Appendix and is implemented in our computer program.  The method 

produces a 95% profile confidence interval  (ML, MU) by finding the extreme extents in the M 

direction of the 15% contour of the relative likelihood function  L(N,M)/L( N� , M� ) (Fig. 2).   If 

necessary,  M� , ML, and MU should all be adjusted to admissible values and can then be 

converted to the corresponding values for survival, φ, by dividing through by M0 . We did not 

examine the coverage of the interval because we were not interested in estimating M or the 

survival rate of marked eagles.  However, the method has been found effective in obtaining 

interval estimates for survival parameters in band-recovery models (Morgan and Freeman 1989) 

and generally produces asymmetric intervals that allow for non-normality in the distribution of 

such estimates.  Profile intervals are difficult to compute for N in this model although they can 

easily be determined approximately by visually assessing the extents of the 15% contour in the N 
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direction.  In the few situations where these contours were plotted (Fig. 2), the profile interval 

corresponds almost exactly to the confidence interval formed by the transformation method. 

Survey Design Criteria.−−We used the simulation program to examine the effects of a range 

of small sample situations, i.e., <200 sightings in populations of up to 100 animals and <12 

marked animals.   These ranges centered approximately on those for our eagle population.  The  

summary of the simulation  in Table 1 was designed to quantify the  likelihood of obtaining the 

uninformative estimates described above in cases (1)-(3), or inadmissibly low estimates of M as 

in case (4).  It was also designed to assess the contribution made by bias in N� to poor coverage of 

the confidence interval.  This can be assessed by examining the effective bias (Arnason and Mills 

1981) measured by 100 . (AV[ N� ]- N) / SD[ N� ]  where AV and SD denote the mean and 

standard deviation of  N� over the replications of the experiment .  If the effective bias is less than 

50%, then the contribution of small sample bias to lack of coverage is negligible.  The coverage 

can be measured directly.  It is also affected by non-normality in the (transformed) estimate.  

Reasonable criteria that are likely to yield acceptable estimates are: (1) the "bad" m, m′ values 

described in cases (1)-(3) above occur less than 10% of the time; (2) the effective bias in N� is 

less than 50%, and (3) the estimated coverage does not differ significantly from 90% or greater.  

Acceptable estimates result whenever the expected value of m′, E(m′ ), exceeds 5, and the 

expected value of m,  E(m),  exceeds  2E(m′ )  (Table 1).  For planning purposes, one can 

determine what number of sightings (n) will be needed to produce good estimates given (guessed 

values of) N, M because 

 E(m) = nM/N , 

and E(m′) ≈ M(1 - e-n/N)  . (4) 

Equation 4 is derived from equation (16) of Lewontin and Prout (1956) and the Petersen ratio 

given by our equation 1. 

The simulations can also tell what precision to expect for different expected values of the 

sufficient statistics.  Precision is commonly judged by the coefficient of variation of the estimate 

(Table 1), but this can be misleading if the estimate is non-normally distributed or if the 
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estimated standard error of the estimate is biased.  This latter bias can be judged by comparing 

the standard deviation of the estimate, SD[ N� ], with the average of the standard error,  

AV[ )(NS �� ].  For the acceptable estimates in Table 1, the standard error underestimates the true 

value by 5-20%.   Where bias is this large and non-normality is extreme, a better measure of 

precision is the average quarter width of the confidence interval.  Expressed as a percentage of 

the estimate (Table 1), it can be compared to the percent coefficient of variation.  If the estimate 

is normally distributed, the 2 statistics would be much the same.  The increase in percent 

precision relative to the coefficient of variation reflects the degree of non-normality and its cost 

in precision. 

Testing Assumptions.−−The entire discussion of the estimates to this point assumes that the 

assumptions of the model hold.  It is important to use whatever data or biological knowledge is 

available to test the assumptions.  If animals are sighted independently and with equal 

probability, then the sighting frequencies f0 , f1 , f2 , ... should follow a binomial distribution on 

{0, 1,...n} (or, to a very good approximation, a Poisson distribution) with mean equal to the mean 

sighting frequency.  This is the basis for the test used by Minta and Mangel (1989) and is easily 

applied by them because they know f0 , the number of marked animals that are never sighted, and 

they can estimate the mean of the distribution by the total number of marked sightings divided by 

M, the (known) total number of marked animals.  In our situation, we do not know f0 or the mean 

number of sightings per marked animal, but we do know the conditional mean number of 

sightings given that an animal is seen at least once (m/m′ ).  We, therefore, carry out the test by 

comparing the zero-truncated Poisson distribution with this mean to the f1 , f2 , ....  We show in 

the Appendix how to compute the estimated frequencies,  f� i = m′  P′
i  ,  and carry out the Chi-

square test of goodness-of-fit.  Minta and Mangel (1989) present several examples of the 

application of their test  which show that it is good at detecting differences in sightability among 

the marked animals.  When the test  fails, it usually does so because some animals are sighted far 

more frequently than would be expected under the assumptions of independence and equal 

sightability.  Their test can also detect situations where more marked animals go unsighted than 
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would be expected under the assumptions whereas ours cannot,  but neither test can detect the 

most dangerous assumption failure:  situations where the average sightability of marked and 

unmarked animals is different.  No statistical test will ever detect this situation for we can never 

make comparisons with what is not observable − in this case, the sighting frequencies of the 

unmarked animals.  The experimenter's biological judgement of the animal's behavior in relation 

to the method  of marking and sighting must be used to assess if it is likely that this can occur or 

has occurred.  

APPLICATION TO DATA 

Here we apply the methods of the previous section to 3 data sets (Table 2).  The first is the 

subadult eagle data of 16-31July 1977 reported by Gerrard et al. (1990). A survey of n = 107 

sightings gave sufficient statistics  m = 7 and m′ = 3.  These statistics were also the most frequent 

outcome for m and m′ in the simulation experiment (Fig. 1a) where n = 100, N = 50, and M = 3.  

The second data set is hypothetical with n = 100, m = 21, and m′ = 7.  This was one of the more 

common outcomes of the simulation experiment with  n = 100, N = 50, and M = 12  (Fig. 1c).  

Thus, both the eagle data and the hypothetical data might reasonably have arisen in a population 

of 50 birds, but the hypothetical data shows the effect of having 4 times as many marked birds in 

the population.  The third data set is the badgers (Taxidea taxus) in Wyoming data from Minta 

and Mangel (1989) which we will use to compare with their analysis as an example of the effect 

of assuming M known or unknown.  The data, estimates,  and goodness-of-fit test for these data 

sets are shown in Table 2. 

We plotted  contour plots of the joint relative likelihood,  R(N, M) = L(N, M) / L( N� , M� ), 

and the profile relative likelihood,  RP(M) for the first 2 data sets (Fig. 2).  These plots permit us 

to see just what values of  N� and  M� are supported by the data and, by imposing the constraint 

regions on these plots, how to adjust inadmissible estimates.   

Eagle Data.−−The eagle data gives maximum likelihood estimates for (N, M)  of (39.64, 

2.59) but this lies in an inadmissible  parameter region (Fig. 2a ).  The best point estimate is then 

N� = 45.86 which maximizes R(N, M) along the constraint profile M = m′.  This agrees well with 
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the direct sample estimates of 48 and 54 subadults obtained from the 2 intensive lake censuses (J. 

Gerrard, pers. commun.) and with the average July estimates (Gerrard et al. 1990) of 45.0 

(standard error = 5.2). The 95% confidence interval for N formed from the inverse cube root 

transformation (18.5, 110.7) corresponds almost exactly to the 95% profile confidence interval: 

the bounds of the 0.15 contour in the N-axis direction (Fig. 2a).  The coefficient of variation of 

the estimate is a little under 40%, which is optimistic compared to the 50% precision obtained as 

the quarter width  of the confidence interval relative to the estimate.  The profile relative 

likelihood for M, (Fig. 2b), also has its maximum at an inadmissible M.  The most likely 

admissible M is 3 (= m′) and support for other M values drops off rapidly;  M = 4 is about half as 

likely as M = 3, and the 95% profile confidence interval includes only values from 3 to 6.  If all 

the eagles had been tagged at a single point in time so that a meaningful survival rate could be 

computed from  M� ,  the estimate,  φ� =  M� / M0  would be remarkably precise.  For example if 

M0 = 50 birds had been released a year prior to the surveys, the annual survival rate would be 

estimated at 6% with a 95% confidence interval of 6.0 - 12.1.  The goodness-of-fit test is not 

informative when there are only 2 observed sighting frequency classes.  Overall, our estimates 

give barely acceptable results. They help to confirm estimates obtained from direct survey results 

(Gerrard et al. 1990) but are not precise enough to be very useful on their own.  The lack of a 

goodness-of-fit test means that we must rely entirely on biological experience to be assured that 

the assumptions hold.  As the simulations indicate  (Fig.1a and the lines for  n = 100,  N = 50,  

and M = 3 in Table 1), we could not have expected much better with such a low number of marks 

in the population. 

Hypothetical Data.−−With the higher number of marked animals in the hypothetical data set, 

however, the estimate (Table 2) improves substantially, to the point of being useful on its own.  

The point estimates,  ( N� , M� ) = (45.71, 9.60), are admissible, and the precision for N� is under 

25%.  A much wider range of M values is supported by the profile relative likelihood (Fig. 2d) 

but the coefficient of variation of M� (and hence of any φ  formed from it) is nevertheless smaller 

(15%) than for the eagle data (25%).  The goodness-of-fit test indicates no detectable problems 
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with the independence and equal-catchability assumptions.  This is to be expected because we 

used these mechanisms to generate these simulated data.  

Badger Data.−−The third data set arises from snowtracking of badgers in Wyoming (Minta 

and Mangel 1989).  There were 15 radio-tagged badgers and, over a 2-month period,  107 

sightings were made where a badger snow track could be followed to a terminal hole and the 

marked status and identity of the animal established.  The frequencies with which animals were 

sighted  (Table 2)  add up to 13  (= m′ ), the number of marked animals sighted at least once.  

There were 2 badgers never encountered in the survey (f0 ), and a total of 68 (= m) marked 

sightings.  Minta and Mangel (1989) give a thorough discussion of the survey method and the 

possible sources of heterogeneity and unequal sightability.  They conclude from this, and from 

the failure of their goodness-of-fit test, that  there is some heterogeneity in sightability.  The 

variance in the number of sightings per animal (10.25) is more than double the mean (4.53), 

indicating a clumped distribution.  The Petersen estimate (adjusted for small-sample bias, as 

described by Minta and Mangel, 1989) for N is 23.5 with a 95% confidence interval of 20.2 - 

26.8.  Their Monte Carlo estimate produces the same point estimate because it fixes the mean 

sighting frequency at the observed value, but the clumped distribution produces a different 

confidence interval of 21- 28.   

Minta and Mangel (1989) do not explicitly state that they checked to see if the 2 unsighted 

badgers were present and their radio transmitters were functioning throughout the survey, 

although they do stress that such checks are important in general.  By applying our method to 

these data, we can determine whether the data alone support the presence of all 15 animals.  The 

first thing to note (Table 2) is that, if the 2 unsighted animals are ignored, the goodness-of-fit test 

under the hypothesis of equal,  independent sightability is met.  That is, the failure of the 

goodness-of-fit test in Minta and Mangel (1989) is almost entirely due to an unlikely value for f0 

.  The range of possible values for M is doubly and narrowly constrained; it cannot be <13 or 

>15, but our model supports only 13 and 14 (after adjusting the confidence interval for M given 

in Table 2) with 13 being by far the more likely value.  Thus, the data are perfectly consistent 
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with the hypothesis that there are only 13 (or 14) marked badgers available to be sighted, and 

they behave as if they were independently and equally sightable.  Under these conditions, the 

estimate for N and its confidence interval bounds (Table 2) are all roughly 4 less than those for 

the Petersen estimate.  We stress that these conclusions are derived entirely from the data, 

without taking account of information ancillary to the surveys that might shed light on the true 

value of M. 

It is interesting to compare the results of the badger and eagle analyses.  By coincidence, both 

experiments produced the same number of sightings overall (107).  Our best estimate is that the 

badger population was around half that of the eagles (20 as opposed to 40) but had a much larger 

number of marked animals (13 as opposed to 3) and mean sighting frequency per animal (5.2 as 

opposed to 2.0).  The precision  is better for the badgers (7.5 as opposed to 50 percent), showing  

that even in very small populations it is possible to get good estimates. 

DISCUSSION 

The estimator of population size we propose has certain advantages over other methods of 

estimation based on marked recoveries or resightings.  The main advantage is that it does not 

require the continuous capture or removal of animals, and it exploits the individual identifiability 

of animals as the result of previous marking or banding efforts.  Indeed, the method might apply 

to some species where some of the animals are individually identifiable from natural markings, 

although if all animals are individually identifiable the methods of Darroch and Ratcliff (1980) or 

of Chao (1988) should be applied. Because there are no unmarked sightings in this case, it is 

equivalent to situations where every unmarked animal is marked or removed on capture; in both 

cases, the frequency of sighting of every different animal encountered is known.  Another 

advantage of our method is that, unlike Schnabel-type methods (Otis et al. 1978), there is no need 

for well-defined sample periods which introduce additional nuisance parameters into the models 

(such as pi, the probability an animal is captured in sample i) and additional operational problems 

(number,  spacing, duration, and intensity of each sample).  Further advantages of sighting 

experiments are discussed by Minta and Mangel (1989). 
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The disadvantages of this estimator are that the estimation method is operationally limited, 

and the estimate is sensitive to the assumptions of independent, equiprobable sightings in a 

closed population.  By operationally limited, we mean that the experimenter has little control 

over M and so can increase precision only by increasing  the number of sightings, n;  however, 

because sightings are generally sequential, a larger n takes more time and at some point the 

validity of the closure assumptions would begin to be undermined.  Moreover, because M does 

not increase as n increases, the gain in precision for a given increase in n is probably much less 

than for the Darroch and Ratcliff estimate.  The Monte Carlo technique could take account of 

some degree of unequal catchability, but it would only account for unequal catchability among 

animals sighted at least once and, as with the method of Minta and Mangel (1989),  would in no 

way account for bias arising from non-independence.  Robust techniques like those of Chao 

(1988) might be developed for sighting experiments both with and without knowledge of M, but 

deriving an estimate and exploring its properties against a variety of models of assumption 

failure is a major task.  In our opinion, these problems are best dealt with by careful  survey 

design and execution. 

The assumptions of equal-probability, independent sightings, and population closure are 

never likely to be met in a real population, but these assumptions do not have to hold absolutely.  

What is important is that, over the entire survey experiment, each animal has the same 

probability of being never sighted, sighted once, sighted twice, etc. (that is, all animals' sighting 

frequencies are identically distributed).   This could happen even if animals were temporarily 

immigrating and emigrating or if, on 1 day, the survey was carried out in a restricted area so that 

some animals had no chance of being sighted on that day.  Provided over all  days each animal 

had an equal chance of being sighted, the estimate would not be seriously biased.  Despite this, 

and even though the data over surveys is pooled for purposes of analysis, the assumption of 

independence of sightings over surveys is an important one.  Surmounting this problem is the 

most difficult and important practical task facing biologists who wish to use sighting methods.  

Sightings must be randomized in space and time to minimize the chance of seeing some animals  
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preferentially to others.  The movement rates and behavior of the animals also contribute to this 

randomization.  One might be tempted to build up n in a cost efficient manner by conducting 

multiple surveys covering the same ground (e.g., a first survey going from A to B and a second 

survey on the return from B to A) on the same day.  If sightability is largely determined by the 

location of an animal (e.g., for deer, animals grazing in the open have high sightability; animals 

under cover have low sightability) and there is little mixing of animals among locations between 

surveys, then bias is likely to result.  For some highly mobile animals,  this might not be a 

problem.  Minta and Mangel (1989) give a great deal of helpful advice on this aspect of planning 

surveys along with several further practical examples. 

Variability across animals in catchability or sightability can cause bias in  N� .  Otis et al. 

(1978) distinguish two types.  Behavioral (b-type) heterogeneity, caused by a response to capture, 

can produce underestimates (trap-happiness) or overestimates (trap-shyness).  Intrinsic (h-type) 

heterogeneity, that occurs when each animal's time-constant capture probability varies from 

animal to animal, will produce underestimates of N.  These types also apply to the sighting 

experiment, although marked animals are typically captured only once, when the mark is first 

applied.  Bias in  N� occurs if marked animals always, or even on average, are more sightable 

than unmarked.  This is analogous to trap-happiness and leads to an N� that seriously 

underestimates N.    This could happen for direct reasons (the mark itself makes the animal more 

visible) or indirect reasons (some behavioral or physical property of the animal made it easier to 

catch for marking purposes than other animals and also made it more likely to be sighted than 

other animals).  Overestimates result if marked animals are less likely to be sighted than 

unmarked animals.  Reduced sightability could result from "trap-shyness" if the survey period 

closely followed the marking period,  or from visibility problems with the marks that cause some 

marked animals to be mistaken for unmarked.  Therefore animals must be seen well enough that 

the investigator can reliably determine whether or not a marker was present.  For example, we 

only included an eagle sighting in the total count (n) if we saw the bird well enough that we 
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would have seen a marker if it had been present.  One advantage of using radio telemetry as a 

marking technique is that it reduces the subjectivity of such judgements.    

Intrinsic (h-type) heterogeneity  does not always produce underestimation as it does in the 

continuous-marking experiments of Otis et al. (1978).  Unequal sightability that affects marked 

and unmarked animals equally will not  bias N� .  Otherwise, the bias will be equivalent to that 

caused by trap-happiness or trap-shyness, according as the average sightability of the marked 

animals is greater than,  or less than, that of the unmarked animals.   

Another source of bias is non-independence of sightings.  Non-independence, in the form of 

sightings of flocks or other groupings does not introduce bias unless group size or some other 

group attribute affects sightability.    Non-independence that results from inadequate 

randomization between surveys, even if it causes no bias in  N� because it does not  affect the 

differential sightability of marked and unmarked animals,  will bias the standard error and 

confidence interval, generally making the estimator appear more precise than it really is.  

Consider the extreme example where every sighting is immediately repeated giving identical 

results.  Here all the statistics are double what they should be, leading to higher precision than is 

warranted. 

The estimator we developed works reasonably well in small populations with small marked 

fractions provided the number or marks (M) is >5 and the number of sightings, n, is  >N (Table 

1).  For acceptable precision, n should be at least double N (Table 1).  We did not investigate the 

properties of the estimate for larger values of n, N, and M but our computer program (written in 

FORTRAN with IMSL calls) is available from the senior author and can be used to investigate 

additional properties of the estimator.  
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APPENDIX 

Derivation of the Likelihood and its Properties 

The likelihood function, L(N,M) is the expression for the sampling probability of the {fi } 

given n in terms of the unknown parameters N and M.  This can be expressed as the product of 

the probability of obtaining m marked sightings out of n and the conditional probability of the {fi 

} given m; this second probability depends on M alone: 

 L(N, M)  = P{m | n; N, M} .  P{f1, f2, ... | m; M} 

   = P1 (N, M) . P2 (M) . 

Because the probability of sighting a marked animal is M/N at each sighting, the probability 

of having m marked sightings among the n sightings (given our assumption that animals are 

sighted independently and with equal and constant probability)  is given by the binomial 

distribution: 

 P1(N, M) = 














N
M

m
n m

 





 −

N
M1

n-m 
 .
 

The second term P2(M) is an instance of a class of complicated probability problems called 

occupancy problems.  Fortunately, P2(M) is the likelihood developed by Lewontin and Prout 

(1956) (their eq 5; for comparison note that their symbols n, k, N, and m stand for what we define 

as M, m′, m, and f0 , respectively).  Grouping all terms not involving M into a coefficient K 

gives: 

 P2(M) = K . M ! / [Mm . (M - m′) !] . 

From the form of L(N, M) we can see that all the information on N is contained in the first 

term, P1, and that the individual fi are not needed to form the likelihood but only the 2 statistics 

m and m′ based on them; that is, m and m′ are sufficient for inference about N and M, given n.  

We can also see that if M is known, then the likelihood of N given n and M is just P1 and that m 

is sufficient for N.  In this case, the maximum likelihood estimate for N is defined by the 

Petersen ratio (our eq 1 with N replaced by N� ).   
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Equations 2 and 3, which define the unconstrained maximum likelihood estimates for N and 

M, were derived by equating to zero the partial derivatives of l (N, M) = log L(N,M) with respect 

to N and M.  Lewontin and Prout (1956) give a justification for this procedure (our eq 3 also 

defines the maximum likelihood estimate for M in Lewontin and Prout (1956), their eq 6) despite 

the fact that M is an integer.   The variance-covariance matrix for the unconstrained estimates 

was derived as the inverse of the actual information matrix: the matrix of negative second partial 

derivatives of l, evaluated at (N, M) = ( N� , M� ) and the observed (actual) values of the data (n, 

m, m′ ).  Likelihood theory provides no guidance on how the variance- covariance matrix of the 

constrained estimates might be estimated.  Because the main reason for obtaining the variance 

estimates is to form a confidence interval, we circumvent the problem by using profile relative 

likelihoods which do not need a standard error for their construction and are easily adjusted to 

satisfy the constraints after they are constructed. The profile relative likelihood function for M is: 

 RP(M) = L 





 M

m
Mn , / L ( N� , M� ) . 

That is, the likelihood function is made a function of M alone by using equation 1 and then scaled 

to take a maximum of 1 at  N� , M� .   The 95% profile confidence interval,  (ML, MU),  is the 

range of M such that RP(M) > 0.15  (0.15 = antiloge{-χ2/2} where χ2 is the 95th percentile of a 

Chi-square variable with  1 df) and must be found by iterative search for the 2 roots of the 

equation RP(M) = 0.15.  This substitution and univariate search method works for M because the 

contour extremes in the M direction for any given contour lie on the straight line defined by 

equation 1 (Fig. 2a and c).   This equation defines the N-isocline of R; that is, the set of (N, M) 

points where the partial derivative of R(N,M) with respect to N is zero for fixed M.  The profile 

relative likelihood, RP(M),  is just the height of the R(N,M) function along this isocline plotted 

against M.  A similar substitution and search method works to find the profile confidence interval 

for N.  The M-isocline equation, however, is nonlinear in M and has no explicit solution for M in 

terms of N, so the substitution also involves an iterative search.  Computing a confidence interval 

for N with the transformation method described in this paper is simple and, because there is no 
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direct constraint on N,  the simple method works well and probably gives results that are close to 

the profile confidence interval. 

Derivation of the Goodness-of-Fit Test 

A goodness-of-fit test for the model should be based on the distribution of the sighting 

frequencies f1, f2 ... conditional on the sufficient statistics m, m′.  For methods of test 

construction see Schwarz et al. (1988).  An exact test would be difficult to construct and apply 

but a test that uses the same data and is conditioned in the same way can be constructed using the 

zero-truncated Poisson distribution (Johnson and Kotz 1969: 104-106).  The test is probably 

asymptotically equivalent to the exact test. It is constructed as follows: 

(1)  The mean observed sighting frequency, given an animal is sighted, is m/m′ and the mean of a 

zero-truncated Poisson distribution is µ/(1-e-µ), where µ is the (unknown) unconditional 

mean sighting rate per individual (µ = n/N).  The maximum likelihood estimate for µ 

satisfies: 

   µ̂  / (1-e-µ̂ ) = m/m′  

and can be found by trial and error search (µ̂  will be less than m/m′).   

(2)  Next, form the conditional Poisson probabilities: 

  P′
i  =  P� i / (1 - P� o) i = 1, 2, ... 

where  P� i = µ̂ i e-µ̂  / i ! i = 0,1, ... 

and then form the expected frequencies: 

  f� i = m′
   P

′
i  i = 1,2, ... 

Each f� i is the correctly conditioned expected sighting frequency because  ∑ f� i = ∑ fi = m′ 

and       ∑ i f� i = ∑ ifi = m. 

(3)  Finally, grouping classes as necessary, form the usual G or χ2 statistic for testing the fit of 

the distribution (Sokal and Rohlf 1981:714-715).  The statistic is judged against the χ2 

distribution with a - 2 degrees of freedom where a is the number of classes after grouping.  

There must be >2 sighting classes to form the test. 
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Table 1.  Simulations of surveys with n sightings in a population of size N with M marked 

animals.  Means (AV) and standard deviations (SD) are over 900 runs, and lines in bold indicate 

surveys that can be expected to yield acceptable estimates.  

 
    Bada because  Statistics   Estimates Rel. precc. 
   −−−−−−−−−− −−−−−−− −−−−−−−−−−−−− −−−−−−−− 

       m′=m   m′=1  m′  m  Inadb.  N�  )(NS ��  CIQW  CV  coverd 
        −−−−−−− 

n N M       %       % AV  AV      % AV   SD   AV    %   %     % 
 50 50 3 37.2 11.8 2.4 4.3 73.2 30.2 13.8 23.5 264 78 87 

   6 16.5 1.0 4.1 6.7 19.0 46.2 25.1 33.3 239 72 95 

   12 2.4 0 7.6 12.0 0.1 59.1 36.6 34.9 164 59 94 

  100 3 75.7 10.4 2.2 3.6 77.2 34.1 13.3 29.2 322 86 75 

   6 56.8 4.7 3.1 4.6 35.4 48.2 22.2 40.7 328 84 87 

   12 32.1 0 5.1 7.0 5.2 76.8 38.2 63.1 329 82 94 

 100 50 3 6.5 4.3 2.7 6.4 82.0 43.2 24.6 26.6 159 62 88 

   6 0.6 0 5.2 11.6 43.6 54.7 31.4 25.0 90 46 92 

   12 0 0 10.4 23.9 6.0 51.1 15.3 12.9 28 25 91 

  100 3 40.0 11.5 2.4 4.3 72.9 60.5 28.3 47.8 274 79 87 

   6 15.6 0.8 4.0 6.7 20.8 92.1 50.5 67.4 251 73 95 

   12 2.5 0 7.8 12.3 0.7 116.7 74.0 69.5 171 60 95 

200  50 3 0 0 3.0 11.9 98.6 42.1 20.0 15.2 49 36 84 

   6 0 0 5.9 23.8 98.8 46.7 12.3 10.3 23 22 88 

   12 0 0 11.8 48.2 96.1 48.3 7.9 6.6 14 14 88 

  100 3 6.8 3.9 2.7 6.5 81.8 88.1 51.0 55.3 169 63 86 

   6 0.2 0 5.2 11.9 47.9 103.4 58.2 45.8 84 44 92 

   12 0 0 10.4 23.9 4.3 102.1 31.6 26.9 29 26 94 

a Bad runs yield no estimates; each bad run was regenerated until one yielding estimates 
occurred.  

b Percent of the 900 runs yielding inadmissible  M�  < m'.  
c Relative precision as measured by CIQW = 100 AV[confidence interval quarter width] / AV[ N� ], 

and by coefficient of variation, CV = 100 AV[ )�(� NS ] / AV[ N� ]. 
d Percent of 900 runs where a nominal 95% confidence interval covers N. 
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Table 2.  Statistics, estimates, and goodness-of-fit tests for 3 data sets. 

 (a) Estimates 
   

  Statisticsa                      M                                 N                       

        

Species n m m′ Est.c Min.d SE 95% CI Est.c Min.d SE 95% CI 

               

 
Eagles 107 7 3 2.59 3 0.65 2.0−5.8 39.6 45.9 17.6 18.5−110.7 
 
Hypothetical 100 21 9 9.60 9 1.37 8.1−14.2 45.7 42.9 11.0 29.5−76.4 
 
Badgers 107 68 13 12.4 13 0.34 12.0−13.5 19.4 20.5 1.5 16.7−22.8 

(b) Goodness-of-fitb 

   

    µ� e χ2 df P 

   

 
Eagles    2.026 0.03 0 -- 
 
Hypothetical    2.026 1.06 2 0.59 
 
Badgers    5.202 4.58 4 0.33 

 
 
a Capture frequencies f1, f2,...  were, for eagles: 0, 2, 1, 0,...;  for hypothetical: 2, 3, 3, 1, 0,...;  

and for badgers: 2, 1, 1, 0, 3, 2, 2, 0, 1, 0, 1, 0,... 
b Sighting frequency class poolings used were, for eagles: ≤2, ≥ 3; for hypothetical: 1, 2, 3, ≥ 4); 

 and for badgers: 1-2, 3-4, 5, 6, 7, ≥ 8. 
c Unconstrained maximum likelihood estimate. 
d Minimum constraint boundary for estimate. 
e Estimated unconditional mean sighting rate per individual for the zero-truncated Poisson distribution 

fitted to the sighting frequency data.
 



 

 

 
Fig. 1.  Distribution of N̂ over 900 simulations 
of a survey involving 100 sightings in a 
population of (true) size N = 50 and containing 
M = 3 in (a) and (b) or M = 12 in (c) and (d), 
marked birds.  For small M, the discontinuities 
in the distribution result from the few discrete 
possibilities for m and m′.   Use of the inverse 
cube root transformation in (b) and (d) evens out 
the discontinuities and improves the fit to a 
normal distribution, shown as a solid curve. 

 
Fig. 2.  Joint relative likelihoods R(N, M) (top) 
and profile relative likelihood RP(M) 
(bottom)  for eagle data (at left) and 
hypothetical data (at right) where N is 
population size and M is number marked.  
Maximum likelihood estimates occur where R = 
1; solid lines in (a) and (c) give contours of 
constant relative likelihood at values indicated 
by the numeric labels.  Estimates of M below 
the value indicated by  − ⋅ − are inadmissible.  
Dashed lines and arrows in (b) and (d) indicate 
the 95% profile confidence interval for M, 
which should properly exclude inadmissible 
values (dotted line). 
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