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Summary:

We describe some  recent developments in the POPAN system for the analysis of mark-

recapture data from Jolly-Seber (JS) type experiments and how this system applies to the analysis

of banding data.  We discuss some of the extra data requirements of JS studies, which provide

estimates of abundance and entry/birth rates, over survival (CJS) studies.  We discuss how POPAN

implements a unified likelihood approach using a constrained maximisation and show how this

differs from a design-matrix approach used in CJS software.  We illustrate the application of

constraints and covariate models across groups with some examples drawn from the banding

literature, including an example with age-class groups and we describe some of the resources in

POPAN for carrying out standard goodness-of-fit testing.
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Introduction

The proceedings of the last three Euring technical meetings attest to the success of mark-

recapture surveys in assessing population dynamics of bird populations.  They also show the

success of likelihood methods and the AIC criterion for fitting models accounting for survival and

capture rates.  These methods have been made accessible to biologists through very powerful

software, such as programs SURGE1, SURPH2, and most recently, MARK3.  These programs all

allow analyses of single or multiple groups of capture histories over multiple sample times.  Models

of the Cormack-Jolly-Seber type (CJS, defined below) can then be fit with allowance for time or

group effects on the survival or capture rates: i.e., rates can be constrained to be equal over some or

all sample times, or among groups, or both. Models may also involve individual, group, or time

covariate models for these rates.  For example body weight at time of tagging is an individual

covariate that might be used  in a regression equation to explain survival, with or without additional

group and time effects.  Time-varying covariates, like weather variables, might affect all groups

though possibly in different ways.  Group covariates take different values in different groups; for

example, effort expended in each of several nesting colonies might be used to explain capture rate.

A particular emphasis in bird studies is analyses involving age effects.  Bird populations often

exhibit age effects on survival and even on capture rates, and are studied using year-class banding

methods.  That is, birds are banded at known ages, usually in their first year, and sampling is

annual.  Thus annual age classes advance in lock-step with sample time so that models with age

effects on survival and capture have a tractable structure.

The POPAN system brings the same advantages to mark-recapture studies of open populations

where the biologist wants to estimate abundance and entry rates in addition to survival and capture

rates.  The models used in this case are called Jolly-Seber (JS) models.  The distinction between the

two is this: in CJS survival studies, the models condition on the number of marked animals released

at each sample time and are only concerned with the fate of animals after they are first marked.

Counts of unmarked captures are not used and estimates apply only to the marked subset.   In JS

studies, the proportion of marks in a sample must be an unbiased estimate of the proportion of
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marks in the population.  It is this that permits estimation of abundance of the population as a whole

and the number of new entries between sample times.

 At the last EURING meeting, we described the history of the POPAN system and gave an

overview4 of the operation and capabilities of the then-current version, POPAN-4.  This version

only supports temporal constraints and time-varying covariate models.  The syntax for extending

this, in POPAN-5, to constraints across groups and to group covariate models was anticipated and

described 4, but the actual capabilities had not been implemented.  This has now been done, and in

testing and developing the system, we have added a number of capabilities and have used the

software to analyse a number of CJS and JS banding data sets.

We expand on the earlier description of the POPAN system, with emphasis on these new

capabilities and on the extra data and assumption requirements of JS experiments over CJS

experiments.  We also describe a new set of test examples that lets users carry out important tests

of assumptions and goodness of fit.  The ability, in POPAN, to do general likelihood model fitting,

including use of group and temporal constraints and covariates, is based on implementation of a

general unified model 5.  The constrained likelihood approach of this implementation is quite

different from the linear-model/design-matrix approach used in SURGE 1 and MARK 3.  We give

further details on how this implementation was done and compare it to the design-matrix approach.

We use POPAN on the classic, much-analysed 6,7 European Dipper dataset 8 to show the additional

insights possible from a JS analysis.   We also give an example of an age-class model.

Brief Overview of POPAN

POPAN is controlled by a command file made up of data manipulation and analysis tasks.

Each task is specified by a paragraph, starting with the paragraph name (designated below by

uppercase words) followed by a number of sentences of the form keyword=keyword_values;

where the keywords are various reserved words designating paragraph options, and the values give

choices or input data for those options.  Reserved words can be shortened to as few as 1 or 2 letters,

so we show the minimal part of a keyword in uppercase and may truncate (e.g. ATtribute, or ATtrib,

or just AT).  Tasks can be classified as performing data manipulation, data analysis, or simulation.
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POPAN  has powerful data manipulation capabilities that provide for POPAN's a unique top-

down approach to data organisation and analysis.  Paragraph CREATE produces binary files

combining attribute and capture histories by reading raw data (described more fully below) and

metadata (descriptions of group attribute codes  and sample occasions, supplied by keywords).

Extensive checking of the raw data against the metadata helps ensures consistency and correctness

for future analyses.  The SELECT paragraph is used to  select a binary file for subsequent analysis

and, possibly, a subset of the histories, based on attribute and history conditions, and a subset of

sample times, including abilities to pool samples together and treat as a single sample.  Thus in

POPAN, you keep all the data on a population together and split out subsets, as needed, for

analyses.  There is also a LIST paragraph to list histories from binary files in various ways,

including as raw or grouped histories and sorted and blocked as required for the Leslie-Carothers

test of equal catchability 9.

POPAN's analysis capabilities  fit various JS models to the SELECTed data.  The ANALYSIS

paragraph can carry out any of 32 different “black box” analyses.  These include the standard

Jolly-Seber (open) model allowing entries (“births”) and losses (“death”); various closure

models (“birth-only”, “death-only”); various time-constant parameter models of Jolly and

Dickson 10; and a non-parametric smoothing method 11 that is particularly useful for long-term

monitoring experiments.  These models cannot be customised: closure or constancy of rates applies

to all sample times or to none. ANALYSIS also includes a general Chi-square test analysis that

allows it to be used with a preceding STATISTICS paragraph to do general tests based on a 2-by-2

table of counts. The  STATISTICS paragraph provides a very general, but clear and comprehensible

syntax for accumulating the counts  needed to form estimates and tests. POPAN generates the

sufficient statistics for most ANALYSIS tasks automatically, but the usefulness of having a general

statistics gathering capability is more evident with testing, as described below.

POPAN provides two further analysis paragraphs for carrying out customised model fits.

TEST  fits the log-linear models of Cormack 12  allowing some customising by dropping or adding

terms to the model.  The method only works with limited numbers of samples (k<10) and produces

estimates and goodness-of-fit diagnostics, including residuals, but does not provide the se of the
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estimates.  Much more powerful and complete is the UFIT paragraph.  UFIT  uses the  unified

model 5 with user-specified constraints, covariates, and covariate models that may be within

(temporal) or among  groups.  Groups are defined, as in SELECT, by logical conditions.  UFIT

reports the maximised log-likelihood value, mll,  and the number of restrictions imposed, r.  This

permits computation of likelihood ratio tests and the change in AIC for assessing which of two

fitted models better describes the data. The full set of parameter estimates (capture, survival and

entry rates) is reported for each sample time, i, along with the estimated se and a number of derived

parameter estimates (abundance at time i, gross entries in i, i+1 and total net and gross entries).

The SIMULATE paragraph provides a general means of generating replicated, stochastic

sampling experiments applied to a population with user-specified demographic rates.  It is fully

integrated with all the analysis paragraphs, and reports the means and sd over replicates of all

statistics and all estimates and their se.  Mechanisms can be specified that satisfy, or that violate,

assumptions such as homogeneity of rates over individuals.  Thus SIMULATE is a powerful tool

for investigating precision of sampling plans, robustness of models to assumption failure, and

(because testing is carried out by an ANALYSIS paragraph) the power of tests to detect failures.

There is a Windows (3.1 or later) interface, called RUNPOPAN, that makes it easy to construct

command and data files.  It provides paragraph templates and on-line help files and lets you create

and edit paragraphs, or copy and paste from a growing library of examples.  An advantage of the

command file approach is that these libraries can be developed to perform a specific, re-usable

sequence of tasks (paragraphs) more-or-less independently of the data;  the user then just switches

in another SELECT paragraph to point to the desired data set and the task sequence is re-applied to

the new data. Once a command file is composed, RUNPOPAN displays menus that allow the user

to Run the code, to browse the resulting Log file where commands are reflected back and errors

reported,  and to browse the Results file where statistics and estimates are reported. This has the

advantage, over purely point-and-click program control, of creating a written, re-usable record of

how results were obtained.
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Data requirements

In this section we show how POPAN handles the raw data for JS experiments.  Their

requirements are somewhat more stringent than for CJS experiments.  We also use this section to

illustrate the advantages of the top-down approach to group definition.

Most data formats for CJS programs are similar to that of program RELEASE13.  Data from a

k-sample experiment is provided as a vector of length k of 0’s (not seen) and 1’s (seen).  This is

followed by a group count for the number of animals in each of the g groups that share this history.

Symbolically, this can be designated as:    D1 D2 … Dk  c1 c2… cg

For example,  if  3 females and 5 males were seen at times 3, 4,  and 6, the history would be

designated as:  00110100  3  5.  Because histories don’t need to be unique, individual histories can

be denoted using counts, ci, that are always 0 or 1.

If the animals are removed from the population (lost on capture) at the last capture time (here, at

time 6), the count is negated (-3 or -5).  This changes the meaning of the trailing D values after the

last capture (which must all be 0).  In our example, D5  =  0 indicates the animals were alive but not

captured, whereas with a loss on capture at t = 6, D7 = D8 = 0 indicate that the animals were not

available for capture.  Clearly this distinction is important for estimating capture and recovery rates.

In JS experiments, a similar distinction may have to be made for the leading D values before the

first capture time.  For example, if the data come from a year-class banding experiment, it is known

that the animals are not present in the population prior to first capture (here, at time 3).  In other

situations, the birds may or may not have been present but didn’t happen to be captured.  The two

situations cannot be distinguished from the history but this information is not needed for  CJS

models because they describe the survival and capture rates of the marked sub-population only.

However, for the JS models, it is necessary to estimate the capture rate of the entire population, so

these two situations must be distinguished.  POPAN does this by accounting for "injections", the

opposite of a "loss on capture".  Table 1 shows how the POPAN data formats support this, both in

fixed-length data format similar to that above, and in a variable length format specifying the list of

capture times (useful in experiments with large numbers of samples but low capture rates).  Note

that an animal could be injected and lost at the same sample time…such animals contribute nothing



USING POPAN-5

to the analysis but POPAN must allow for it because this situation can arise when sample times are

pooled.  All POPAN analyses, except for the Jolly-Dickson models10, allow for injections and all

allow for losses on capture.

Table 1. POPAN-5 data formats and symbolic form for data histories.  Symbols (A1, T, C, X1, etc.)

can be used in selection conditions; X1, XT are the absolute values of Z1 and ZT.   Example formats are

for a dataset with 2 attributes (age, coded J, Y or A;  nesting sites coded 1, 2, 3) and 7 sample times.

The examples are for 37 Young from site 1 that were captured at times 2, 5, and 6, showing how

injections and/or losses on capture are encoded.  Free format is similar, except attributes must be

enclosed in quotes (e.g. ‘Y’) and FORMAT=FREE is specified in CREATE instead of a FORTRAN

format string.   See Table 2 for a  CREATE paragraph example.

POPAN format

(variable length)

CMR format

(fixed length)

FORMAT=

'(F3.0,2A2,I3,1X,A1,7I3)';

FORMAT=

'(F3.0,2A2,7I3)'

Injec-
ted

Lost on
Capture Symbolic form:

N A1 A2 T C Z1... ZT

Symbolic form:

N A1 A2 D1 D2 ...        D7
NO NO 37 Y 1  3    2  5  6 37 Y 1  0  1  0  0  1  1  0

NO YES 37 Y 1  3    2  5 -6 37 Y 1  0  1  0  0  1  2  0

YES NO 37 Y 1  3 *  2  5  6 37 Y 1  0 -1  0  0  1  1  0

YES YES 37 Y 1  3 *  2  5 -6 37 Y 1  0 -1  0  0  1  2  0
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POPAN designates attributes explicitly using codes that can be used later to split out groups.

The example history above could be represented using a single attribute (for Sex, coded, as 'M' and

'F', say) as two history records:

3  F   00110100    and    5  M   00110100

and Table 1 gives another example involving multiple attributes.  The advantage of POPAN's

attribute method over the RELEASE format is that it is easy to cross-classify animals by multiple

attributes;  for example, if birds can be classified by sex (2 values, say M and F), banding site (4

values, say, 1,2,3, and 4), tag type (2 values, say, N and S) and age cohort at first banding (3 values,

say, J, Y, A), then there is a large number of ways to define the groups of interest, and the group

counts need to be re-assembled for each definition of the groups.  POPAN makes it easy to do this,

on the fly, using general logical conditions.  There are 2 paragraphs where this can be done:  in

SELECT, the ATtribute keyword is used to select out a subset for subsequent analyses; in UFIT

keywords G1, G2, etc. are used to define each group .  For example, using the attribute codes from

Table 1, we could define a group as the juveniles in nesting area 1 using:

G1  = (A1 .EQ. ‘J’ .AND. A2 .EQ. ‘1’) ;

or form a group from juveniles and young together and also pool areas 1 and 2 using:

G1 = ((A1 .EQ. ‘J’ .OR. A1 .EQ. ‘Y’) .AND. A2 .LE. ‘2’);

The ATtribute and Group keyword_values follow the FORTRAN syntax for logical statements

(e.g. .LE. is the relational operator ≤) and can involve the symbolic variables in the capture history

(X1, XT, T, N in Table 1) as well as the attribute symbols (A1, A2).  This means that in year-class

banding experiments you can select out the individual year classes using the time of first capture

(X1).  For example,  ATtribute = (X1 .EQ. 3);  selects out the 1993 year class in an experiment that

began in 1991.  Of course, all the histories selected will have D1 = D2 = 0 and so the sample size at

these first two times will be zero.  When a single year class is SELECTed,  ANALYSIS will

eliminate the null sample times automatically.  As we shall see, when several year classes are

analysed together in UFIT, special steps must be taken to deal with the null samples.
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Constraint Implementation

UFIT implements a very general constrained likelihood model5.  The innovation of this model

is its use of a super-population model of N animals whose entry is distributed over  sample times

proportional to the entry rate parameters bi, where the bi sum to 1 over i  = 0…k-1.  The usual birth

counts of the Jolly-Seber14,15 parameterisation are derived as Bi =  N bi for i =1…k-1.   The

remaining parameters of the model are, as in CJS models, the survival rates: φi   i =1…k-1  and the

capture rates: pi   i =1…k. There are 3k-1 parameters but some constraints must be imposed to

resolve identifiability.  What is identifiable depends on what further constraints are imposed (see

Cooch et al.7 for a thorough discussion of methods) but for the full time-dependent model (p t , φ t ,

b t ),  b0 and p1 are not separately estimable, nor are φk-1 and pk .  In UFIT, the user should resolve

this by constraining p1 and pk to be 1.  POPAN automatically constrains the entry rates, bi,  called

Birth Proportions in POPAN, to sum to 1.

The model is formulated in terms of  the logits of the rate parameters,  whose range is from − ∞

to + ∞ rather than [0, 1] so that parameter estimates can never be inadmissible.  This includes the

derived parameters such as the net births (Bi  ≥ 0) and population size (Ni  ≥ ni +zi = minimum

number alive, where zi is the number seen before and after time i but not in i ).  It also makes it easy

to translate constraints on the biological parameters into constraints on their logits because the

transformation is unique and invertable.

The maximized log-likelihood is obtained by an iterative scoring method with constraints

imposed using the Lagrange multiplier method.  This means that any constraint, linear or non-linear,

can be imposed on any single model parameter or any combination of parameters.  The iteration

algorithm only needs to be able to evaluate the constraint as a function of the parameter vector θ,

and to evaluate the partial derivatives of the constraint G(θ ) with respect to each model parameter.

A particularly useful non-linear constraint is forcing survival rates per unit time to be equal  when

sample intervals δi are unequal,   for example:  G(θ ) =  φ1
1/δ1 − φ2

1/δ2.  In practice, POPAN

provides a syntax for specifying constraints in terms of the biological parameters, and some non-

linear  transformations of the parameters, which limits the generality somewhat, but saves the user

the trouble of constructing G(θ ) and its derivatives.
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Table 2. Example of binary file CREATE and analysis for the two-group (male and female)

European Dipper data from Cooch et al.7  The FORTRAN FORMAT makes it possible to read fields

in any order.  No SELECT is needed after CREATE if data subsetting is not required.  The first

UFIT paragraph fits the final model (p , φ f n , b g* t ) of Lebreton et al.6 and the comments (lines

beginning with C) show how to modify constraints to fit the other 2 nested birth models: bt and b.

  CREATE:
NAME = 'European Dipper data from Cooch et al., Males and Females';

C  Seven equally spaced (annual) sample times using grouped history counts (all are 1)
BEGIN = 1;   END= 7;   SVALUE = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0);
IDENT = GROUPED ;    HIST = FULL ;

C Card layout is history (D) vector, then history count, then sex attribute code
INPUT = CARDS;   FORMAT = '(T9, F2.0,1X,A1,T1, 7I1)' ;

C Read data with 1 attribute (sex) and give  coding for the (2) values
ANUM = 1(2);    ALIST = SEX ;    AVALUES = SEX (M) 'MALE'  (F) 'FEMALE' ;
SAVE = ASIS;   DATASET = 'eurtest\ed.bin';/

1111110  1 M
1111100  1 F
1111000  1 M
1111000  1 F
   :
0000001  1 F
$ENDDATA

  UFIT:
TITLE=’First model is the final model of Lebreton et al' ;
NGROUPS = 2 ;  LSEL = 7;  ANALYSIS = 4 ;

C Group 1 is males,  Group 2 is everything else (females)
G1 = (A1 .EQ. 'M') ;   G2 = OTHER ;

C Flood covariate is same for both groups, so give as a vector of length k=LSEL
C1 = (0,1,1,0,0,0,0) ;

C Capture Probability CONSTrained to be the same over all groups and times
CPCONST = CONSTANT ;

C  Survival Probability CONSTrained to follow a linear model in C1 with
C      same intercept and slope in all groups

SPCONST = LOGITP - (G1:G2C0, G1:G2C1) ;
C  Birth Proportion CONST   no constraint gives model g * t  (group and time effects)
C  then try model t  (time effect) by uncommenting next line
C   BPCONST = TEffect ;
C  then no time or group effects by uncommenting this next line
C   BPCONST = CONSTANT ;
;/
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Table 3. Syntax for global and detailed constraints in UFIT.  xPCON means the syntax applies to

constraints on the pi (CPconstraint), the φ i  (SPconstraint) or the bi (BPconstraint).  yPCON

applies to SPCON and BPCON only.  The detailed constraints are given for a situation with g=2

groups and k=5 sample times.  Detailed additive models are created using dummy covariates (see

Chapter 6 of Cooch et al.7 ).

Model Global Constraint Detailed Constraint

t * g xPCON = NOne (default )

g xPCON = GEffect CPCON = (G1P1:P4-G1P5)(G2P1:P4-G2P5)

 yPCON = (G1P1:P3-G1P4)(G2P1:P3-G2P4)

t xPCON = TEffect CPCON = (G1P1:P5 - G2P1:P5)

 yPCON = (G1P1:P4 - G2P1:P4)

xPCON = COnstant CPCON = (G1P1:P4-G1P5)(G2P1:P5-G1P5)

 yPCON = (G1P1:P3-G1P4)(G2P1:P4-G1P4)

• yPCON = CLosed SPCON = (G1P1:P4 - 1)(G2P1:P4 - 1)

BPCON = (G1P1:P4 - 0)(G2P1:P4 - 0)

g + t xPCON = LNpArallel

xPCON = LParallel

xPCON = PRoportional

additive model on log scale

additive model on logit scale

additive model on natural scale
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The iterative technique does not use individual histories (and hence cannot use individual

covariates), but constructs the likelihood using a set of  sufficient statistics which, in POPAN, are

generated along with initial parameters by an internal call to an ANALYSIS routine. This gives the

user multiple starting points for testing the stability of the iterative solution.   This extends readily to

multiple groups:  the statistics arrays are generated within each group  (defined divisively within

UFIT by keywords G1=, G2=, ...etc. whose syntax is the same as the ATTRIBUTE keyword in

SELECT...see Table 2 for an example) and the parameter vector θ  is expanded to  g (3k - 1)

elements.  The log-likelihood is the sum of the log likelihoods from each group, and Lagrange

constraints can be added to reflect constraints within or among groups.

The syntax for imposing constraints is summarised in Table 3. All constraints upon the

parameters are specified using the same syntax whether applied to Capture Probabilities

(CPconstraint=) or Survival Probabilities (SPconstraint=) or Birth Proportions (BPconstraint=).

The keyword_value syntax consists of a set of contrasts involving a Group index (if there is more

than 1 group) and a Parameter index for the sample time.  For example, SPcon = (G1P1-G2P5)

constrains the φ1 in Group1 to be equal to φ5 in group 2.  Specifying the keyword ADjust = YEs

allows for constraints on a per-unit time basis by applying the 1/ δi transformation using sample

time spacings stored in the binary file (keyword SValue in Table 2).  You can also override these

values by specifying a covariate (e.g., ADjust = C1) .  The covariate can be a time covariate (length

k) or  a group covariate (length gk) ; this latter case allows for physically separated groups, such as

nesting sites, that were not sampled on the same days.

Constraining parameters to numeric values is done through a similar syntax;  e.g. CPcon =

(G1P1-1); fixes p1 in Group 1 to the value 1. Ranges can also be used to fix several values at once:

e.g. BPCON=(G1P1:P6 - 0) constrains the birth parameters in group1 at sample times 1 through 6

to the value 0. These constraints are particularly important in JS models for imposing selective

closure involving no births (bi = 0) or no deaths (φi = 1).  These constraints are  also important for

resolving non-identifiability.  POPAN-5 adds the ability to handle non-identifiability resulting from
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null sample size, ni = 0.  POPAN-4 fails if this condition occurs but, because POPAN-4 doesn't

allow groups, one can simply change the SELECT to OMit the null sample time.  However, with

multiple groups in POPAN-5, eliminating the sample time may discard a non-zero sample in

another group, and, as we have seen, age-class models necessarily involve null samples for all age

classes after the first.  For open (birth and death) models, with ni = 0,  you can only estimate the

survival product φi-1 φi  and the birth sum bi-1 + bi .  You must constrain φi to 1 and bi to 0.  In

addition, for numerical reasons, you must constrain pi to 0.

Covariate models are also easy to specify as constraints.  The user lists the temporal (length k)

or group (length gk) covariates involved, and then specifies that the parameter (or its logit or its 1/δi

transform) be expressed as a linear combination of these covariates.  POPAN allows up to 9

covariates specified by the keywords C1=, C2=, etc. Covariate regression models for a parameter or

its logit are then specified as being composed of terms that may include an intercept (C0), a

particular covariate (e.g. C2)  or the product of two covariates (e.g. C12 or C11).  Coefficients for

each term can be constrained equal across groups be preceding the term with a group range (Table

2 gives an example).  For the simple linear model in 1 covariate and 2 groups we can list all 4 cases,

using the survival parameter as an example:

1. SPcon = Logitp - (C0, C1);    fits the model:   logit (φi) = β0 + β1 C1i

with different β coefficients in each group;   You can specify ADjust=YEs to apply the 1/δi

transform:  i.e. to fit the model      logit(φi
1/δi) = β0 + β1 C1i .

2. SPcon = Logitp - (G1:G2C0, C1); constrains the intercepts, β0 , to be equal in the 2 groups;

3. SPcon = Logitp - (C0, G1:G2C1) constrains the slope, β1, to be equal; and

4. SPcon = Logitp - (G1:G2C0, G1:G2C1), as used in Table 2, constrains both, giving a common

covariate response model across groups.

We described elsewhere5  how the covariate models are transformed into constraints on the

parameters to permit estimation of the coefficients and their se within the framework of the

constrained likelihood used by the unified model.

The design-matrix approach taken by most other CJS programs gives a less direct specification

of covariate models.  For example, the design matrix for the European Dipper with Flood covariate
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and unequal slope and intercept for males and females (Cooch et al.7) requires a design matrix with

3 columns, the first for the SEX group (1 1 1 1 1 1 0 0 0 0 0), the second for the FLOOD dummy

variable ( 0 1 1 0 0 0 0 1 1 0 0) to mark years 2 and 3 as flood years (within each sex group), and

the interaction term (their product).  Thus males (first 6 rows) have the covariate model:

φi = β0 + β2 FLOODi  whereas females have the model:

φi = (β0 + β1) + (β2+ β3) FLOODi . This example shows that it is not directly obvious from the

design matrix which coefficients are equal, and that the group-specific β coefficients and their se are

not always directly obtained.  Moreover, constructing the design matrix can get very complex with

more than 2 groups and more than 1 covariate and it may have to be re-constructed when new

restrictions are placed on the coefficients.  The POPAN approach (Table 2) is simpler and more

direct  and extends easily to higher numbers of groups and covariate terms.

 Users need a quick way to specify constraints globally to all times and/or groups.  These are

standard models that are useful as first-run screenings of a dataset.  POPAN-5 now provides

keyword-values in UFIT to do this.  In Table 3 we show these and the equivalent detailed syntax

that the user could modify to apply the constraints selectively.  We also added the keyword_values

PArallel and PRoportional for the additive models g+t on the logit- and log-transformed scale,

respectively:  the constraint is imposed as T(GjPi) -T(G j+1Pi) -αj+1 where j =1...g-1 and T is the

transform and α is the additive constant parameter, giving the offset between the parameters in one

group over the first  group.

Other recent changes  to POPAN-5

Model selection tools like AIC and LRT need reliable counts of the number of identifiable

parameters.  POPAN-5 determines the number of identifiable parameters by using the Singular

Value Decomposition method to invert the Hessian matrix in the iterative maximisation procedure.

This makes the iteration robust to redundant constraints and helps to identify which parameters are

involved.  POPAN-4 simply failed with a ‘singular matrix’ error in the presence of redundancies

but POPAN-5 will continue iterating and prints out the number of singularities.  To compare 2

models, say model A and model B, the 2 models would be fit using separate UFIT tasks.   Each will
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report the maximized log likelihood (mlli), number of restrictions (resti), and number of singularities

(singi),  for i = A,B.  If B is a submodel of A, you can test if B is a significantly worse fit than A by

computing

LRT = 2(mllA - mllB) and df = (restA - singA) - (restB - singB)

and assessing the significance of LRT as a χ2 variate with df degrees of freedom.  Similarly the

change in AIC, which does not require that B be a submodel of A, is computed as

∆AIC = −LRT + 2 df.

It is especially important to test for assumption failures and identify the likely biases they

produce because JS experiments require stronger assumptions then CJS experiments and can be

more sensitive to failures.  The 2 standard tests used in both the JS context16  and the CJS

context6,7  are based on tests developed for the RELEASE monograph13 and  subsequently

extended by Pradel17.  One test has two components called, 2.Ct and 2.Cm, that are geared toward

detecting capture heterogeneity; the other has two components 3.Sr and 3.Sm related to survival

heterogeneity.  POPAN-5 is distributed with a test suite of example tasks that will produce all 4 of

these tests.  Arnason & Schwarz4 give an example of running one of these tests.  All  4 tests are

based on animals known to be alive in the population so if the user knows there is closure (e.g., no

deaths), the tests should be modified to reflect this.  This can’t be done with “black box”

procedures, but POPAN allows it by giving the user complete control over the definition of cell

statistics.  The examples in the test suite are commented to show how to make these changes using

the STATISTICS paragraph.
test

Experiences in applying POPAN-5 to banding data.

Modeling the European Dipper birth component :  The  final model (p , φ f n ) adopted by Lebreton

et al. 6 for the European Dippers has the same capture rate and response of survival to the flood/no

flood covariate for males and females.   As a JS model, this is (p , φ f n , b g*t ), and fitting this model

(Table 2) gives identical estimates to those reported in Lebreton et al.6  but POPAN also reports

population sizes and annual numbers of new recruits to the breeding population.
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Table 4. Results of fitting restricted recruitment models to the European Dipper data.  Model

Selection Criteria statistics, including the number of identifiable parameters (np), the maximum log

likelihood (mll) and change in AIC and estimates for time-constant parameters are given in (a) with

se in parentheses below.  Estimates of new recruits (B) and abundance (N) are given in (b)  for each

sex for the 2 time-varying models (g*t and t).  The se for N and B were all between 3.0 and 6.0 and

so are not reported here.

(a) Model Selection Criteria statistics
and time-constant parameters

Model np -mll ∆AIC φ 
f

φ 
n

p B(m) B(f)

(p , φ f n , b g*t )
15 598.6 16.6 0.496 0.607 0.900 --- ---

(0.043) (0.031) (0.024)

(p , φ f n , b t ) 11 599.2 9.8 0.469 0.607 0.900 --- ---

(0.043) (0.031) (0.029)

(p , φ f n , b )
4 601.3 0 0.470 0.605 0.902 22.8 24.8

(0.045) (0.031) (0.029) (0.71) (0.76)

(b) Time varying parameter estimates

B(m) B(f) N(m) N(f)

year g * t t g * t t g * t t g * t t

1 21.4 23.1 31.6 29.5 13.3 19.3 11.1 10.4
2 26.7 26.5 28.5 28.7 29.5 31.8 38.3 35.9
3 23.1 22.6 24.2 24.6 40.6 41.4 46.4 45.6
4 22.9 20.4 19.6 22.1 42.2 42.1 45.9 45.9
5 24.1 23.2 24.3 25.2 48.6 46.0 47.4 50.0
6 17.3 18.9 22.9 20.9 53.5 51.1 53.1 55.5
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 Further restricting the birth parameter, model bt  permits testing if the relative recruitment pattern

over time is the same for both sexes, or equivalently, that the sex ratio of new recruits is constant

over time.  Model b permits testing if recruits per year is constant for each sex.  Because the total

number of new animals in each group (N) is unconstrained, both restricted models allow an unequal

sex ratio (females appear to be favoured slightly, at 52.0% of the new recruits).  Results and

parameters are reported in Table 4:  clearly none of the LRT between any of the models is

significant, and the last model has the lowest AIC.  The data seem to support a fixed number of

recruits per year, even in flood years (i = 2, 3), at a rate that has caused steady growth in the size of

the breeding population.

Analysing age cohort classes:  We use a simulated set of CJS data, file F_AGE.REL  from Chapter

7 of Cooch et al.7   This represents 7 years of releases of birds banded as juveniles.  Over the same

7 years the recaptures of previously banded birds are recorded.  Table 5 shows how to CREATE

the data from the RELEASE data file: no changes are needed to the raw data because the data form

a single group. To illustrate the ease of subsetting, we select out the first 3 cohorts over the first 6

sample times for analysis (SELECT task in Table 5).   Within each of the 3 cohorts, birds move

from juvenile to adult status in one year. We will fit a model allowing for a difference in survival

between the two age classes (juveniles and adults), with possible differences among cohorts and

with  capture rate time-dependent  but common to all cohorts (regardless of age class).  In the usual

CJS notation, we are fitting model (φa(2) , pt ).

The 3 cohort groups are defined in UFIT at the line starting with NGROUPS in Table 5.  The

chief problem is that, in POPAN, all groups must have the same number of sample times, so the

null samples at time 1 in Cohort 2 and at times 1 and 2 in Cohort 3 have to be dealt with using

constraints. Table 6 shows the equivalence of the age- and time-specific parameters in the usual

CJS array with the POPAN parameters.
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Table 5. Example of creating a file from RELEASE format data and carrying out an age-class

constrained model fit on a sub-set of the age cohorts and sample times.

CREATE:
NAME = 'Females..F_AGE.REL data from Cooch et al.';
INPUT = CARDS;  FORMAT = '(T15, F3.0, T1, 7I1)' ;
BEGIN = 1;   END= 7;   IDENT = GROUPED ;  HIST = FULL ;
ANUM = 0;  SVALUE = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0);
SAVE = ASIS;  DATASET = 'eurtest\fage.bin';/

1111111         2;
1111110         4;
1111010         1;
  :
0000100     135;
0000011       30;
0000010     155;
$ENDDATA

  SELECT:
TITLE = 'Selecting first three year classes and first 6 times...' ;
INPUT = 'eurtest\fage.bin';
ATTRIB = (X1 .LE. 3) ;     END = 6 ;/

  UFIT:
TITLE = 'Fit model PHI(Age(2)), P(t) ' ;    LSEL = 6;

C Start with a Jolly-Dickson constant p and phi model
ANALYSIS = 12 ;

C 3 year-class cohorts
NGROUPS = 3 ;   G1 = (X1 .EQ. 1); G2 = (X1 .EQ. 2); G3 = (X1 .EQ. 3);

C Trace iteration cycles, otherwise minimal output
TRACE = 100000000000000000; OUT = TABLE;  SUPPRESS = BOTH ;

C Constraints for 0 sample times, then non-identifiable first P,
C   then constant P across cohorts at each sample time (last 4 rows)

CPCONST  = (G2P1-0)(G3P1-0)(G3P2-0)
 (G1P1-1)(G2P2-1)(G3P3-1)

 (G1P3-G2P3)
 (G1P4-G2P4)(G2P4-G3P4)
 (G1P5-G2P5)(G2P5-G3P5)
 (G1P6-G2P6)(G2P6-G3P6) ;
C Constraints for survival...first for 0 sample times,
C   then constrain over times within cohorts (using ranges)

SPCONST  = (G2P1-1)(G3P1-1)(G3P2-1)
(G1P12:P4-G1P5)(G2P3:P4-G2P5)(G3P4-G3P5);

C Constrain for no births in all groups
BPCONST  = CLOSED ;/
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Table 6. Equivalence of the triangular array of age- and time-specific rates in a CJS experiment

with the rectangular array of group- and time-specific rates required by POPAN.  Survival rates (a)

for the former case are designated by φ φJ
i

A
i( ) ( ),  for the Juvenile and Adult rates in cohort  i,

respectively.  Below them are the equvalent POPAN parameter φij   for the survival  from year j to

year j+1 in (cohort) group  i.  Capture rate equivalences (b) are shown similarly, but do not have

cohort superscripts because they are assumed time dependent only.  The POPAN parameter pij

gives the capture rate in (cohort) group i in year j.

(a) Survival rate

Sample times

1 2 3 4 5
Cohort

1 φJ
( )1 φA

( )1 φA
( )1 φA

( )1 φA
( )1

φ11 φ12 φ13 φ14 φ15

2 φJ
( )2 φA

( )2 φA
( )2 φA

( )2

φ21 φ22 φ23 φ24 φ25

3 φJ
( )3 φA

( )3 φA
( )3

φ31 φ32 φ33 φ34 φ35

(b) Capture rates

Sample times

1 2 3 4 5 6
Cohort

1 p2 p3 p4 p5 p6

p11 p12 p13 p14 p15 p16

2 p3 p4 p5 p6

p21 p22 p23 p24 p25 p26

3 p4 p5 p6

p31 p32 p33 p34 p35 p36
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To fit this model, the following constraints must be imposed on the popan parameters:

• φ21 =1, φ31 =1, φ32 =1. These constraints are "artifacts" of the experimental design

imposed because cohort i cannot be seen before time i.

• φ12 = φ13 = φ14 = φ15 ,  φ23 = φ24 = φ25,  φ34 = φ35  imposed to constrain adult survival to

be equal over time within cohorts but different among cohorts.

In a similar fashion, the parameter structure for the capture rates in Table 6b indicates that the

following constraints should be imposed:

• p21 = 0, p31 = 0, p32 = 0 because no birds are observed in cohort i before time i;

• p11 = 1, p22 = 1, p33 = 1 because these are deliberate releases and are not captures

sampled from the larger population;

• p13 = p23,  p14 = p24 = p34,  p15 = p25 = p35,  p16 = p26 = p36 which constrains the

capture rates to be equal among cohorts but allows them to vary over time.

The only other consideration is that additional constraints may have to be imposed because of

identifiability problems as outlined in Cooch et al.7  These are typically of the form pik = 1 where k

is the final capture time. These are not needed in this particular model because the last capture rates

are identifiable.

 The corresponding UFIT constraint equations are shown in Table 5.  The estimates produced

by this task are the same as those produced by SURGE (after re-editing all the data to do the

equivalent subsetting). The estimated juvenile survival rate for cohort 1 is 0.339 (se  = 0.037) while

its adult survival rate is 0.846 (0.035). These differ from the corresponding values for cohort 2 of

0.243 (0.035) and 0.775 (0.057) respectively, and from those of cohort 3 of 0.190 (0.031) and

0.991 (0.076) respectively. The capture rates are the same across groups at the same times, as

required by model pt  except when constrained to  0 or 1 as noted above.  The estimates are, for time

2: 0.733 (0.063); time 3: 0.702 (0.053); time 4: 0.454 (0.049);  time 5: 0.678 (0.058);  and time 6:

0.692 (0.082).   POPAN also returns estimates of the number of each cohort alive at each sample

time, but these are of minor interest.
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Further simplifications in the model structure can be translated into POPAN constraints by

writing out the index matrix and then associating the POPAN parameters with each index following

the example above.

Conclusions

The JS model is a more general model than the CJS models typically used to analyze bird

population data as it allows the experimenter to estimate abundance as well as survival and capture

rates. Few studies have used JS models to analyse bird population data, probably  for two reasons.

First, until now, CJS model software allowed a wider class of models to be fit to experiments.

However with the current release of POPAN, most of the models of interest in CJS experiments can

be fit with analogous models in a JS  context.  As well, additional models that investigate patterns of

abundance and recruitment  can be fit that cannot be fit with CJS software.  Second, problems of

inference and effects of assumption violations are less troublesome in survival studies.  Definition

of the target population estimated is clear:  for both survival and capture rates it is the marked

subclass.  The biologist can then work to ensure that this sub-class is sufficiently representative of

the population of interest.  With JS models, there must be a well-defined population of roughly

equally catchable marked and unmarked animals; differences in capture rate, if any, should largely

be accounted for by the cohort and covariate effects, and given equal attributes, marked and

unmarked must be equally catchable.  This is perhaps why JS models have been particularly

successful with fish populations which are confined in a body of water.  In many bird population

studies, the experiment is conducted on a sub-area of a larger population, where edge effects,

transients,  and temporary emigration make definition of the target population meaningless.

Nesting sites or colonies that are reasonably well confined in space at the sampling times and that

are small enough to be sampled (fairly) randomly are better candidates for JS model analysis.

Over the past decade, the sophistication in design and analysis of CJS experiments has

increased dramatically - partially as an effect of powerful analysis tools becoming available. With

this new release of POPAN, we look forward to a similar increase in the number and sophistication

of JS experiments designed to investigate changes in abundance as well as survival.
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Software availability

POPAN-5 software is available from the POPAN web site

(http://www.cs.umanitoba.ca/~popan) as of late 1997.  This includes on-line help that describes the

revised syntax for POPAN-5.  Revisions of the User's manual18 and full POPAN manual19 have

been available on the web site since spring of 1998
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