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SUMMARY 

We trace the development of a likelihood function representation for the open-population 
capture-recapture (Jolly-Seber) experiment. We find that the modelling of the birth 
process in the general model is not consistent with the reduced death-only model and that 
all formulations to date lead to difficulties in imposing constraints upon the parameters of 
the birth process. We propose a generalisation to the usual Jolly-Seber representation that 
models births using a multinomial distribution from a super-population. We show how 
this leads to simplifications in the numerical optimization of the likelihood and how 
constraints upon the parameters of the model can now be easily imposed. We show how 
covariate models using auxiliary variables such as sampling effort or weather conditions 
to explain capture or survival rates can also be easily added. We also show how this 
model can be generalised to more than one group of animals. Finally a numerical example 
is provided which fits a class of models where the capture probabilities, survival 
probabilities and birth probabilities can each vary over time or among groups or both. 
This permits sequential model fitting within a comprehensive model framework; an 
approach akin to that of Lebreton et al (Ecological Monographs, 62, 67-118). 
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1. Introduction 
The likelihood function is one of the cornerstones of modern statistical theory because it 

provides an explicit link between the observable data and the unknown parameters 

thought to be important to the process that produced the data. It is then somewhat 

surprising that the likelihood function for open-population capture-recapture experiments 

is ill-defined. In particular, the modeling of the birth process in the usual Jolly-Seber 

model is not consistent with the reduced (death-only) model in which births are 

constrained to be absent and the formulations used to date  lead to difficulties in imposing 

constraints upon the parameters of the birth process. 

 In this paper we propose a generalisation to the usual Jolly-Seber model that is 

analogous to that of Crosbie and Manly (1985). We show how this leads to 

simplifications in the numerical optimization of the likelihood and how constraints upon 

the parameters of the model can be easily imposed. We also show how this model can be 

generalised to more than one group of animals. Finally a numerical example is provided 

which fits a class of models akin to those proposed by LeBreton et al. (1992). 

2. Notation 
As is usual with Jolly-Seber models, "birth" refers to any mechanism by which new 

animals are added at unknown times to the catchable population (by immigration, 

recruitment, etc.). Similarly, "death" refers to all processes that permanently remove 

animals from the catchable population (emigration, death, inactivity, etc.).  Births at 

known sample times (e.g. by deliberate addition of marked animals) are called injections 

and deaths at known sample times are called losses on capture. 

Statistics: 

ni number of animals captured at sample time i, i=1, �, k. 

ni = mi + ui. 

mi number of animals captured at sample time i that were previously marked. 

ui number of animals captured at sample time i that are unmarked. 

li number of animals lost on capture at time i. 

Ri number of animalsthat are released after the ith sample. Ri need not equal ni if 

losses on capture or injections of new animals occur at sample time i. 
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ri number of Ri animals released at sample time i that are recaptured at one or more 

future sample times. 

zi number of animals captured before time i, not captured at time i, and captured 

after time i. 

Fundamental Parameters: 

k number of sample times. 

pi probability of capture at sample time i, i=1,�,k. 

φi probability of an animal surviving between sample time i and sample time i+1 

given it was alive at sample time i, i=1, �, k-1. 

Bi number  of animals that enter after sample time i and survive to sample time i+1, 

i=0, �, k-1. The Bi are referred to as the net births. B0 is defined as the number of 

animals alive just prior to the first sample time. 

N total number of animals that enter the system and survive until the next sample 

time. 

N=B0 + B1 + � + Bk-1. 

βi fraction of the total net births that enter the system between sample times i and 

i+1, i=0, �, k-1. We refer to these as the entry probabilities. βi = Bi / N. 

νi probability that an animals captured at time i will not be released, i=1, �, k. 

Functions of parameters: 

λi probability that an animal is seen again after sample time i, i=1, �, k. 

λi = φi pi+1 + φi (1-pi+1) λi+1,  i=1,�,k-1;   λk =0; 

τi conditional probability that an animal is seen at sample time i given that it was 

seen at or after sample time i, i=1, �, k. 

τi = pi / (pi + (1-pi)λi), i=1,�,k. 

ψi probability that an animal enters the population and is not seen before time i, 

i=1,�, k-1. 

ψ1=β0,  ψi+1 = ψi(1-pi)φi + βi. 

Ni population size at time i 

N1=B0, Ni+1=(Ni-ni+Ri)φi + Bi 
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Ui number of unmarked animals in the population at time i. 

U1=0;  Ui+1=Ui (1-pi)φi + Bi 

Bi
*  gross number of animals that enter between sampling occasion i and i+1. These 

include animals that enter and die before the next sampling occasion. 

3. Development 

3.1 Development for a single group of animals 

As shown by Darroch (1959), Jolly (1965), and Seber (1965), the likelihood function for 

a capture-recapture experiment can be partitioned into three components: 

L = L1 × L2 × L3  

   = P(first capture | {pi}, {φi}, {Bi}) ×

P(losses on capture | {νi}) × 

 P(recapture | {pi}, {φi}). 

 The middle component is normally uninformative about the capture rates and 

survival rates and is usually modelledby a binomial distribution: 

L2 = P(losses on capture) = P li | ni{ } , νi{ }( )
i=1

k

∏ =
ni

li

 
 
  

 
1− ν i( )li ν i( )ni −li

i=1

k

∏ . 

 The third component can be factored into a series of conditionally independent 

binomial terms (Burnham, 1990): 

L3 = P(recaptures)  = P ri | Ri( ) P mi |mi + zi( )
i =2

k−1

∏
i=1

k−1

∏  

  = 
Ri

ri

 
 
  

 
λ i( )r i 1− λ i( )Ri − ri

i=1

k−1

∏
mi + zi

mi

 
 
  

 
τ i( )mi 1 − τ i( )zi

i =2

k−1

∏  

 The difficulty arises in modeling the first component. Darroch (1959) treated the 

{Bi} as fixed constants, derived the generating function for the likelihood and noted that 

the actual likelihood was intractable because of the presence of up to (k-1) dimensional 

sums of probabilities, i.e.: 
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L1 = P(first captures) 

    = P(u1|B0) P(u2|B0, B1, u1) � P(uk|B0, B1, �, Bk-1, u1, u2, �, uk-1) 

 

=   B0
u1

 
 

 
 p1( )u1 1 − p1( )B0 −u1 ×

B0 −u1
d1

 
 

 
 1− φ1( )d1 φ1( )B0 − u1 − d1 B0 − u1 − d1 + B1

u2

 
 

 
 p2( )u2 1 − p2( )B 0 −u1 −d1 + B1 − u2

d1 =0

B0 −u1

∑ ×

M

 

where di is the number of animals that die between sampling times i and i+1. Darroch 

(1959) ruled out obtaining MLEs from this equation, but obtained estimates by the 

method of moments using the fact that the MLEs were equivalent to the moment 

estimators in the cases of no birthor of no death. 

 An alternate approach used by both Jolly (1965) and Seber (1965) and 

summarized by Seber (1982) assumes that the Ui are fixed parameters and Bi are defined 

as Bi = Ui+1-φi(Ui-ui). The first component of the likelihood then collapses to: 

L1
' =

Ui

ui

 
 
  

 
pi( )ui 1 − pi( )Ui −ui

i=1

k

∏  (1) 

with the simple solution � U i = ui � p i . Estimates for Bi are then obtained using the defining 

relationship between Bi and Ui. 

 There are several problems with this simplification. First birthsdo not explicitly 

appear in the likelihood and so it is difficult to impose constraints upon the Bi. For 

example, how are constraints that the births are known to be zero between certain 

sampling times imposed? Second, it often happens that estimates of Bi are negative. How 

can the likelihood be numerically maximized keeping all Bi non-negative? Third, the 

general Jolly-Seber model can be simplified by assuming no birth or no death or both 

over all sample times but the above likelihood does not reduce to the usual likelihood 

often used for these simpler cases. 

 Cormack (1989) modelled births in a log-linear context by defining his parameter 

ψi such that the number of unmarked individuals in the population at the time of the 

(i+1)st sample is ψi times the number of unmarked animals surviving from the ith sample, 

i.e., Ui+1 = Ui (1-pi)φiψi = Ui(1-pi)φi + Bi. Cormack (1989) found a direct correspondence 

between the GLIM parameters used to fit the log-linear models, and the model parameters 
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representing births, survival and capture rates. The advantage of his formulation is that 

out-of-range estimates (e.g. estimates of births < 0) are easily handled by constraining the 

ψi to be non-negative. [Note that Cormack's ψi is not the same parameter as our ψi used 

later in this paper.] 

 However Cormack (1989) also identified several disadvantages of his procedure. 

Because his ψi only indirectly estimates Bi, models with constraints upon the Bi are 

difficult to implement. For example, equal Bi across sampling intervals has no simple 

equivalence in terms of his ψi. Also it is difficult to derive estimates of the standard 

errors of the estimates (but see Cormack, 1993). 

 Burnham (1991) derived an expression for L1 by organizing the first captures of 

new recruits in an upper triangular array (his Table 1� but see Table Supp.1 at end of 

this paper) with elements bij. representing the number of animals from Bi first captured in 

time j.  Only the u1, �, uk where uj= b�j,  are observable. By conditioning upon the total 

number of recoveries (bi�), he was able to show that  

  

b0� ~ Binomial B0 ; p1 + (1− p1)λ 1( )
ui ~ Binomial b0� +L+bi −1,� − u1 −…−ui −1;τ i( )   i = 1,K,k − 1

 

and consequently derived 

L1
' ' =

B0

b0�

 
 
  

 
p1 + (1− p1)λ1( )b0� 1 − p1 − (1− p1)λ1( )B 0 −b0� ×

b0� +L+bi−1,� − u1−L−ui−1

ui

 
 
  

 
τ i( )ui 1− τi( )b0� +L+bi−1,� − u1 −L−ui

i=1

k−1

∏
 

The parameters of the model are now B0, b0�, �, bk-1,� and Burnham (1991) showed that 

this likelihood gave rise to the usual results.  

 This representation is not entirely satisfactory. First, the parameter set B0, b0�, �, 

bk-1,� is a mixture of parameters of interest (B0) and unobservable random variables (b0�, 

�, bk-1,�). Second, the likelihood function involves the parameters in factorial terms 

which make numerical optimization difficult. Third Burnham (1991) states that 

B1=�=Bk-1=0 is equivalent to b1�=�=bk-1,�=0. However the converse does not hold - 

the bi� are the number of recaptures of Bi which could be zero for non-zero Bi�. 
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 We propose a representation that is more natural than previous representations 

and which also has a number of advantages for numerical optimization of the likelihood. 

Following the development outlined in Crosbie and Manly (1985), we reparameterize 

B0,�,Bk-1 by N (the total number of unique animals available for capture) and β0, �, βk-

1, the fraction of N that enter between sampling occasion i and i+1 and survive to the next 

sampling occasion. In other words, we hypothesize a super-population of N animals that 

enter the experiment according to a multinomial distribution: 

B1, �, Bk-1 ~ Multinomial(N; β1, �, βk-1).   ( B0 = N − Bi
i =1

k −1

∑  ) 

It is now straightforward to show that  

u1, �, uk ~ Multinomial(N; ψ1p1, ψ2p2, �, ψkpk) 

where ψ1=β0 and ψi+1=ψi(1-pi)φi+βi. Now the first term of the likelihood can be written 

as: 

  
L1

' ' ' =
N

u1,u2 ,K,uk

 
 
  

 
1− ψi pi

i =1

k

∑
 
 
  

 

N − u�

ψi pi( )ui

i =1

k

∏  

where the parameters are N, β0, �, βk-1 subject to β0+β1+�+βk-1 =1. 

 By conditioning upon the total number of unmarked animals observed (u�), the 

first component of the likelihood can be further factored as: 

L1
' ' ' = L1a

' ' ' × L1b
' ' '

=
N
u�

 
 
  

 
ψi pi

i =1

k

∑
 
 
  

 

u�

1− ψi pi
i =1

k

∑
 
 
  

 

N −u �

×
u�

u1,u2,K,uk

 
 
  

 
ψi pi

ψi pi
i =1

k

∑

 

 

 
  

 

 

 
 

ui

i =1

k

∏
 

 The full likelihood can now be written as  

L = L1a
' ' ' (N ,{βi},{pi},{φi}) × L1b

' '' ({βi},{pi},{φi}) × L2 ({νi}) × L3 ({pi},{φi}) . 

which can be expressed as the product of the following terms: 
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P(u�| N)  

 

×  

 
Binomial(N; ψ ipi

i =1

k

∑ )  
 

×  
 
P({ui ;i = 1,…,s}|u� )  

 

×  

 Multinomial(u�;{ψipi ψi pi
i=1

k
∑ ;i =1,…,s})   

×  
P(R1|n1)  ×   Binomial(n1;υ1)  ×  
P(r1| R1)  ×   Binomial(R1;λ 1 )  ×  
P(m2 |T2 )  ×   Binomial(T2 ;τ 2 )  ×  
P(R2|n1)  ×  OR Binomial(n2 ;υ 2)  ×  
P(r2 | R2 )  ×   Binomial(R2;λ 2 )  ×  
P(m3|T3 )  ×   Binomial(T3 ;τ 3)  ×  

 M      M   
P(mk −1|T k −1)  ×   Binomial(Tk −1;τ k−1 )  ×  
P(Rk−1|nk−1 )  ×   Binomial(nk −1; υk−1 )  ×  
P(rk −1| Rk−1 )    Binomial(Rk−1;λ k−1)   

subject to the constraint that Σβi=1. 

 This formulation leads to the usual estimates of {φi} and {pi}. Crosby and Manly 

(1985) showed that it also leads to the usual estimates for {Bi} and {Ni}. Also of interest, 

particularly to fisheries managers, are the estimates of gross births.  If one assumes a 

uniform entry of new animals in the sampling interval and a uniform mortality during the 

interval, then � B i
* = � B i

log( � φ i )
� φ i −1

 and the estimated total number of gross births is 

� N * = � B i
*

i =1

k=1

∑  (Schwarz et al., 1993). The later term is of interest when estimating a salmon 

spawning population as it estimates the total escapement from the fishery that return to 

spawn. 

 This formulation also leads to the same asymptotic variances for { � φ i } and { � p i } as 

given by Pollock et al (1990). The asymptotic variances of the � B i  have an extra source of 

variation (because the Bi are now assumed to be random variables). Usually this is small 

relative to sampling error if Bi were fixed, and can be removed using results for 

conditional variation: 
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E V � B i |Bi( )[ ]= V � B i | N[ ]− V E � B i | Bi( )[ ]
≈ V � B i | N[ ]− V Bi | N[ ]

≈ V � B i | N[ ]−
Bi(N − Bi)

N

 

 

 The case of no births is obtained by setting β0=1, β1=0, β2=0, �, βk-1=0. The 

likelihood then simplifies to that of the death-only model in a parallel fashion to that 

described by Burnham (1990, p.48-51). The same estimators for the death-only model 

from this formulation are obtained as shown in Pollock et al (1990, Section 5.3.1).  

 The case of no deaths is obtained by setting φ1=φ2= � =φk-1=1. Again the 

likelihood simplifies to that of the birth-only model in a parallel fashion as described by 

Burnham (1990, pp. 54-58). 

 This formulation can also be used for more biologically interesting models whose 

estimates must be found numerically (see next section). Models where births are known 

to be zero between two sampling points correspond to setting the appropriate βi=0. 

Similarly, models where the number of births are thought to be functions of external 

covariates can also be formulated in terms of the βi. Neither of these models could be 

previously imposed upon the sampling experiment using (1). 

 Likelihood ratio and AIC criteria can be used for model selection. The number of 

parameters is found as the 3k minus the number of imposed constraints upon the model. 

The full model actually has 3k parameters, but three constraints need to be imposed: 

Σβi=1 and two constraints because of non-identifiability, namely p1=pk=1, leading to 3k-

3 parameters that can be estimated. Schwarz et al (1993) give a list of the identifiable 

parameters. Problems usually arise with identifiability issues if {p} are allowed to vary 

over time. They can also arise in sparse data, e.g., if zi=0, then some parameters are no 

longer identifiable. 

3.2. Generalisations to More Than One Group 

The above theory is readily generalised to more than one group of animals (e.g., males vs. 

females). Now the parameters have an additional subscript to represent the group 

membership, i.e., {pgi},{φgi}, {βgi}, and {Ng}.  
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 Now an entire new class of models can be fit to open population experiments akin 

to those of LeBreton et al. (1992) who examined the case of modelling survival and 

capture rates across and within groups. A similar notation can be used to specify models, 

e.g., the model {pg, φt, βg*t} refers to a model where the capture probabilities vary among 

groups but are constant over time within each group; the survival rates vary over time 

intervals but are the same among groups; and the entry probabilites vary over both time 

and among groups. We can also fit models with survival equal per unit time, denoted by 

φ∆t or φg*∆t. 

 As with a single group, a difficulty with multiple groups determining the 

identifiable parameters and imposing suitable constraints. For example, the model {pg*t, 

φt, βg*t} would seem to have Gk+(k-1)+Gk parameters for the capture probabilities, 

survival probabilites, entry probabilities, and population size where G is the number of 

groups. However, the parameters φk-1 and pg,k-1 are not separately idenfiable; nor are the 

parameters βg,0 and pg,1. As before we need to impose arbitrary constraints, e.g., pg,1=1 

and pg,k=1 for g=1,�,G. This identifiability issue is usually only a problem in models 

that include {pg*t} or {pt} terms or in the case of sparse data. 

4. Numerical Implementation 
This form of the likelihood suggests a very convenient way of obtaining estimates of the 

parameters. First, L2 and L3 are maximized to obtain estimates of the recapture and 

survival rates. Because L3 can be written as the product of independent binomial 

distributions, the maximization can be done using any of the robust numerical algorithms 

for least squares (Green, 1984; Burnham, 1989). After the estimates are obtained, these 

are used to maximize L1b
' ' '  to obtain estimates of β0, �, βk-1. Because  is a multinomial, 

it too can be rewritten as a product of binomial distributions and the same numerical 

algorithms used. Lastly, the estimates from the previous two steps are used to estimate N, 

the {Bi}, the {Ni} and other derived parameters. 

 Sanathanan (1977) showed that the conditional MLEs derived in this way are 

asymptotically equivalent to the unconditional MLEs. In fact, in the full Jolly-Seber 

model, the only recoverable information on capture and survival rates is found in the 

recoveries of previously marked animals, the unmarked animals contain information only 
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about births and the conditional MLEs are identical to the unconditional MLEs (see 

Appendix A). This is not true for simpler models where constraints are placed upon the 

parameters. In these cases, there is information about the capture and survival 

probabilities in the unmarked animals. 

 Consequently, we do not use the above approach, but rather maximize the product 

L' ' ' = L1b
' ' ' × L2 × L3  by successively maximizing over subspaces of the parameters until 

convergence is obtained. This is the method of cyclic fixing which is known to be 

globally convergent under general conditions (Jensen et al., 1991). We apply the method 

as follows we start with some initial estimates; then L''' is maximized with respect to { � p i } 

keeping { � φ i } and { � β i } fixed; then maximized with respect to { � φ i } keeping { � p i } and 

{ � β i } fixed; and then maximized with respect to { � β i } keeping { � p i } and { � φ i } fixed. This 

cycle is repeated until the change in the likelihood is small. Finally, we perform one 

further step where the likelihood is maximized with respect to all of the parameters. This 

procedure quickly converges because each cycle is a series of k-dimensional 

minimization problems rather than a 3k-dimensional problem. The final estimates of 

{ � p i }, { � φ i } and { � β i } are used to estimate N using L1a
' ' '  . Finally, the derived parameters 

{ � B i }, { � N i }, etc., are found. 

 The joint variance-covariance matrix for all the parameters in the likelihood is 

constructed as outlined by Sananathan (1977). The delta-method is used to obtain 

estimates of the variances and covariances for functions of these parameters. The 

variances of � B i   and other derived parameters can be corrected for the additional 

variability caused by the assumption that Bi are random variables as outlined earlier. 

 To keep all estimates within the parameter space, we parameterize the {pi}, {φi}, 

and {βi} in terms of their logits. Now values of -∞ to +∞ on the logit scale translate to the 

range [0,1] and it is quite impossible to obtain inadmissible estimates of capture, survival, 

or births. 

 All models must impose the constraint that Σβi=1. Other constraints may be 

imposed for biological realism (e.g., βi=0 for some i), to overcome identifiability 

problems (e.g., p1=1 and pk=1 in the full model), or to increase precision with sparse data 
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(e.g., p1=p2= �= pk). Models with linear covariates for parameters are reformulated in 

terms of the fundamental parameters. For example, suppose we wish to fit a covariate 

model pi = xi
'γ  where xi and γγγγ are s×1vectors. An s×s system of equations can be set up 

using the first s parameters: 

p1 = x1
'γ

p2 = x2
' γ

M

ps = x s
' γ

 

 
≡ 

p1
p2
M
ps

 

 

 
 

 

 

 
 

=

x1
'

x2
'

M
x s

'

 

 

 
 

 

 

 
 
γ  

 
≡ 

 
 
p1: s = Xγ  

Now the γγγγ can be solved for in terms of the first s values of {pi}, γγγγ =X-1p1:s. The first s 

member of {pi} can be let free to vary, and constraints upon the remaining k-s parameters 

are modeled using: 

 

  

ps +1 = xs +1
' γ = xs+1

' X−1p1:s

ps +2 = xs +2
' γ = xs +2

' X−1p1:s

M

 

At the end of the iterative process, estimates of {pi} satisfying the constraints are returned 

automatically along with their estimated variance-covariance matrix � Σ p . From this, 

estimates of γγγγ are obtained as � γ = X−1 � p 1 :s  and the estimated variances of the γγγγ can be 

obtained using a Taylor-series expansion as � Σ γ = X −1 � Σ p(X −1)' . 

 Constraints are imposed in the numerical optimization by using the methods of 

Lagrange multipliers as outlined by Aitchison and Silvey (1958) or Henk Don (1985). For 

example, let 

 θθθθ represent the parameters over which the likelihood is being maximized,  
� θ m  be the estimates at the mth iteration,  

G(θθθθ)=0 be the set of constraints to be applied, 

g(θ ) =
∂G(θ )

∂θ
 be the partials of the constraints with respect to the parameters, 

S(θθθθ) be the score functions for the unrestricted model, and 

I(θθθθ) be the information matrix for the unrestricted model. 

Then the values of the estimates on the (m+1)st iteration are computed as: 
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� θ m +1
�

 
  

 
  

=
� θ m
�

 
  

 
  

+ I( � θ ) −g( � θ )
−g( � θ )T 0
 

  
 

  

−1
S( � θ )
G( � θ )
 
  

 
  

 

where � indicates elements not of interest.  

 At the final iteration, this procedure will automatically return a covariance matrix 

for the estimates that accounts for the constraints. For example, if a parameter is 

constrained to a particular value, the estimated variance of the estimate and its 

covariances with other estimates will be zero. If two or more parameters are constrained 

to be equal, their variances will be identical and the sampling correlation will equal 1. An 

important consequence of this is that, when fitting a reduced model resulting from 

constraints on the full model, it is not necessary to re-write the fitting routines.  Rather, 

one need only supply the appropriate constraints, G(θθθθ), and partials, g(θθθθ), and one general 

algorithm will produce the restricted model estimates along with their variances and 

covariances.  One disadvantage is that it is impossible to distinguish between parameters 

that are constrained to be zero because there is real knowledge that the parameter is zero, 

or parameters that are constrained to be zero because the unconstrained estimates are 

negative. In both cases the estimated variance is zero, but clearly in the latter situation, 

there is still some imprecision in the estimate that has not been accounted for in the 

estimated variance. 

 The major advantage of this method of imposing constraints over the design 

matrix methods is that arbitrary non-linear constraints can be imposed just as easily as 

linear constraints. This is a particular advantage when time intervals between sampling 

occasions (∆i) are unequal when constraints such as equal survival per unit time 

(φi
1/ ∆ i = φi'

1/ ∆ i' ) may be of interest. As well, covariate models on any scale (e.g. logit(pi) = 

f(covariates)) can also be readily imposed.  The estimates of the covariate coefficients (γ) 

and their variance covariance generalise to this case as follows:  if T(p) is any 

differentiable, bijective mapping of the parameter p, then define t1:s as the vector whose 

ith element is T(pi) evaluated at � p i  and define � Σ T  as the s×s matrix whose i,jth element  

is ti
't j

'σij where ti
'  is the derivative of T(pi) with respect to pi evaluated at � p i  and σ ij  is the 

i,jth element of � Σ p ;  then � γ = X−1t1:s   and � Σ γ = X −1 � Σ T (X −1 )' . 
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 The above theory is readily extended to multiple groups, and the same method of 

imposing constraints can be used to allow different groups to share common parameters, 

e.g., φgi=φg'i for g'≠g but for all i specifies that the groups have common survival 

probabilities that vary over time.  

5 Software 
A stand-alone FORTRAN77 program that implements the above procedures for both 

single and multiple groups is available from the first author. Several common models are 

pre-programmed. A general interface for equality constraints over and above the pre-

programmed models is also available. Even more complex models can be fit if the user 

re-codes the subroutines that return G(θθθθ) and g(θθθθ) values so they return values 

appropriate to the user's constrained model.  The program is very general and powerful, 

but does not integrate data management with analysis. 

 Many users would find it difficult to program the required subroutines and are 

willing to sacrifice complete generality for ease of use.  POPAN-3 (Arnason and Schwarz, 

1987) is a comprehensive computer system for the management and analysis of capture-

recapture experiments from open-populations. A new release, POPAN-4 (Arnason and 

Schwarz, 1995) includes a UFIT procedure that allows easy specification of most common 

constraints for single groups. This new release has the general abilities to do for the Jolly-

Seber open population model what SURGE has done for the Cormack-Jolly-Seber release-

recapture experiments where only recovery and survival probabilities are modeled.  For a 

a more detailed description of POPAN-4 and for obtaining POPAN-4, please contact the 

second author.  We expect to make versions available for Unix (SunOS and Linux) and 

the PC (Windows or OS/2) machines via anonymous FTP.  POPAN-5, allowing for 

multiple groups, is currently under development and should be available by the fall of 

1995. 

6. Example 
Schwarz et al. (1993) investigated the use of capture-recapture methods to estimate the 

number of salmon returning to spawn to the Chase River in British Columbia. Weekly 

electrofishing trips were made; unmarked fish were tagged with individually numbered 

tags; marked fish had their tag number recorded. The fish were stratified into adult males, 
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adult females, and precocious males (called "jacks") who have returned to spawn a year 

earlier than usual. Because of low sample sizes in weeks 1 and 9, these weeks were 

pooled with weeks 2 and 8 respectively. The summary statistics for the adult males and 

the jacks are shown in Table 1. Note that because weeks 1 and 2, and weeks 8 and 9 were 

pooled, the recorded time periods are 1.5 and 8.5 respectively. 

6.1 Inadmissible Estimates 

We first demonstrate how our methodology keeps all estimates within their respective 

parameter spaces. Table 2 compares the estimates formed using the closed form 

estimators (bias corrected) for the adult males as reported by POPAN or other programs 

(e.g. program Jolly, Pollock et al,. 1990 and those found using our methodology for the 

adult males and the jacks. 

 As noted earlier, not all parameters are identifiable in the full model. We have 

imposed the constraints that p1 and p10 are equal to 1. Consequently, other estimates must 

be interpreted carefully because they will estimate the confounded parameters noted 

earlier. 

 Estimates of births from the closed form estimates that are negative, though 

unbiased, are certainly not useful. By constraining all estimates of births to be admissible, 

more defensible estimates are obtained and the precision is greatly increased - not only 

for the estimates of births but for population sizes as well. The total escapement (roughly 

the sum of the births) is about the same in both cases - note that the negative estimates of 

birth are used as is when totaling the births. Also note that the estimated standard error 

for estimates occurring at the boundary space is reported as zero even though there clearly 

is some uncertainly in the estimates. We suspect that profile methods would give a range 

of uncertainty in these cases. Schwarz et al. (1993) found that even though the estimated 

standard error is reported as zero in these cases, the average standard error over multiple 

simulations of this dataset gave good estimates of imprecision in the estimates. 

6.2 Model selection 

If the estimates for the adults and jacks are examined (Table 2), it appears that: 

� the capture probabilites may be constant over time but differ among the groups; 

� the survival probabilites may vary over time, but may be equal across the groups; 

� the entry probabilites certainly change over time, but may be equal across groups. 
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Consequently, we fit a number of models searching for a parsimonious description of this 

experiment. The results are shown in Table 3. The notation used is similar to that 

employed by LeBreton et al. (1992), e.g.,φg*t implies that survival probabilities are 

allowed to vary over groups and over time periods. Both AIC and likelihood ratio tests 

(not shown) lead to the same final model, namely, {pg, φt, βg*t}. The final estimates are 

shown in Table 4.  

7. Summary 
By adopting a slightly more complicated model for a capture-recapture experiment (i.e, 

modelling births using a multinomial distribution from a super-population), it is now 

possible to subsume all simpler models in the Jolly-Seber framework into one model with 

appropriate constraints. This has the advantage that a single, general methodology can be 

used and that estimation and hypothesis testing can be performed using standard methods 

(i.e., maximum likelihood estimation and likelihood ratio tests). As well, biologists can 

now concentrate on fitting models that are biologically reasonable, rather than being 

constrained to fit a smaller class of models that have been "preprogrammed" into a 

computer package. 

 The modelling structure introduced by Lebreton et al. (1992) for mark-recovery 

experiments (where estimation of abundance is not done) has been quickly adopted by 

biologists. For example, the recent EURING94 conference held at the Patuxent Wildlife 

Research Centre in September 1994 had over 20 papers that used this methodology. The 

results in this paper  permit application of the same sort of  methods to mark-recapture 

experiments.  As we showed in Section 6,  it is now possible to fit  a wide class of models 

under a general framework for model selection and testing. 
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APPENDIX A 

Showing that the condition MLE are equivalent to the unconditional 
MLE in the full Jolly-Seber Model 
The likelihood can be written as (ignoring term involving νi): 

L1
' ' ' = L1a

' ' ' × L1b
' ' ' × L3

=
N
u�

 
 
  

 
ψi pi

i =1

k

∑
 
 
  

 

u�

1− ψi pi
i =1

k

∑
 
 
  

 

N −u�

×
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u1,u2,K,uk

 
 
  

 
ψi pi

ψi pi
i =1

k
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ui

× L3 ({φi},{pi})
i =1

k

∏
. 

The MLE of integer valued parameters can be found by equating the first backwards 

difference of the log-likelihood to zero, i.e. 

∆ log L
∆N

= 0   ⇒   
N

N −u�

(1− ψi pi)
i =1

k

∑ =1   ⇒   � N = u�

ψi pi
i =1

k

∑
 (1) 

Now let θi be one of the remaining parameters θ={{β i},{φi},{pi}}. The score equation for 

θi is 

∂ log L
∂θi

= 0 =
u�

ψi pi
i=1

k

∑

∂ ψ ipi
i =1

k

∑  
  

 
∂θi

−
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k
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i =1

k

∑  
  

 
∂θi

+
∂(L1b

' ' ' L3 )
∂θi

. (2) 

Now if the solutions to (1) is substituted into (2), the first two term vanish and 
∂ log L

∂θi

= 0 =
∂L3

∂θi

. 

This implies that there is no information in the first term of the likelihood about any 

parameter other than N, and the first term can be ignored when obtaining MLEs of the 

remaining parameters. 

In a similar fashion, the score function for {ψi} is: 

∂ log L
∂ψi

= 0 =
ui

ψ i

−
N − u�

1 − ψipi
i=1

k

∑
pi    ⇒

ui

ψi pi

−
N − u�

1 − ψ ipi
i=1

k

∑
 . (4) 

Now let θi be an element of the remaining parameters θ={{φi},{pi}}. The score function 

for θi is: 
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∂ log L
∂θi

= 0 =
i=1

k

∑ ui

ψi pi

∂(ψ ipi)
∂θi

−
N − u�

1− (ψi pi)
i =1

k

∑

∂ ψi pi
i =1

k

∑  
  

 
∂θi

+
∂L3

∂θi

 (5) 

When (4) is substituted into (5), the first two terms again vanish and 
∂ log L

∂θi

=
∂L3

∂θi

. 

This implies that the first two components of the likelihood contain no information about 

the capture and survival rates.  

 Intuitively, only recaptures of marked animals give information about the capture 

and survival rates; the relative proportions of unmarked animals captured gives 

information about the relative number of new recruits and the total number of unmarked 

animals give information about the "total" population size.  

 When constraints are applied to the model, the above development does not hold, 

and captures of unmarked animals does supply information about the capture and survival 

rates. In these cases, the conditional likelihood estimates will differ from the MLEs. 
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Table 1 (Supp) 

Representation of first recaptures (bij) from recruits that arrive just before capture time i 

(Bi-1). [Taken from Burnham, 1990]. 

 

Sample 
Time 

New 
Recruits 

1 2 3 � k Total 
Recaptures 

1 B0 b01 b02 b03 � b0k b0� 
2 B1  b12 b13 � b1k b1� 
3 B2   b23 � b2k b2� 
. .     .  
. .     .  
. .     .  
k Bk-1     bk-1,k bk-1,� 

Total  u1 u2 u3  uk  
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Table 2 Supp 

Examples of the syntax of POPAN-4 in the UFIT paragraph for imposing constraints  

 

Example of Constraint Type POPAN-4 specification 
Constant Constraints  

β2=0, β4=0, φ3=1 BPCONST=(P2-0)(P4-0); 
SPCONST=(P3-1); a  

  
Equality Constraints  

p1=p2=p3, p4=p5=p6, φ1=φ2=φ3 CPCONST=(P1:2-P3)(P4:5-P6); 
SPCONST=(P1:2-P3); b  

  
Mixed constraints  

p1=p2=1, p3=p4 CPCONST=(P1:P2-1)(P3-P4); 
  

Equality Constraints per unit time  
φ1

1/ ∆ 1 = φ2
1/ ∆2  SPCONST=(P1-P2); ADJUST=YES; c  

  
Covariate constraints d   

pi=γ0+γ1X1i+γ2X2i CPCONST=P-(C0,C1,C2); 
  
pi=γ0+γ1X1i+γ2 X1i

2  CPCONST=P-(C0,C1,C11) ; e  
  
logit(pi)=γ0+γ1X1i CPCONST=LOGITP-(C0,C1); 
  
φ1

1/ ∆1 =γ0+γ1X1i SPCONST=P-(C0,C1); ADJUST=YES; 
 �  

 
a CPCONST (Capture Probability CONSTraint), SPCONST (Survival Probability CONSTraint), and 

BPCONST (Birth Proportion CONSTraint) may be used interchangeably as required. 
b The phrase time1:time2 specifies a range of sample times. 
c The keyword ADJUST=YES imposes constraints on a per-unit-time basis.  BIRTHS=GROSS (not shown) 

imposes constraints on the gross births. 
d Covariate constraints also involve specification of the covariate vectors of length k; the keyword 

C1=(X11, X12, ..., X1k); is used to specify the covariate 1 values (X)  for sample times 1 to k. 

e Only 9 covariates (C1,�,C9 in addition to the constant C0) are allowed in POPAN-4; the notation C11 

unambiguously implies C12 
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Table 1 

Summary statistics for salmon escapement survey 

 

Week Number 
of 

captures 
 

ni 

Number 
of marks 
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Released 
after 

marking 
 

 Ri 

Subsequentl
y recaptured 

 
 

ri 

Seen before 
i, not at i, 
and after i 

 
zi 

      
  Adult Males    

1.5 85 0 85 28 0 
3 35 12 34 19 16 
4 97 14 72 31 21 
5 84 25 78 34 27 
6 67 39 56 14 22 
7 51 28 37 5 8 
8.5 39 6 29 7 7 

10 18 14 0 0 0 
      
  Jacks    

1.5 67 0 62 21 0 
3 28 9 25 7 12 
4 46 6 44 9 13 
5 47 12 45 5 10 
6 25 9 24 3 6 
7 16 6 12 1 3 
8.5 7 1 5 1 3 

10 7 4 0 0 0 
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Table 3 

Summary of models examined for escapement example. 

 

Model log-likelihood Identifiable 

parameters 

AIC 

{pg*t φg*t βg*t} -1020.8 42 2125.6 

{pt φg*t βg*t} -1027.0 36 2126.0 

{pg φg*t βg*t} -1027.1 32 2118.2 

{pg φg*∆τ βg*t} -1041.1 20 2122.2 

{pg φ∆t βg*t} -1041.2 19 2120.4 

{pg*t φg*∆t βg*t} -1028.3 32 2120.6 

{pg*t φt βg*t} -1023.3 36 2118.6 

{pg φg*t βt} -1033.7 25 2117.4 

{pg φt βt} -1043.6 18 2123.2 

{pg φt βg*t} -1031.3 25 2112.6 

The notation used is similar to LeBreton et al. (1992) along with the symbol ∆t to indicate 

survival rates are equal per unit time. 
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