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Abstract

Given a video containing a person, the goal of person
re-identification is to identify the same person from videos
captured under different cameras. A common approach
for tackling this problem is to first extract image features
for all frames in the video. These frame-level features are
then combined (e.g. via temporal pooling) to form a video-
level feature vector. The video-level features of two input
videos are then compared by calculating the distance be-
tween them. More recently, attention-based learning mech-
anism has been proposed for this problem. In particular,
recurrent neural networks have been used to generate the
attention scores of frames in a video. However, the limita-
tion of RNN-based approach is that it is difficult for RNNs
to capture long-range dependencies in videos. Inspired by
the success of non-local neural networks, we propose a
novel non-local temporal attention model in this paper. Our
model can effectively capture long-range and global depen-
dencies among the frames of the videos. Extensive exper-
iments on three different benchmark datasets (i.e. iLIDS-
VID, PRID-2011 and SDU-VID) show that our proposed
method outperforms other state-of-the-art approaches.

1. Introduction

We consider the problem of video-based person re-
identification. Given two input videos, the goal is to identify
whether these two videos contain the same person. There

has been lots of prior work [19, 13, 23, 22, 27] on image-
based person re-identification in the literature. Given an im-
age (probe image) with a person captured by one camera,
the goal of image-based person re-identification is to match
the person in a set of images (gallery images) captured by
another different and non-overlapping camera. Recently,
more work [18, 34, 29] has begun to focus on video-based
person re-identification, since it is a more natural setting for
a lot of real-world applications such as surveillance, activity
analysis and tracking.

In video-based person re-identification, we are given a
sequence of images rather than a static image. The key chal-
lenge is to how to exploit the temporal cues provided by the
sequence. Many previous methods [18, 29, 34] usually fol-
low a similar pipeline. First, an image-based CNN is used
to extract features from each frame in the video. Then the
frame-based features are aggregated to form a video-level
feature vector that represents the appearance of the entire
video. The distance between the video-level features of two
input videos is used to indicate whether the videos contain
same person or not. Ideally, the distance between videos
containing the same person should be smaller, whereas the
distance should be larger when the two videos contain dif-
ferent persons. See Fig. 1 for an illustration.

Since we now have standard techniques for extracting
features from static frames, the key challenge of video-
based person re-identification lies in how to assemble
frame-level features into video-level features. This task
is non-trivial since input videos can have variable lengths.
Some previous works [34, 14] apply simple temporal pool-
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Figure 1. Illustration of video-based person re-identification prob-
lem. The problem can be formulated as learning the distance be-
tween two input videos. Our proposed method captures long-range
dependencies over the entire video instead of just a local neighbor-
hood of frames. The global dependencies could generate temporal
attention to give a weight for each frame to represent its contribu-
tion to video-level features.

ing (either average or maximum pooling) over frames in get
the video-level feature of a video. The limitation of sim-
ple temporal pooling is that it ignores the fact that different
frames in the same video may provide different amount of
information [34]. For instance, a person in one frame may
be partially occluded. Intuitively, this frame may not be as
informative as other frames which capture the whole body
of the person. Some works [34, 29] address this issue by
using recurrent neural networks (RNNs) to learn a temporal
attention score for each frame in a given video sequence.
The temporal attention scores give different weights to dif-
ferent frames in one video. Ideally, RNNs should learn to
put less weights (i.e. smaller attention scores) on frames
that are not informative. The limitation of the RNN ap-
proach is that it needs to perform sequential computation.
As a result, it is difficult to parallelize the computation and
take full advantage of GPU hardware. Moreover, a single
recurrent operation could only calculate dependencies be-
tween current and latest frames. The recurrent operation
has to be applied repeatedly in time. This is computation-
ally expensive and can lead to optimization difficulties [26].

Figure 2. Some examples of the behaviour of Non-Local block
in our network. The starting point of the arrows represent one
frame and the ending point represents another frame of the same
video sequence. These visualizations show how the model finds
related clues in between the frames to support its prediction. The
”blue” arrow shows similarity of first frame with the remaining
frames, similarly ”green”, ”red” and ”orange” arrows are used to
represent the similarity of second, third and fourth frames with the
remaining frames respectively.

As a result, it is difficult for RNNs to capture long-range
dependencies in a video.

In this paper, we propose a non-local attentive temporal
network for video-based person re-identification. The nov-
elty of our approach is that we take advantage of the recent
advances in non-local neural networks [26] to compute the
temporal attentions of the video frames. These temporal
scores are computed in a non-local manner. Each attention
score will be calculated in a way that depends on all frames
in the video, not just the ones in the local neighborhood (see
Fig. 2). This enables the network to effectively learn the
long-range temporal dependencies among the frames in a
video, and thereby improve the overall performance. More-
over, our non-local network is computationally inexpensive
and can be easily paralleled to take advantage of the GPU
hardware.

We demonstrate the effectiveness of our proposed
method on several benchmark datasets. Our experimen-
tal results show that our method effectively captures long-
ranged dependencies in videos and significantly outper-
forms other state-of-the-art approaches in video-based per-
son re-identification.

2. Related Work
Person re-identification is an active area of research in

computer vision. In this section, we review several lines of
related work.
Image-based Person Re-identification: Given an image
(probe image) including a person captured by one camera,
the goal of image-based person re-identification is to match



the same person in a set of images (gallery images) captured
by another different and non-overlapping camera. Existing
approaches [1, 11] usually involve on two steps: (1) ex-
tracting feature vectors and (2) computing the similarity of
feature vectors of two persons. To a large extent, the quality
of feature vectors is crucial for the performance of person
re-identification. Gray et al. [5] propose to improve view-
point variations by using both spatial and color information.
Zhao et al. [33] and Wang et al. [24] propose to use patch
appearance statistics to focus on the most important parts
of a person. Simonnet et al. [20] use both local and global
features to capture correlated information. After extracting
features from images, a distance metric is used to calculate
the similarity/dis-similarity between features of two images.
Ideally, the distance should be small if the two images con-
tain the same person. Li et al. [11] propose Filter Pairing
Neural Network (FPNN) to match patches across images
of different views. Ahmed et al. [1] propose a deep neural
network to compute distance by using cross-input neigh-
borhood difference and patch summary structure. Shubra-
maniam et al. [21] uses a novel Normalized X-Corr layer to
handle illuminations, occlusions and viewpoints changes.

Video-based Person Re-identification: Compared with
static images, videos provide richer information for per-
son re-identification. In addition, video-based person re-
identification is closer to real-world settings. In recent
years, video-based person re-identification has received
lots of attention in the research community. Some earlier
works [18, 7, 20] consider frame-level similarity for iden-
tifying the person. Recently, deep learning approaches are
adopted to obtain more discriminative video-level features.
McLaughlin et al. [18] propose a method that uses optical
flows and recurrent neural networks (RNN) as well as tem-
poral pooling layers to extract temporal information. Fol-
lowing [18], Xu et al. [29] propose a Spatial and Temporal
Attention Pooling Network (STAPN) that computes atten-
tion scores on both spatial and temporal dimensions. The
attention scores are used to get video-level features by pool-
ing. Zhou et al. [34] also propose a network to use spatial
attention and temporal attention to extract most discrimina-
tive frames and contextual information. Li et al. [10] pro-
pose a new spatiotemporal attention model to automatically
discovers a diverse set of distinctive body parts.

Our work is inspired by the efficient performance of at-
tention scores in [10, 4, 2, 31, 28] and the successful appli-
cation of non-local block in video classification [26]. In this
paper, we use non-local modeling to generate temporal at-
tention scores for all the frames in a video. Compared with
previous work, the novelty of our approach is that the atten-
tion scores in our method can effectively capture long-range
dependencies in videos.

3. Our Approach

In our approach, we use a Siamese network architec-
ture which takes a pair of input video sequences as its in-
put (Fig. 3). The network architecture has two identical
branches with shared model parameters. Each branch takes
a video sequence as the input and produce a video-level fea-
ture vector representation that summarizes the input video.
The distance of the video-level feature vectors of the two
input videos is used to indicate how likely these two videos
contain the same person.

Each branch of the Siamese network contains several
modules. First, a frame feature extraction module is ap-
plied to extract a feature representation from each frame in
the input video. Then we adopt an efficient non-local at-
tention mechanism to assign an attention score between ev-
ery pair of frames in the video. These attention scores are
used to compute a weighted frame feature for each frame.
For each frame, the corresponding weighted frame feature is
computed based on information from all other frames in the
video, so the frame feature captures non-local information
of the video. Finally, a video-level feature is obtained by
temporal pooling on the combination of the weighted frame
features and the raw frame features.

In the following, we first describe how to extract frame-
level features (Sec. 3.1). Then we introduce the non-
local temporal attention module for computing the attention
scores and getting the video-level feature vector (Sec. 3.2).
Finally we describe the loss functions used for learning the
model parameters (Sec. 3.3).

3.1. Frame Feature Extraction

Similar to [18], we use both RGB color and optical flow
channels to extract the frame-level features. The color chan-
nels provide the information about the appearance of a per-
son, while the optical flow channels provide the information
about the movement of the person. Intuitively, both sources
of information are useful for person re-identification. Fol-
lowing [18], we convert an input image (i.e. video frames)
from RGB to YUV color space and normalize each color
channel to have a zero mean and unit variance. To calculate
both vertical and horizontal optical flow channels on each
frame, we use the Lucas-Kanade algorithm [17]. Following
[18], we resize each frame to have a spatial dimension of
56×40. In the end, each frame is represented as a 56×40×5
tensor, where the 5 channels are composed of both 3 color
channels and 2 optical flow channels.

We use the same backbone CNN architecture (Fig. 3) in
[18] to extract feature-level features. It consists of three
stages of convolution, max-pooling, and non-linear (tanh)
activation. Each convolution filter uses 5 × 5 kernels with
1× 1 stride and 4× 4 zero padding. If the input video con-
tains N frames, the CNN model is applied on each frame
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Figure 3. Illustration of the overall architecture of our proposed network. It takes a pair of input video sequence as input and passes to
the Convolutional Neural Network (CNN) to extract features on each frame. The output from the CNN is fed to the Non-Local block to
generate weighted feature vector for the entire video sequence. Then, average pooling and normalization are employed on the output of
Non-local block to get feature vectors. Finally, the video-level feature vectors are compared to decide whether the videos contain the same
person or not.

of the video to produce a C ×H ×W dimensional feature
xi ∈ RC×H×W (i= 1,2,...,N ), where C is the channel di-
mension and H×W is the spatial dimension of the feature.

3.2. Non-local Temporal Attention

In video-based person re-identification, a key challenge
is how to combine feature-level features into a video-level
feature, so that the video-level features of two input videos
can be compared for the re-identification. Recently, non-
local neural networks [26] have been shown to be effective
in capturing long-range dependencies in deep neural net-
works. In this paper, we use similar ideas to develop a non-
local temporal attention module for person re-identification.
Let xi be a frame in a video with N frames. We use a
function f(xi, xj) (the form of f(·) will be defined later) to
compute a scale value yi,j between xi and every other frame
xj (j ∈ {1, 2, ..., N}). We can interpret yi,j as an “atten-
tion” score between these two frames. We then compute
a “weighted frame feature” γi using the attention scores
{yi,j}Nj=1 and frames {xj}Nj=1. Note that since γi is com-
puted based on all frames in the video, γi implicitly con-
tains information of the frame xi and all the other frames in
the video. To obtain the video-level feature, we simply per-
form temporal pooling over these weighted frame features
in addition to original frame features. Since the weighted
frame features already capture long-range dependencies in
the video, the output (e.g. video-level feature) of the tem-
poral pooling will implicitly capture rich long-range depen-
dencies in the video. Figure 5 gives an illustration of the
non-local temporal attention module. In the following, we
provide details of the various components of this module.
Pairwise function: There are many different choices for
the pairwise function fxi,xj [26]. In our work, we adopt
a version of the “dot product” with some modification for
our problem. Recall that each frame is represented as a
C × H × W tensor (see Sec. 3.1), i.e. xi ∈ RC×H×W ,
we define the pairwise function as follow. We apply a 1× 1

convolution on xi to reduce its channel dimension. The re-
sult is then reshaped to be a vector. We use θ(xi) to denote
this vector. The pairwise function is then defined as the
dot-product between θ(xi) and θ(xj). In other words, the
pairwise function is defined as:

yi,j = f(xi, xj) = θ(xi)
T θ(xj),where θ(x) = vec(C1×1(x))

(1)
Here (C) denotes the 1×1 convolution and vec(C) concate-
nate entries in an input tensor to form an output vector. One
difference from [26] is that here we use the same function
θ(·) on both xi and xj in Eq. 1.

We then apply a softmax operation on the outputs of the
pairwise function on all pairs of frames:

λi,j =
exp(yi,j)∑N

k=1 exp(yk,j)
(2)

After the softmax operation in Eq. 2, we will have∑N
i=1 λi,j = 1 (∀j). We can interpret λi,j as the “atten-

tion score” indicating the amount of influence of frame i on
frame j.
Video-level feature: We now describe how to compute the
video-level feature. First, we apply a fully connected layer
on each frame xj to produce a 128-dimensional feature vec-
tor zj (i.e. zj ∈ R1×128). We then compute an attention
weighted frame feature γj as follows:

γj =

N∑
i=1

λi,jzi (3)

Here γj ∈ R1×128 is a feature vector corresponding to the
j-th frame. This feature vector already incorporates the de-
pendencies between the j-th frame and all other frames in
the video. , We then concatenate [γ1, γ2, ..., γN ] with the
raw frame features [z1, z2, ..., zN ] and perform a temporal
pooling [18] followed by l2 normalization to obtain the un-
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Figure 4. Our CNN architecture for extracting frame-level fea-
tures. The network processes each frame (both color and optical
flow channels) using a series of layers. The same CNN architec-
ture is used in [18].

normalized video-level feature v:

F = [γ1, γ2, ..., γN , z1, z2, ..., zN ] (4)
v = L2 Norm(TemporalPooling(F )) (5)

where TemporalPooling(·) and L2 Norm(·) denote the
temporal pooling and l2 normalization, respectively. In the
end, the unnormalized video-level feature v is a 128 dimen-
sional vector.

3.3. Model Learning

In this section, we explain the process of learning the
parameters of our network. Let v1 and v2 be the video-
level feature vectors of two input videos from the Siamese
network. Similar to [18, 29], we calculate the Euclidean
distance between the feature vectors and apply the squared
hinge loss (Losshinge) as follows:

Lhinge =

{
1
2 ‖v1 − v2‖

2
, P1 = P2.

1
2dmax(0,m− ‖v1 − v2‖)e

2, P1 6= P2.

(6)
Where the margin of separating two classes in Lhinge is rep-
resented by the hyper-parameter m and the identities of the
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Figure 5. Illustration of the non-local temporal attention module.
The dimension of the input feature maps are N × 32 × H × W
(where ’N’ represents number of frames in input video). Symbol
’T’ represents transpose function. ′⊗′ denotes matrix multipli-
cation and ′⊕′ denotes concatenation. The softmax operation is
performed on each column. The yellow boxes denote 1 × 1 con-
volutions which change input features into 64 channels. Then we
have used the Dot Product to calculate dependencies. The dotted
box shows non-local operation and it generates N × N attention
matrix.

persons from two input videos are represented by P1 and
P2. The basic understanding is that if the person in both the
videos is the same (i.e. P1 = P2) then the distance between
the feature vectors should be small. Otherwise, the distance
should be large, which is when the persons are different in
two videos (i.e. P1 6= P2 ).

Our Siamese network also has identity loss (i.e. Lossid)
added to each of its branch to predict the person’s identity in
a fashion similar to [18].The feature vector extracted from
each of the branch in the siamese network is passed through
a linear classifier to predict the person’s identity. A Soft-
max loss is then applied over the prediction for each of the
Siamese branch. The final loss is now the combination of
two identity losses (Lp1 andLp2) from each Siamese branch
with the hinge loss as follows:

Lfinal = Lp1 + Lp2 + Lhinge (7)

Stochastic gradient descent is used as the optimizer for
the loss function defined in the above equation. After the
training phase has been performed, all the loss functions
including the identity and hinge losses are removed and then



Dataset iLIDS-VID PRID-2011 SDU-VID
Total no. of id. 300 749 300

No. id in multiple 300 200 300
cameras

No. track-lets 600 400 600
Image resolution 64x128 64x128 64x128
No. of camera 2 2 2

Detection procedure Hand Hand Hand
Evaluation Metric CMC CMC CMC

Table 1. Summary of basic information of the three datasets used
in our experiments.

only calculate the distance between two input video vectors
for re-identification during testing.

4. Experiments

In this section, we first introduce the datasets used in
the experiments (Sec. 4.1). Then we describe our experi-
mental setup and some implementation details (Sec. 4.2).
We present the experimental results and compare with other
state-of-the-art in Sec. 4.3 and Sec. 4.4.

4.1. Datasets

We conduct experiments on three benchmark datasets:
iLIDS-VID [25], PRID-2011 [6] and SDU-VID [15].
iLIDS-VID Dataset: This dataset consists of video se-
quences of 300 persons where each person is captured by a
pair of non-overlapping cameras. The length of each video
sequence varies from 23 to 192 frames with an average of
73 frames. This dataset is quite challenging consisting of
a lot of occlusions, illumination changes, background clut-
ters, etc.
PRID-2011 Dataset: This dataset contains video se-
quences of 749 persons. For the first 200 persons (or iden-
tities), there are two video sequences captured by two dif-
ferent cameras. The remaining persons appear in only one
camera. Each sequence contains between 5 and 675 frames,
with an average of 100 frames. Compared with iLIDS-VID,
the PRID-2011 dataset contains fewer occlusions since the
videos are captured in a relative simple environment.
SDU-VID Dataset: This dataset is similar to iLIDS-VID
and PRID-2011. It contains videos captured from two non-
overlapping cameras. There are 600 video sequences for
300 different pedestrian identities. Each video sequence
contains 16 to 346 video frames. On average, a video con-
tains 130 frames. This dataset is challenging for person re-
identification since it contains background clutters, view-
point variations and occlusions . This dataset contains more
image frames than the iLIDS-VID and PRID-2011 datasets.

Table 1 shows the summary of these three benchmark
datasets.

4.2. Setup and Implementation Details

We follow the same experimental protocol as McLaugh-
lin et al. [18] on both datasets (iLIDS-VID and PRID-2011)
in which we randomly split the dataset into two equal sub-
sets where one subset is used for training and the other one
for testing. For the SDU-VID dataset, we follow the ex-
perimental protocol of [32] with the same splitting strategy
above. We have repeated all experiments 10 times for sta-
ble results. For evaluating our proposed method, we use the
Cumulative Matching Characteristics (CMC) curve which
is a ranking based evaluation metric. In the ideal case, the
ground-truth video sequence should have the highest rank.
Standard data augmentation techniques, such as cropping
and mirroring, are applied to increase the amount of training
data. When we train our network, to mitigate the influence
of class imbalance, we consider equal number of positive
and negative samples.

In the hinge loss (Eq. 6), the margin is set as m = 2.
The network is trained for 3000 epochs with a batch size of
one. A full epoch consists of a pair of positive and negative
sample. In the non-local block, the (1x1) convolution layer
within θ changes the 32 channels of input to 64 channels of
output. The learning rate in the stochastic gradient descent
is set to be 1e−4. For iLIDS-VID dataset, we decrease the
learning rate by a factor of 10 after 1300 epochs. Whereas
in PRID-2011 dataset, we decrease the learning rate two
times by a factor of 10. One happens after 950 epochs
and the other one happens after 1300 epochs. The value of
momentum is set to be 0.9. For the SDU-VID dataset, we
follow the experimental protocol of [32]. For this dataset,
we also decrease the learning rate by a factor of 10 after
1300 epochs. Due to the variable-length of video sequences
in these datasets, we use sub-sequences of 16 consecutive
frames ( N = 16 ) during training. If this length becomes
greater than the real sequence length, then we consider the
whole set of images (frames) as the sub-sequence. During
testing,we consider a video sequence captured by the first
camera as the probe sequence and a video sequence cap-
tured by the second camera as a gallery sequence. We use
at most 128 frames in a testing video sequence. Again, if
the length is greater than the real sequence, we consider the
whole set of images as the video sequence. Similar strate-
gies have been used in previous work [18].

4.3. Experimental Results

We present the results on the three benchmark datasets
and compare with the other state-of-the-art methods in Ta-
ble 2, Table 3 and Table 4 respectively. From the CMC rank,
we can see that our method outperforms all other state-of-
the-art methods by nearly 8% , 2.4% and 9% on rank-1 ac-
curacy on iLIDS-VID, SDU-VID and PRID-2011 datasets,
respectively. The comparison with [34] is particularly inter-



Method Rank-1 Rank-5 Rank-10 Rank-20
Ours 70 92 96 99
[29] 62 86 94 98
[34] 55.2 86.5 - 97
[18] 58 84 91 96
[30] 49.3 76.8 85.3 90.1
[16] 44.3 71.7 83.7 91.7
[25] 35 57 68 78
[9] 25 45 56 66

[12] 38 63 73 82
[8] 26 48 57 69

Table 2. Comparison of our proposed approach with other state-of-
the-art methods on the iLIDS-VID dataset in terms of CMC(%) at
different ranks. Note that we do not include [10] in this table since
it uses completely different setup and backbone network (see main
text for details).

Method Rank-1 Rank-5 Rank-10 Rank-20
Ours 88 97 99 100
[32] 85.6 97 98.3 99.6
[18] 75 86.7 - 90.8
[15] 73.3 92.7 95.3 96

Table 3. Comparison of our proposed approach with other state-
of-the-art methods on the SDU-VID dataset in terms of CMC(%)
at different ranks.

esting since [34] uses a similar temporal attention approach.
The difference is that [34] uses RNN to generate attention
scores, while our method uses the non-local block [26] to
generate attention scores. The improvement of our method
over [34] shows the advantage of our non-local temporal at-
tention method. [34] additionally uses a recurrent model to
generate spatial attentions. In contrast, our model only uses
temporal attentions and is much simpler, yet achieves much
better performance.

Some recent work in [10] has reported higher perfor-
mance numbers on the iLIDS-VID and PRID-2011 datasets.
However, this work has used a completely different setting
from the baseline paper [18]. [10] uses ResNet-50 to ex-
tract frame-level features for each image (frame) instead of
the plain CNN network (see Fig. 3.1) used by the baseline
paper [18]. Moreover, [10] uses a different image size of
(256,128) instead of (56,40) used in [18]. Due to these dif-
ferences in experiment setup and backbone network, the ac-
curacy numbers in [10] are not directly comparable.

4.4. Cross-Dataset Testing

In order to check the generalizability of our model, we
perform cross-dataset testing following [18]. In real-world
applications of person re-identification, the background of
persons and the angle of cameras during testing are likely
to be completely different from the training data. In or-

Method Rank-1 Rank-5 Rank-10 Rank-20
Ours 86 98 99 99
[29] 77 95 99 99
[34] 79.4 94.4 - 99.3
[18] 70 90 95 97
[30] 58.2 85.8 93.7 98.4
[16] 64.1 87.3 89.9 92
[25] 42 65 78 89
[9] 35 59 70 80

[12] 43 73 85 92
[8] 41 70 78 86

Table 4. Comparison of our proposed approach with other state-
of-the-art methods on the PRID-2011 dataset in terms of CMC(%)
at different ranks.Note that we do not compare with [10] because
of completely different settings of backbone networks.

Method Dataset Rank-1 Rank-5 Rank-10 Rank-20
Ours iLIDS-VID 38 72 80 87
[29] iLIDS-VID 30 58 71 85
[18] iLIDS-VID 28 57 69 81

Table 5. CMC Rank accuracy (%) using cross dataset testing (us-
ing multi-shot re-identification) on the PRID-2011 dataset. The
model is trained on the iLIDS-VID dataset.

der to demonstrate the generalizability of a method, a better
way is to perform cross-dataset testing where the model is
trained on one dataset and tested on a completely different
dataset. Following [18], We use 50% of iLIDS-VID dataset
for training our network, and use 50% of PRID-2011 dataset
for testing.

In previous methods of cross-dataset testing [18, 29],
two different settings have been used for evaluation: single-
shot re-identification and multi-shot re-identification. In
single-shot method, only one frame of a video is used. This
setting can not be applied in our work since we generate
attention scores based on frame features and later combine
them to produce the video-level features. So we only con-
sider multi-shot re-identification in this paper.

In Table 5, we perform the comparison of our results
with other methods using the multi-shot cross-dataset test-
ing . Our method outperforms other methods in terms of
CMC ranking accuracy by a large margin. This shows that
the model learned by our method has good generalizability
and can perform well on test data that are completely differ-
ent from training data.

5. Conclusion

We have proposed a non-local attentive temporal net-
work for video-based person re-identification. The main
novelty of our method is a non-local temporal attention
module that calculates attention scores in a global manner
that considers all frames in a video. As a result, the at-



tentin scores capture long-range dependencies of all frames
in a video. Our experimental results show that this global
representation of video can significantly improve the per-
formance of person re-identification.
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