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Abstract

We consider the problem of video-based person re-
identification. The goal is to identify a person from videos
captured under different cameras. In this paper, we propose
an efficient attention based model for person re-identifying
from videos. Our method generates an attention score
for each frame based on frame-level features. The atten-
tion scores of all frames in a video are used to produce a
weighted feature vector for the input video. This video-level
feature vector is refined iteratively for re-identifying per-
sons from videos. Unlike most existing deep learning meth-
ods that use global or spatial representation, our approach
focuses on attention scores. Extensive experiments on three
benchmark datasets demonstrate that our method achieves
the state-of-the-art performance.

1. Introduction
In this paper, our goal is to solve the problem of video-

based person re-identification. Given a video containing a
person, the goal is to identify the same person from other
videos possibly captured under different cameras. Person
re-identification is useful in a wide range of applications,
e.g video surveillance, police investigation, etc. A common
strategy for person re-identification is to formulate it as a
metric learning problem. Given the query video and a can-
didate video, the goal is to develop algorithms to compute
the distance between these two videos. If the distance is
small, it means the two videos likely contain the same per-
son. See Figure 1 for an illustration.

Previous work in person re-identification falls into two
broad categories: image-based re-identification and video-
based re-identification. Earlier work (e.g. [12, 18, 20, 21,
23, 27, 29, 33]) in this area focuses on the former, where
the inputs to these systems are pairs of images and the goal
is to identify whether they are images of the same per-
son. Recently, video-based person re-identification is re-
ceiving increasing attention (e.g. [10, 13, 17, 22, 25, 26,
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Figure 1. Illustration of the video-based person re-identification
problem. In this case, our goal is to identify person A from two
video sequences in the second row. If two videos contain the same
person, we would like the distance between them to be small. Oth-
erwise, we would like the distance to be large. Some frames in a
video sequence may be affected by occlusions and are not informa-
tive about the person’s identity. In this paper, we use an attention
model to focus on informative frames for re-identification.

34, 35]). Compared with static images, video-based person
re-identification is a more natural setting for practical appli-
cations such as video surveillance.

Person re-identification (either image or video based) is a
challenging problem since the images/videos are often cap-
tured under different camera views. This can cause large
variations in illumination, body pose, viewpoint, etc. Com-
pared with static images, the temporal information in videos
can potentially provide additional information that can help
disambiguate the identity of a person. Previous work in this
area has explored ways of exploiting this temporal informa-
tion. A common strategy (e.g. [17, 25, 34]) is to use tempo-
ral pooling to combine frame-level features to represent the
entire video sequence. Then this video-level feature vector
can be used for re-identification.

Previous work (e.g. [25, 34]) has made the observation
that not all frames in a video are informative. For example,
if the person is occluded in a frame, ideally we would like
the feature representation of the video to ignore this frame
and focus on other “useful” frames. A natural way of solv-
ing this problem is to use the attention models [1, 19, 24]



that have been popular in visual recognition recently. In
[25, 34], RNN is used to model the temporal information of
the frames and generate the attention score for each frame
for person re-identification.

In this paper, we propose a new attention model for
video-based re-identification. Compared with previous
works [25, 34], our model has several novelties. First, in-
stead of using RNN, we directly produce the attention score
of each frame based on the image feature of this frame. Our
experimental results show that this simpler method outper-
forms RNN-based attention method. Since the attention
score of each frame is calculated based on the frame, the
computation of attention scores over all frames can be easily
made parallel and take full advantage of the GPU hardware.
Second, the work in [25, 34] only calculates the attention
scores once. In this paper, we introduce a new method to
refine the attention scores based on the whole video fea-
tures. We show that this attention refinement can improve
the performance of our model.

Our contributions include:

1. A new attention mechanism for video-based person re-
identification. Unlike previous work (e.g. [34]) that
uses RNN to generate the attentions, our model di-
rectly generates attentions based on frame-based fea-
tures. As a consequence, the computation of the atten-
tions is much simpler and can be easily parallelized.
In contrast, RNN has to process frames in a sequential
order, so the computation cannot be made parallel. De-
spite of its simplicity, our model outperforms the more
sophisticated RNN-based attention mechanism in [34].

2. We introduce an iterative refinement process to further
improve the attentions. This allows the model to refine
the attention scores over time. We show that this atten-
tion refinement improves the performance of the final
model. In addition, we also study the effect of iterative
refinement on the performance.

2. Related Work
There has been extensive work on person re-

identification from static images. Early work in this area
uses hand-crafted feature representations [3, 11, 15, 16, 31].
Most of these methods involve extracting feature repre-
sentations that are invariant to viewpoint changes, then
learning a distance metric to measure the similarity of two
images.

Deep learning approaches, in particularly deep convo-
lutional neural networks (CNNs), have achieved tremen-
dous successes in various visual recognition tasks [8]. In
many areas of computer vision, CNNs have replaced hand-
engineering feature representations with features learned
end-to-end from data. Recently, CNNs have been used for

image-based person re-identification [12, 18, 20, 21, 23,
27, 29, 33]. These methods use deep network architec-
ture such as Siamese network [4] to map images to fea-
ture vectors. These feature vectors can then be used for re-
identification. Although the performance of image-based
person re-identification has increased significantly, this is
not a very realistic setting for practical applications.

To address the limitation of image-based re-
identification, a lot of recent work has began to explore
video-based re-identification [10, 13, 17, 22, 25, 26, 34, 35]
since it is closer to real-world application settings.
Compared with static images, videos contain temporal
information that is potentially distinctive for differenti-
ating a person’s identity. Some prior work has explored
ways of incorporating temporal information in deep
convolutional neural network for re-identification. For
example, McLaughlin et al. [17] use CNN on each frame
in a video and incorporate a recurrent layer on the CNN
features. Temporal pooling is then used to combine
frame-level features into a single video-level feature vector
for re-identification.

Our work is also related to a line of research on incor-
porating attention mechanism in deep neural networks. The
attention mechanism allows the neural networks to focus on
part of the input and ignore the irrelevant information. It has
been successfully used in many applications, including ma-
chine translation [1], image captioning [24], visual question
answering [19], etc. In video-based re-identification, the at-
tention mechanism has also been explored [25, 34]. The
intuition is that only a small portion of the video contains
informative information for re-identification. So the atten-
tion mechanism can be used to help the model focus on the
informative part of the video.

The work in [34] is the closest to ours. It uses an RNN to
generate temporal attentions over frames, so that the model
can focus on the most discriminative frames in a video for
re-identification. In this paper, we uses temporal attentions
over frames as well. But instead of using RNN-based mod-
els to generate attentions [34], we directly calculate the at-
tention scores based on frame-based features. This makes
the model much simpler and the computation of attention
scores can be easily parallelized over frames. We also pro-
pose an attention refinement mechanism to iteratively refine
the attention scores. We demonstrate that this attention re-
finement improves the performance of the final model.

3. Our Approach
Figure 2 shows the overall architecture of our proposed

approach based on the Siamese network [4]. The input to
the Siamese network is a pair of video sequences corre-
sponding to the query video and the candidate video to be
compared. The output of the Siamese network is a scalar
value indicating how likely these two videos contain the



same person. Each video goes into one of the two branches
of the Siamese network. Each branch of the Siamese net-
work is a Convolutional neural network used to extract the
features of the input video. The parameters of two branches
of the Siamese network are shared. Finally, the features
from the two input videos are compared to produce the final
output.

When a video goes through one of the two branches of
the Siamese network, we first extract per-frame features on
each frame of the input video. Then we compute an at-
tention score on each frame indicating how important this
frame is for the re-identification task. The intuition is that
not all frames in a video are informative. The attention
scores enable our model to ignore certain frames and only
pay attention to informative frames in the video. The at-
tention scores are then used to aggregate per-frame visual
features weighted by the corresponding attention score to
form a feature vector for the entire video sequence. We also
propose an iterative refinement mechanism that uses the fea-
ture vector of the video to further refine the attention scores.
Here the intuition is that the initial attention score of a frame
is computed purely based on the frame. It does not take into
account of other frames in the video. Since the feature vec-
tor of the entire video encodes contextual information of the
whole video sequence, we can use this feature vector to fur-
ther refine the attention scores. We can repeat this process
for several iterations (see Sec. 4.4), where each iteration
produces attention scores that focus more on the informa-
tive frames. Finally, the features of two input videos are
compared to produce the output.

3.1. Frame-Level Features

Similar to [17], we extract frame-level features using
both RGB color and optical flow channels. The colors con-
tain information about the appearance of a person, while the
optical flows contain information about the movement of
the person. Intuitively, both of them are useful to differen-
tiate the identity of the person. As a preprocessing step, we
convert all the input images (i.e. video frames) from RGB
to YUV color space. We normalize each color channel to
have a zero mean and unit variance. The Lucas-Kanade al-
gorithm [14] is used to calculate both vertical and horizontal
optical flow channels on each frame. We resize each frame
to have a spatial dimension of 56 × 40. The optical flow
field F of the frame is split into two scalar fields Fx and
Fy corresponding to the x and y components of the optical
flow. In the end, each frame is represented as a 56× 40× 5
input, where the 5 channels correspond to 3 color channels
(RGB) and 2 optical flow channels (x and y).

We fine-tuned CNN architecture of [17] to extract frame-
level features for an input video. Note that we replace the
fully connected in the end by two new fully connected lay-
ers that produce 1024 and 128 dimensional feature vectors

respectively. Given an input video with T frames, we apply
the CNN model on each frame of the input video. In the
end, each frame xi (i = 1, 2, ..., T ) is represented as a 128
dimensional feature vector, i.e. xi ∈ R128.

3.2. Temporal Attention Network

Motivated by the recent success of attention based mod-
els [1, 2, 24, 28], we propose an attention based approach
for re-identifying person from videos. The intuition behind
the attention based approach is inspired by the human visual
processing [25]. Human brains often pay attention to differ-
ent regions of different sequences when trying to re-identify
persons from videos. Based on this intuition, we propose a
deep Siamese architecture where each branch generates at-
tention scores of different frames based on the frame-level
CNN features. The attention score of a frame indicates the
importance of this frame for the re-identification task.

As shown in Figure 2, each input video sequence (se-
quence of frames with optical flow) is passed to the CNN
to extract frame-level feature maps. Using fully connected
layers, CNN generates feature vector for each video frame.
The sequence of feature vectors are passed to the attention
network to generate attention scores. More specifically, for
each feature vector xi corresponding to the i-th frame, we
compute an attention score αi indicating the importance of
this frame. The attention score is obtained by applying a
linear mapping followed by a sigmoid function. Here,we
are use the same parameters for the linear mapping on all
frames. Let θ be the vector of parameters for the linear
mapping. Now the attention score αi is calculated using
the following equations:

zi = θTxi (1a)

αi =
1

1 + exp(−zi)
, where i = 1, 2, ..., T (1b)

We have also tried using softmax instead of sigmoid
function in Eq. 1 and found that it does not perform as good
as the sigmoid function. Previous work [30] has made sim-
ilar observations. Once we have obtained an attention score
αi for each frame in the video, we can then combine the
attention scores αi (i = 1, 2, ..., T ) with frame-level feature
vectors to create a weighted feature vector f as follows:

f =

T∑
i=1

αixi, where i = 1, 2, ..., T (2)

where f can be seen as a feature vector for the entire video
which takes into account the importance of each frame in
the video.

3.3. Attention Refinement

In principle, we can directly use the video-level feature
vector in Eq. 2 for person re-identification, e.g. by com-
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Figure 2. Overall architecture of our proposed Siamese network. It takes two input video sequences and pass to the Convolutional Neural
Network (CNN) to extract features on each frame. The output from the CNN is fed to the attention module and generate an attention score
for each frame. These attention scores combined with frame-level feature vectors to form a feature vector (i.e. temporal pooling) for the
whole video. The video-level feature vectors are compared to decide whether the videos contain the same person.

paring the feature vectors of two videos. But one possible
limitation is that the attention score in Eq. 1 is calculated
on each frame in the video separately. In other words, the
attention scores for frames in a video are independent of
each other. This is not very intuitive – the attention score
of a frame should depend on the visual information of the
video, which in turn depends on all frames in the video. In
this section, we introduce a strategy to refine the attention
scores so that they are all coupled together in the end. In the
experiment section, we will show that this attention refine-
ment improves the performance of our model.

The basic idea of the attention refinement is to use the
video-level feature vector f (Eq. 2) as one of the input to
re-compute the attention score on each frame in the video.
Since the video-level feature vector f depends on all frames
in the video, the new attention score on a frame will im-
plicitly depend on all frames in the video as well. The new
attention scores can then be used to update the video-level
feature vector. This process can be repeated for multiple it-
erations. Let us define α′i as to be the new attention score.
In this work, we simply concatenate f to each frame-level
feature xi, then apply a linear mapping as follows:

z′i = θ′
T concat(xi, f) (3a)

α′i =
1

1 + exp(−z′i)
, where i = 1, 2, ..., T (3b)

where concat(·) means the concatenation of two vectors.
Then the new video-level feature vector f ′ can be computed
as:

f ′ =

T∑
i=1

α′ixi, where i = 1, 2, ..., T (4)

We alternate between updating attention scores (Eq. 3)
and updating video-level feature vector (Eq. 4) for several
iterations. Empirically, we have found 3 iterations give the
best performance (see Sec. 4.4). Figure 3 shows the archi-
tecture of this attention refinement.

3.4. Model Learning

Our model is a form of the Siamese network (Figure 2).
It has two identical branches with shared parameters. The
detail architecture of each branch is shown in Figure 3.
Each branch takes a video as its input and produces a fea-
ture vector of the video according to Eq. 4. Let f ′1 and f ′2 be
the feature vectors of the two input videos to the Siamese
network. We use Y1 and Y2 to denote the identity of the
person in these two videos. Similar to [17, 25], we calcu-
late Euclidean distance between these two feature vectors
and use the following squared hinge loss(Hloss) as the loss
function to train our network:

Lhinge =

{
1
2‖f
′
1 − f ′2‖

2
, Y1 = Y2

1
2 [max(0,m− ‖f ′1 − f ′2‖)]2, Y1 6= Y2

(5)

where m is a hyper-parameter that represents the margin
of separating the two classes in Lhinge. By minimizing
this squared hinge loss, the distance between feature vec-
tors will be small if the two videos contain the same person
(i.e. Y1 = Y2). The distance will be large if the two videos
contain two different persons (i.e. Y1 6= Y2).

We also use a standard binary cross-entropy (Lsim) that
classifies the input videos to be same or different. For
this, we firstly compute the inner product I of the video
features and then perform a signed square-root step (i.e.
s ← sign(I)

√
|I|). The resulting output is followed by

a l2 normalization (N ← s
‖s‖2

) and a softmax operation.
Following [17], we add an additional loss in each of the

two branches of the Siamese network to predict the person’s
identity. Each branch uses the feature vector for the input
video extracted from the network and applies a linear classi-
fier to predict one of the K identities of the person. We use
the softmax loss for the person identification classification.
Let Lid1 and Lid2 be the loss functions of the two branches.
The final loss function is the combination of the two identify
classification losses, similarity loss and the squared hinge
loss.

Lfinal = Lid1 + Lhinge + Lsim + Lid2 (6)
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Figure 3. Illustration of our proposed refined attention network architecture. The input is a feature matrix of dimensions N × d where
N is the number of frames in the sequence and d is the dimension of frame-level features. We generate N attention scores by applying
linear mapping on the feature vectors followed by a sigmoid function. These attention scores are combined with frame-level features via
temporal pooling to form a feature vector for the entire video. We use the video-level feature vector as one of the inputs to further refine
the attention score on each frame. We then compute a new video-level feature vector using the new attention scores.

The network is trained end-to-end by optimizing the loss
function in Eq. 6 using stochastic gradient descent. Follow-
ing [17], we remove both classification losses, the squared
hinge loss and similarity loss from the network after train-
ing is done. During testing, we only use the feature vectors
generated by the two branches of the Siamese network and
directly compare their distance for re-identification.

4. Experiments

In this section, we firstly introduce the datasets used in
our experiments (Sec. 4.1). We then describe the experi-
mental setup and some implementation details (Sec. 4.2).
We present the results of experiment in Sec 4.3 and Sec 4.4.

4.1. Datasets

We conduct experiments on three benchmark datasets:
iLIDS-VID [22], PRID-2011 [6] and MARS [32].

iLIDS-VID Dataset: This dataset consists of video se-
quences of 300 persons where each person is captured by a
pair of non-overlapping cameras. The length of each video
sequence varies from 23 to 192 frames with an average of
73 frames. The dataset is quite challenging due to lot of oc-
clusions, illumination changes, background clutters and so
on.

PRID-2011 Dataset: This dataset contains video se-
quences of 749 persons. For the first 200 persons (or iden-
tities), there are two video sequences captured by two dif-
ferent cameras. The remaining persons appear in only one

camera. Each sequence contains between 5 to 675 frames,
with an average of 100 frames. In terms of complexity this
dataset is relatively simple than iLIDS-VID.

MARS Dataset: The Motion Analysis and Re-
identification Set (MARS) is the largest video-based person
re-identification dataset that contains 1,261 different pedes-
trians. Each pedestrian is captured by at least two cameras.
DPM detector and GMMCP tracker are used to generate
the tracklets. There are, on average, 13.2 tracklets for each
pedestrian.

4.2. Setup and Implementation Details

We follow the experiment protocol of McLaughlin et al.
[17]. On each of the two datasets (iLIDS-VID and PRID-
2011), we randomly split the dataset into two equal subsets
where one subset is used for training and remaining one for
testing. For evaluating our proposed method, we use the
Cumulative Matching Characteristics (CMC) curve which
is a ranking based evaluation metric. In the ideal case, the
ground-truth video sequence should have the highest rank.
For each dataset, we repeat the experiment 10 times and re-
port the average result over these 10 runs. In each run, we
randomly split the dataset into training/test sets. Standard
data augmentation techniques, such as cropping and mir-
roring, are applied to increase the amount of training data.
We initialize the weights in the network using the initializa-
tion technique in [5]. For training our network, we consider
equal numbers of positive and negative samples. We set the
margin in the hinge loss (Eq. 5) as m = 2. The network



is trained for 1000 epochs with a batch size of one. The
learning rate in the stochastic gradient descent is initially
set to be 1e−3. We decrease the learning rate by a factor
of 10 after 300 and 600 on the PRID-2011 dataset. Due to
the variable-length of video sequences in both datasets, we
use sub-sequences of 16 consecutive frames (T = 16) dur-
ing training. Sometimes, this length is greater than the real
sequence length. In that case, we consider the whole set of
images (frames) as the sub-sequence. A full epoch consists
of a pair of positive and negative sample. During testing,
we consider a video sequence captured by the first camera
as the probe sequence and a video sequence captured by the
second camera as a gallery sequence. We use at most 128
frames in a testing video sequence. Again, if the length is
greater than the real sequence, we consider the whole set of
images as the video sequence. Similar strategies have been
used in previous work [17]. For the MARS dataset, we fol-
low the experimental protocol of state-of-the-art method by
Xu et al. [25] which is different from [34].

4.3. Results

We present the results on the three benchmark datasets
and compare with other state-of-the-art methods in Table 1,
Table 2 and Table 3. From the CMC rank, we see that
our method with attention refinement outperforms all other
state-of-the-art methods by nearly 2% and 3% in terms of
rank-1 accuracy on the iLIDS-VID and PRID-2011 dataset,
respectively. On the MARS dataset, we outperform the state
of the art by a big margin of 17% on rank-1 accuracy. Fig-
ure 5 shows some qualitative retrieval results after apply-
ing our proposed method on the challenging iLIDS-VID
dataset. We also show some failure cases in Figure 4.

Dataset iLIDS-VID
Method Rank-1 Rank-5 Rank-10 Rank-20
Ours 64 88 96 98
Xu et al. [25] 62 86 94 98
Zhou et al. [34] 55.2 86.5 - 97.0
McLaughlin et al. [17] 58 84 91 96
Yan et al. [26] 49.3 76.8 85.3 90.1
STA [13] 44.3 71.7 83.7 91.7
VR [22] 35 57 68 78
SRID [7] 25 45 56 66
AFDA [9] 38 63 73 82

Table 1. Comparison of our proposed approach with other state-
of-the-art methods on the iLIDS-VID dataset in terms of CMC(%)
at different ranks.

4.4. Effect of Iterative Refinement

We conduct empirical study on the training set of the
iLIDS-VID and MARS dataset to analyze the effect of the
attention refinement (i.e. number of iterations) on the over-
all performance of the proposed network. We randomly di-
vide the training dataset of iLIDS-VID into two parts: one

Dataset PRID-2011
Method Rank-1 Rank-5 Rank-10 Rank-20
Ours 82 97 99 99
Xu et al. [25] 77 95 99 99
Zhou et al. [34] 79.4 94.4 - 99.3
McLaughlin et al.[17] 70 90 95 97
Yan et al.[26] 58.2 85.8 93.7 98.4
STA [13] 64.1 87.3 89.9 92
VR[22] 42 65 78 89
SRID[7] 35 59 70 80
AFDA[9] 43 73 85 92

Table 2. Comparison of our proposed approach with other state-
of-the-art methods on PRID-2011 dataset in terms of CMC(%) at
different ranks.

Method Rank-1 Rank-5 Rank-10 Rank-20
Ours 62 85 93 95
[25] 44 70 74 81
[17] (obtained from [25]) 40 64 70 77

Table 3. Comparison (CMC(%)) of our proposed approach with
previous methods on the MARS dataset.

Figure 4. Examples of some failure case of our proposed method.
The first row indicates the probe sequence where single image in
second row represents retrieve gallery sequence of corresponding
person.

for learning the model parameters and the other one for val-
idation. We select 110 persons for training the model and
the remaining 40 persons for validation. For MARS dataset,
we select 400 identities for training and the remaining 225
identities for validation purpose. We train the model on the
training videos and report the performance (CMC(%)) on
the validation set for different number of iterations in Ta-
ble 4 and Table 5 respectively. We observe that the perfor-
mance gradually improves until iteration 3. After that, the
performance starts to drop. Based on this empirical result,
we choose 3 iterations in our experiments.

5. Conclusion

In this paper, we have proposed an attention-based deep
architecture for video-based re-identification. The atten-
tion module calculates frame-level attention scores, where
the attention score indicates the importance of a particular



Figure 5. Qualitative retrieval results of our proposed method on the challenging iLIDS-VID dataset. The first column represents the probe
video sequence. The remaining columns correspond to retrieved video sequences sorted by their distances to the probe video sequence.
Here, we use a single image to represent each retrieved video sequence. The green boxes indicate the ground-truth matches. We can see
that the ground-truth matches are ranked very high in the list.

iLIDS-VID
# iterations Rank-1 Rank-5 Rank-10 Rank-20
0 (No iteration) 60 92 97 100
1 (1 iteration) 70 95 97 100
2 (2 iterations) 62 95 97 100
3 (3 iterations) 77 97 97 100
4 (4 iterations) 70 97 97 100
5 (5 iterations) 65 97 97 100

Table 4. Validation performance for different number of iterations
on the iLIDS-VID dataset. Again, we report the performance in
terms of CMC (%).

MARS
# iterations Rank-1 Rank-5 Rank-10 Rank-20
0 (No iteration) 56 80 87 89
1 (1 iteration) 57 80 87 89
2 (2 iterations) 56 80 86 90
3 (3 iterations) 56 80 88 90
4 (4 iterations) 58 78 87 90
5 (5 iterations) 58 79 87 89

Table 5. Validation performance for different number of iterations
on the MARS dataset.

frame. The output of the attention module can be used to
produce a video-level feature vector which can be refined
iteratively to generate rich feature information. We perform
experiments on three benchmark datasets and compare with

other state-of-the-art approaches. We demonstrate that our
proposed method outperforms to other state-of-the-art ap-
proaches.
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