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Abstract

We consider the problem of weakly supervised learning for object localization. Given
a collection of images with image-level annotations indicating the presence/absence of
an object, our goal is to localize the object in each image. We propose a neural net-
work architecture called the attention network for this problem. Given a set of candidate
regions in an image, the attention network first computes an attention score on each can-
didate region in the image. Then these candidate regions are combined together with
their attention scores to form a whole-image feature vector. This feature vector is used
for classifying the image. The object localization is implicitly achieved via the atten-
tion scores on candidate regions. We demonstrate that our approach achieves superior
performance on several benchmark datasets.

1 Introduction

We consider the problem of localizing objects from weakly labeled images. For an object
category (e.g. “dog”), we have a collection of images, where the labels are only given at
the image level. If an image has a positive label, we know there is an object of interest (i.e.
“dog”) somewhere in the image. But we do not know the exact location of the object in
the image. If an image has a negative label, we know that this object is not in the image.
From such weakly labeled data, we would like to localize the object of interest in the positive
images. Note that there might be multiple instances of the object in a positive image. Our
goal is to localize one of those instances. See Fig. | for an illustration of our problem.

The field of visual recognition (especially image classification) has witnessed significant
success in the past few years. An important enabling force of this success is the availability
of large amount of training data, e.g. ImageNet [4]. Most successful image classification
systems (e.g. AlexNet [10]) is based on learning a deep convolutional neural network (CNN)
from large amount of labeled data.

In addition to image classification, another important task in computer vision is object
detection, where the goal is to find the exact location of objects in an image. In order to learn
object detectors, we usually need training images where the object locations are manually
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Figure 1: Our aim is to localize the object of interest in weakly labeled data. For a given
object category (e.g. “dog”), we have a collection of positive images (top left) where we
know there is a dog somewhere in each image, but we do not know the exact location of the
dog in an image. In addition, we have a collection of negative images (bottom left) where
there are no dogs in them. From such weakly labeled data, our goal is to localize the object
in positive images (right).

annotated, e.g. in terms of bounding boxes. Collecting images with bounding box anno-
tations is often expensive and time-consuming. Currently, most of the datasets for object
detection are limited to a small number of object categories, e.g. 20 object classes in the
PASCAL VOC dataset [7] and 80 object categories in the MS COCO dataset [12]. It is not
clear how to scale up the labeled images to cover hundred thousands of object categories. In
contrast, it is relatively easy to collect “weakly labeled” data, where images are labeled only
at the whole image level. These labels indicate whether an object appears in the image or
not, but they do not provide the exact object locations in the image. For example, these weak
labels can be obtained from user-generated tags from Flickr images and YouTube videos. A
reliable solution to weakly supervised object localization will provide an inexpensive way of
collecting datasets for learning object detectors.

In this paper, we propose a new approach for localizing objects in weakly labeled data.
The novelty of our method is to introduce the concept of “attention” in weakly supervised
learning. Our approach starts with generating a set of candidate object regions in each image
using standard object proposal techniques. For each object proposal, instead of directly pre-
dicting its class label, we first compute an “attention score”. This attention score indicates
the importance of each object proposal. We then combine the object proposals in the image
using their respective attention scores to form a whole image feature vector. This feature
vector is then used to classify this image. Since the feature vector for whole image classi-
fication is obtained from candidate regions using their attention scores, this will focus the
model to learn to assign high attention scores to regions that contain the object of interest.

The main contribution of this paper is to incorporate the attention mechanism in object
localization from weakly labeled data. Although our method is simple, our experimental
results demonstrate that it achieves superior performance on several benchmark datasets.
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2 Related Work

There has been a line of work on weakly supervised learning (WSL) of visual concepts, such
as objects, actions. Many existing approaches [2, 11, 20, 21, 24] formulate WSL as multiple
instance learning (MIL) [6]. In the MIL framework, each image is treated as a bag of in-
stances, where each instance corresponds to a candidate region in the image. Each image is
labeled as positive or negative to indicate whether the object of interest appears anywhere in
the image. If an image is labeled as positive, at least one of the bag instances (i.e. regions)
is assumed to be the object of interest. If an image is labeled as negative, no regions contain
the object of interest. Using this weak supervision at the bag level, the MIL alternates be-
tween estimating the object appearance model and selecting the bag instances from positive
bags that correspond to the object. Since the MIL formulation results in a non-convex opti-
mization problem, the learning algorithm tends to get stuck in local optimum. This issue has
been addressed by several works. Kumar ez al. [11] propose a self-page learning method that
starts with easy training examples and progressively adds hard examples. Song et al. [21]
discover discriminative configurations of multiple patches to overcome the issue of mislo-
calizations. Song et al. [20] and Bilen et al. [3] propose smoothed version of MIL that softly
label instances instead of choosing the best labels. Deselaers et al. [5] and Tang et al. [23]
enforce the appearance similarity of selected positive regions across images. Prest ef al. [15]
uses a model similar to [5] for learning object detectors from videos.

Convolutional neural networks (CNN) [10] have achieved great success in computer vi-
sion in recent years. There has been some work on adapting CNNs for object localization
in weakly labeled data. Oquab et al. [13] adapt a CNN trained for object classification to
predict the approximate locations of objects in images. Bilen ef al. [2] propose a two-stream
architecture that combines object classification and detection in a single network.

Our work is also related to a line of research on incorporating attention mechanism in
standard deep learning models. The attention mechanism allow the deep neural network to
focus on a small part of the input images for high-level recognition tasks. It has been suc-
cessfully applied in machine translation [1], action recognition [18], image captioning [25],
visual question answering [19], etc.

3 Our Approach

In this section, we introduce our attentional network for object localization in weakly labeled
images. The overview of our approach is illustrated in Fig. 2.

For a given object class (say “dog”), we assume that we have a collection of weakly
labeled images. For each image in the collection, we only have the label at the image level.
If an image is labeled as positive (+1), we know that there is at least a dog somewhere in the
image. If an image is labeled as negative (-1), there is no dog anywhere in the image. Our
goal is to localize the dog in each of the positive images. If there are multiple instances of
the object (i.e. multiple dogs in an image), most previous work usually only tries to localize
one of them. We will operate on the same assumption. If we can reliably localize the object
in weakly labeled data, the localization results can potentially be used as supervision to learn
an object detector.
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Figure 2: An overview of our architecture. Given an image, we extract proposals that are
likely to contain any object. Each proposal is passed to a linear layer to obtain its attention
score. We then apply the softmax operation to the attention scores before multiplying it
with its corresponding proposal features. This gives a whole image feature vector that is
the weighted average of proposals. Finally, we use the whole image feature to classify the
image.

3.1 Attention networks

Object proposals: Given a collection of weakly labeled images, the first step of our approach
is to generate a shortlist of object proposals in each image. We use the edge boxes method
[26], which is a commonly used technique for generating object proposals. Each proposal is
a bounding box that may contain any object. This method is based on a simple observation
— the number of contours contained in a bounding box is a good indication of how likely
this box contains an object. Given a candidate bounding box in an image, the edge boxes
algorithm assigns an objectness score by examining the number of edges in the box and those
that overlap the box’s boundary.

Let x be the input image and K be the number of object proposals generated on the image
x. To simplify the notation, we assume that we get the same number of object proposals on
each image, although this is not a requirement of our method. We represent each proposal as
a fixed length feature vector x; (i = 1,2,...,K). We use the 4096 dimensional CNN feature
implemented in Caffe [8] to extract the feature vector from each proposal. This feature has
been proved to be effective for a wide variety of computer vision tasks.
Proposal attention: For each object proposal x;, we then compute an atfention score s;
indicating how likely this object proposal contains the object of interest. This is achieved by
applying a linear mapping on x; followed by a softmax operation. Let w, denote a vector of
parameters for the linear mapping, the attention score s; is calculated as:

gi=W,X; (1a)
exp(g;)

PO 12K (1b)
Y5 exp(g))

P =

Without loss of generality and to simplify the notation, we use a linear mapping without the
bias term in Eq. 1 by assuming that the feature vector x already has 1 appended to the end.
If we ignore the softmax operator in Eq. 1, the linear mapping in Eq. 1 alone can be
loosely interpreted as a “detection score”. In the ideal case, if we have access to fully su-
pervised data where the ground-truth bounding boxes are provided, we can learn w, directly
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using standard supervised learning. However, since we only have weakly supervised data
where the labels are provided only at the whole image level, we can not learn w, directly.
Instead, the attention score in Eq. 1 simply provides an indication on how likely this object
proposal contains an informative image region.

The softmax operator in Eq. 1 is a crucial part of our model. First of all, it introduces

nonlinearity in the overall model. Second, it makes sure that the attention scores s; (i =
1,2,...,K) of all the object proposals in an image sum to 1.
Image-level classification: Since our data are labeled only at the image-level, we need to
use a learning method where the loss function is based on image-level labels. In our work,
we use the attention scores to combine the object proposals to get an image-level feature
vector z as z = ):lK:l siX;. This image-level feature z is then used to classify the whole image
by a linear classifier with parameters w,:

fxs{wa,we}) =w!z )

where f(x;{w,, W, }) is the score of classifying z to be a positive class.

3.2 Learning and localization

Our model has two sets of parameters {w,,w.}. Here we explain how to learn these pa-
rameters from weakly labeled data. Given a set of N training images {(x"),y(")}, where
x( represents the image and y) e {—=1,41} represents the image-level label. We use the
logistic loss as our loss function:

({wg,w.}) = % i"llog (1 +exp (*y(n)f (X(");{Wa,wc}») 3)

This loss function is differentiable with respective to its parameters and can be optimized
using the stochastic gradient descent. As a regularization, we add a dropout layer with a
dropout rate of 0.8 before each of the linear layers in Fig. 2.

Once the learning is done, we localize the object in weakly labeled data directly using
the attention scores. For example, suppose the object of interest is “dog”. For each positive
“dog” image, we simply choose the object proposal that has the highest attention score s; as
the localized dog instance in this image.

4 Experiments

We evaluate our method on one image dataset (Sec. 4.1) and two video datasets (Sec. 4.2 and
Sec. 4.3). On the videos, we ignore the temporal information and treat frames in a video as
images. We use the CorLoc measurement defined in [5] to evaluate the performance of the

object localization results. For each image in the dataset, we compute the area of intersection
area(BpNBg;)
area(BpUBg;)
bounding box and By, is the ground-truth bounding box. An image is considered as being
correctly localized if the IoU is great than 0.5. Finally, CorLoc is computed as the percentage

of images where the object of interest is correctly localized.

over union (IoU) according to the PASCAL criterion , where B, is the localized
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aeroplane bird boat bottle

plant sheep sofa train tv monitor

Figure 3: Qualitative examples of our approach on the PASCAL VOC 2007 trainval dataset.
Green boxes show the ground-truth localization. Red boxes show the localization produced
by our model.

4.1 PASCAL VOC 2007

The PASCAL VOC 2007 dataset [7] consists of images of 20 object classes. Similar to
previous work, we use trainval subset of PASCAL VOC 2007 to train and evaluate our model.
We train our model as a binary classifier for each class in the dataset. We use all the images
corresponding to a class as positive examples. Then we randomly select an equal number of
negative images that do not contain this object from the dataset.

Table 1 shows the CorLoc performance of our model on this dataset. We compare our
method with the several state-of-the-art approaches [2, 16] on weakly supervised object lo-
calization. Our method outperforms other approaches. Fig. 3 shows qualitative examples of
localization produced by our method on this dataset. Fig. 4 visualizes the attention scores on
some examples.

method | aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | avg
[24] [80.10 63.90 51.50 14.90 21.00 55.70 74.20 43.50 26.20 53.40 16.30 56.70 58.30 69.50 14.10 38.30 58.80 47.20 49.10 60.90{48.50
[2] |68.90 68.70 65.20 42.50 40.60 72.60 75.20 53.70 29.70 68.10 33.50 45.60 65.90 86.10 27.50 44.90 76.0 62.40 66.30 66.80|58.00
[16] |78.57 63.37 66.36 56.35 19.67 82.26 74.75 69.13 22.47 72.34 31 62.95 7491 78.37 48.61 29.39 64.58 36.24 75.86 69.53|58.84
ours |84.03 64.61 70.00 62.43 25.82 80.65 73.91 71.51 35.73 81.56 46.50 71.26 79.09 78.78 56.72 34.29 69.79 56.72 77.01 72.66|64.59

Table 1: CorLoc results on positive trainval subset of the PASCAL VOC 2007 dataset. We
also compare our approach with several state-of-the-art approaches [2, 16, 24].

The main goal of our work is to localize the objects on weakly labeled data. Once the
objects can be reliably localized, the localization results can be used to train object detectors.
Our model is not designed to directly work as a detector. In order to compare with previous
work that reports detection results on this dataset, we use a simple strategy to obtain detec-
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Figure 4: Visualization of attention scores on some sample images on PASCAL VOC 2007.
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tion results. Suppose we want to detect instances of an object class (e.g. dog) in an unseen
test image, we first run our dog model to obtain the attention scores for all the object pro-
posals in this image. Then we consider the multiplication of softmaxed attention scores and
the classification score as the detector scores for dogs and run non-maximum suppression
to obtain the final detection results. Using this simple trick, we apply our model as object
detectors on the PASCAL VOC 2007 test set. The results in terms of mean average preci-
sion are shown in Table 2. Even though our approach is not designed to be a detector, the
performance of object detection is still comparable to other state-of-the-art methods. Also
note that the best performance in [2] (5th row in Table 2) uses an ensemble of several CNN
models, so it is difficult to directly compare with the results.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | avg

[24] 48.90 42.30 26.10 11.30 11.90 41.30 40.90 34.70 10.80 34.70 18.80 34.40 35.40 52.70 19.10 17.40 35.90 33.30 34.80 46.5 [31.60

[2] WSDNN S 42.90 56.00 32.00 17.60 10.20 61.80 50.20 29.00 3.80 36.20 18.50 31.10 45.80 54.50 10.20 15.40 36.30 45.20 50.10 43.80|34.50

[2] WSDDN M 43.60 50.40 32.20 26.00 9.80 58.50 50.40 30.90 7.90 36.10 18.20 31.70 41.40 52.60 8.80 14.00 37.80 46.90 53.40 47.90|34.90
[2] WSDDN L 39.40 50.10 31.50 16.30 12.60 64.50 42.80 42.60 10.10 35.70 24.90 38.20 34.40 55.60 9.40 14.70 30.20 40.70 54.70 46.90 |34.80

[2] WSDDN Ensemble |46.40 58.30 35.50 25.90 14.00 66.70 53.00 39.20 8.90 41.80 26.60 38.60 44.70 59.00 10.80 17.30 40.70 49.60 56.90 50.80|39.30
ours 48.82 45.92 37.43 26.92 9.23 50.69 43.36 43.62 10.62 35.90 27.02 38.62 48.51 43.77 24.71 12.09 29.04 23.18 48.84 41.88|34.51

Table 2: Comparison of detection results (mAP%) on the PASCAL VOC 2007 test dataset.

2007 test dataset.

4.2 YouTube-Objects

The YouTube-Objects dataset [15] contains videos of 10 different object classes. For each
object class, ground-truth bounding box is available for one frame per shot. We train and
evaluate our model on all the frames with the bounding box annotation.

Table 3 shows the results on this dataset. We compare the performance of our model with
the other baseline approaches. Again, our approach outperforms other baseline methods.
Note that the method in [16] exploits detectors for other related objects via transfer learning.
Even though our approach does not use detectors for other objects, we still outperform the
best reported performance (4th row in Table 3) in [16]. If we compare with the results in
[16] that do not use external object detectors (3rd row in Table 3), the performance gain is
even larger. Fig. 6 shows qualitative examples of localization on this dataset.

4.3 YouTube-Objects-Subset

Finally, we evaluate our model on the subset of the YouTube-Objects dataset [15] introduced
by Tang et al. [22]. The advantage of this dataset is that it has more videos with ground-truth
annotation. The ground-truth is available in the form of segmentation mask. For evaluation,
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method aero bird boat car cat cow dog  horse bike  train avg
[9] (video) 2512 31.18 27.78 3846 41.18 2838 3391 3562 2308 25 30.97
[14] 654 6730 389 652 463 402 653 484 39 25 50.1

[16] proposal only 51.69 54.84 3254 8571 1453 7568 5565 5342 51.69 3929 | 51.50
[16] proposal + transfer | 56.04 30.11 39.68 85.71 2479 87.83 5565 6027 61.8 51.79 | 55.37
ours 55.07 6237 43.65 84.62 2821 66.22 5826 5342 6292 39.29 | 55.40

Table 3: CorLoc results on the YouTube-Objects dataset [15]. We compare with several
state-of-the-art approaches on this dataset. Note that “[16] proposal + transfer” uses external
object detectors in their framework, so it is not directly comparable to other methods in the
table. See the text description for details.

aeroplane boat

motorbike rain
Figure 6: Qualitative examples of our approach on the YouTube-Objects dataset. Ground-
truth localization marked in Green whereas predicted localization is marked in Red.

cow dog

we take the localized object bounding box and apply grabCut [17] to generate the segmenta-
tion mask for the object. Then, we compare the result using the ground-truth segmentation
mask.

Table 4 shows the results on this dataset. Our model outperforms [16] even though the
best performance of [16] uses external object detectors.

method aero bird boat car cat cow dog  horse bike  train avg
[16] proposal only 4223 5124 2954 67776 1475 5020 47.02 22.18 1644 18.84 | 36.02
[16] proposal + transfer | 45.74 55.47 39.51 58.75 26.51 55.00 4351 3371 3276 25.63 | 41.66
ours 49.19 4552 4394 69.32 2643 60.24 56.03 40.39 4039 1991 | 4510

Table 4: CorLoc results on the YouTube-Objects-Subset dataset.

5 Conclusion

We have proposed an attention network, a new network architecture for object localization
from weakly labeled images. The novelty of our attention network is that it combines the
attention mechanism in object localization from weakly labeled data. Our experimental re-
sults demonstrate that our attention network outperforms other state-of-the-art approaches
on object localization.

There are several avenues for future work. First, we would like to combine the object
proposals as part of the network, so the entire pipeline can be trained end-to-end. Second,
our attention network is not designed for detection. Therefore, an interesting future work is
to combine our work with [2] to make the model amenable to be directly used as a detector.
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