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Abstract—We consider the problem of object localization
in Internet videos. An Internet video (e.g. YouTube videos) is
often associated with a semantic label (also known as a tag)
describing the main object present within it. However, the tag
does not provide any spatial or temporal information about the
main object in the video. Such videos are weakly labeled. Given
weakly labeled video with video-level object class tags, our goal
is to learn a model that can be used to localize the objects in
other videos with such tags. We define a latent SVM based
learning framework to tackle this problem. We demonstrate
the effectiveness of our method on a dataset composed of videos
collected from YouTube.

Keywords-video understanding; weakly supervised; object
localization

I. INTRODUCTION

There is a massive amount of video content available
on Internet through various video sharing websites (e.g.
YouTube). These Internet videos are frequently associated
with semantic tags describing the main object (or object of
interest) present in them. However, these video-level tags
do not provide any spatial or temporal information about
the object of interest. For example, if a YouTube video
is tagged with “cat”, it tells us that the object “cat” is
present somewhere in the video. However, the tag does
not provide any information regarding the location of the
object in each frame of the video. In computer vision,
these videos are commonly referred to as weakly labeled
videos. In this paper, we tackle the problem of localizing
the objects in weakly labeled videos. We believe that this
line of research can significantly improve the performance of
existing video retrieval algorithms by reducing the number
of false positives from search results. Moreover, it may also
help in addressing several problems in the domain of video
understanding.

Despite its significance, the problem is not well addressed
in the computer vision literature. This is due to the fact
that many standard techniques to tackle this problem are
supervised (e.g. [1], [2]) and require access to large amount
of labeled training data. As we know that collecting labeled
training data is very expensive and time-consuming. To
avoid the need of labeled training data, weakly supervised
techniques are proposed. Our work is inspired by previous
work on learning localized concepts [3]–[10] in videos.

Given a video with video-level tag, say “cat”, we try to
localize and segment the region corresponding to object
“cat” in each frame of the video.

In this paper, we use the latent SVM [1], [11] to learn
the discriminative object models for object localization in
videos. The main advantage of LSVM is that it does not
require the exact object annotation in videos for learning.
Given an input video with a video-level object class label,
we would like to automatically determine where the object
is in each frame of the video. We treat the spatial location
of the object in each frame of the video as latent variables
in our model.

The main technical contribution of this paper is the devel-
opment of a latent SVM formalism to localize and segment
objects in weakly labeled videos. This formalism treats the
location of object as a latent variable and learn the object
concepts using weakly labeled training data. Therefore, our
method is scalable and can be used to exploit the huge
amount of weakly labeled video data available on Internet
to address various challenges in video understanding. In
nutshell, our framework can be easily used to learn object
concepts from Internet data.

II. PREVIOUS WORK

In this paper we tackle the problem of localizing the object
of interest (i.e. object corresponding to the video level tag)
in weakly labeled videos. Our proposed method is inspired
by the Multiple Instance Learning (MIL) framework. MIL
is used to handle the problems with incomplete knowledge
about labels of training data. In MIL, we are given a set
of postively and negatively labeled bags of instances, where
a positive bag contains at least one positive instance, and
a negative bag contains no positive instances. Maron et
al. [14] used MIL for scene classification. Galleguillos et.
al [15] proposed MIL-based framework to recognize and
localize objects in images. MIL has also been used in image
annotation [10], object detection [1], etc.

Our work is also related to spatio-temporal segmentation
in videos [9], [16]–[20] and some of the recent work that
uses object annotation for various tasks in video understand-
ing, including event detection [21], object segmentation [5],
[22], and human activity recognition [23]. Our latent SVM
based formulation is similar to that of Shapovalova et.
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Figure 1. An overview of our approach. (1st row) We are given a collection of videos tagged with an object (say, “bird”). Our goal is to use them to
learn a model to localize bird in a new testing video labeled as “bird”. (2nd row) For each frame in a video, we extract object proposals by applying the
Edge Boxes algorithm [12]. (3rd row) We use the latent SVM framework to learn object model from the training data. We then apply the learned model to
re-score object proposals in each frame of the test video and select the top scored object proposal as the object location in each frame. Finally, we apply
GrabCut [13] to segment the object in each frame.

al [24], where a latent SVM is used for weakly supervised
action recognition and localization in videos.

Our work is closely related to a line of research on image
and video understanding using weakly labeled data. Tang
et. al [9] used video-level tags to annotate spatio-temporal
segments in videos. Wang and Mori [10] proposed a latent
model to capture the relationship between object tags and
image regions. Rochan et al. [3] proposed a method for
learning video specific appearance models to localize objects
in weakly labeled videos.

III. OUR APPROACH

The input to our method is a video with an object class
label (e.g. bird). We follow the assumptions made in [3],
[9] about the video. 1) There is only one instance of the
object corresponding to the object class label of the video.
2) The label associated to the video represents the main
object present within it and it appears in each frame of the
video. For example, if a video is tagged with “bird”, we
assume that there is a bird in each frame of the video.

Our proposed approach (see Fig. 1) consists of following
steps.

1) Generating object proposals: Given a video with
an object class label, the first step of our approach is to
generate a set of object proposals on each frame of the video.
Each object proposal is a bounding box which is likely to
contain any object. Note that we are interested in building
an approach which can be applied to a video of any object
category, so we use a generic algorithm that is not tuned to
any specific object categories to generate object proposals.

2) Latent SVM learning: We use the latent SVM to
learn a model for localizing an object in each frame of a
video for a given object class. Our training data consist of
frames extracted from videos with video-level object tags.
We represent each frame in the form (x, h, y), where x is
the frame itself, h is the latent variable that capture the
unobserved information about the data, and y is the object
class label. For example, suppose we want to learn a “bird”
model from a set of videos labeled as “bird” (positive) or not
“bird” (negative). We know that the object “bird” is present
in each frame of a positive video but we do not know its
exact location in the frame. In this scenario, h is used to
represent the unobserved location of “bird” in each frame
of the video. We train LSVM using an iterative algorithm
that alternates between inferring variable h on frames of



Figure 2. An example of generating object proposals. Given any frame of a
video, we apply the Edge Boxes algorithm [12] on it. The algorithm returns
a collection of object proposals that are likely to contain any object. The
algorithm also assigns an objectness score to each object proposal indicating
how likely it contains an object.

videos where object of interest (e.g. “bird”) is present and
optimizing the model parameters.

3) Applying the learned model on test videos: We now
apply our learned models on test videos. When a test video
with object class label (e.g. “bird”) is given as an input, we
take the learned “bird” model from the previous step and
apply it to every frame of the video. Our learned model re-
scores object proposals obtained from the first step. Note
that in the first step, an object proposal will have a high
score if it is likely to contain any object. However, after re-
scoring, a high scored object proposal indicates the presence
of object of interest (e.g. “bird”) within it. We select the
object proposal with the maximum score from each frame
of the video as the final object location.

4) Segmenting the object of interest: In the last step,
we consider the returned object proposals from the previous
step as the location of the object of interest and perform
segmentation. We employ the GrabCut [13] algorithm to
segment the object from its background on each frame.

We describe the details of each step in the following
subsections.

A. Generating Object Proposals

The first step in our approach is to generate a set of
object proposals on each frame of a given video. We use
the Edge Boxes algorithm [12] for this purpose. Note that
we choose not to use existing object detectors (e.g. [1]) to
generate the proposals. The reason is that we are interested
in a framework to be used to localize objects of any
object category. Current object detectors can only generate
proposals for a limited number of object categories.

The Edge Boxes algorithm [12] relies on one simple
observation: the number of edges that are totally enclosed
within a bounding box is indicative of the presence/absence
of an object in the box. The algorithm assigns an objectness
score to a bounding box based on the edge strengths within
it minus those that are part of a contour which straddles the
boundary of that box. This algorithm is not restricted to any
particular set of object categories and therefore we decide
to use it for generating object proposals within each frame
of a video.

Figure 2 shows examples of object proposals generated
on several frames of videos.

B. Latent SVM

We now define the latent SVM formulation for object
localization in weakly labeled videos. We assume that we
are given videos with object class labels. For each frame in
a video, we assume a latent variable indicating the location
of the object in that frame. We aim to learn a model that can
predict a latent region corresponding to object of interest in
each frame of a test video.

1) Scoring Function: We consider all the frames from the
training videos with the class label (e.g. “bird”) as positive
examples and all the other frames from the training videos as
negative examples. We represent a frame as (x, h, y), where
x is the frame itself and y is the object class label of this
frame. Each frame is associated with a latent variable h
indicating the location of the object in the frame. This is
a latent variable because this information is unobserved on
training data. We formulate a model for scoring a frame x
with object class label y as follows:

Fw(x, y) = max
h

fw(x, h, y) (1)

fw(x, h, y) = wTφ(x, h, y) (2)

where φ(x, h, y) is a vector of image features extracted
at the location h in the frame, and w is a vector of
model parameters to be learned. In this paper, we use the
Caffe-based CNN feature [25] which has been shown to
be effective on a wide range of recognition problems in
computer vision.

2) Learning Formulation: Give a set of N training ex-
amples {(xi, yi)}Ni=1, we use the following latent SVM [1],
[11] formulation to learn the model parameters w:

min
w,ξ>0

1

2
‖w‖2 + C

N∑
i=1

ξi (3)

s.t. Fw(xi, yi)− Fw(xi, y) ≥ ∆(y, yi)− ξi ∀i,∀y

Eq. 3 is a constrained optimization equation. The constraints
in Eq. 3 will make sure that the learned model w correctly
classify the training examples. The slack variables ξi ensure
the optimization is solvable. The parameter C is a hyperpa-
rameter that controls overfitting. ∆(y, yi) is a function that



measures the loss of predicting y when the ground-truth label
is yi. We use the standard 0/1 loss:

∆(y, yi) =

{
1 if y 6= yi

0 otherwise
(4)

3) Learning Procedure: We use a non-convex bundle
method [26] to solve the optimization in Eq. 3. It is an
extension of the cutting plane algorithm used in standard
SVM solvers. This algorithm performs piecewise quadratic
approximation of the objective function. In each iteration, it
computes a linear approximation of the objective function
using a subgradient and add it to the piecewise quadratic
approximation.

First, we rewrite Eq. 3 as a equivalent non-constraint
optimization as follows:

min
w

1

2
‖w‖2 +

N∑
i=1

R(w;xi, yi),where (5)

R(w;xi, yi) = max
y

[
∆(y, yi) + Fw(xi, y)

]
− Fw(xi, yi)

The NRBM [26] method requires the subgradient
∂R(w;xi,yi)

∂w at each iteration. It can be shown that the
subgradient can be calculated as:

∂R(w;xi, yi)

∂w
= φ(xi, h

∗, y∗)− φ(xi, h, yi) (6)

where h∗,y∗, h′ are defined as:

(h∗, y∗) = arg max
y,h

(∆(y, yi) + fw(xi, h, y))

h′ = arg max
h

fw(xi, h, yi) (7)

Given the subgradient, the NRBM method will find a local
optimum of Eq. 5.

C. Applying the Learned Model on Test Videos

Once we have learned the model parameters w for dif-
ferent object classes, they can be used to perform inference
on test videos. For a given test video v of the object class
label y, our inference task is to select the top scored object
proposal h∗ (i.e., a latent region corresponding to the object
of interest) in each frame of the video.

The latent region h∗ for a frame x is computed as follows:

h∗ = arg max
h

fw(x, h, y) (8)

Figure 3 shows example of applying the learned “cow”, “cat”
and “horse” model on several frames of test videos.

D. Segmenting the Object of Interest

Now we have a bounding box in each frame indicating
the location of the object in that frame. Our next step is
to segment the object from its background. As in [3], we
use the GrabCut [13] algorithm to segment out the object of
interest in each frame of the video. The standard GrabCut

Figure 3. Visualization of applying a learned “cow”, “cat”, “horse”
model on several frames of test videos labeled as “cow”, “cat” and “horse”
respectively. We apply the learned model on each frame of test video to re-
score the object proposals. Finally, we select the top scored object proposal
in each frame as the location of object of interest.

Figure 4. The GrabCut algorithm [13] is applied to segment out the
object of interest from its background in each frame of a video. We use
the selected object proposal in each frame (see Sec. III-C, also see Fig. 3)
as the input to the GrabCut algorithm in order to make the entire method
fully automatic.

algorithm requires the user input in the form of a bounding
box around the object. In our case, we do not require any
user input since we can use the selected object proposal
from each frame of the video as the input to the GrabCut
algorithm.

Figure 4 shows example of applying the GrabCut algo-
rithm to segment the object of interest within the frames of
test videos.

IV. EXPERIMENTS

We evaluate our proposed approach on a dataset consisting
of videos collected from YouTube and compare with several



Table I
COMPARISON OF OUR APPROACH WITH PREVIOUS WORK [3]. FOR EACH OBJECT CLASS, WE SHOW THE PERCENTAGE OF THE FRAMES WHERE THE

OBJECT OF INTEREST IS CORRECTLY LOCALIZED.

method aeroplane bird car cow motorbike boat cat dog horse train average
[3] 22.61 26.04 37.66 17.81 25.11 6.62 14.6 29.09 19.29 8.86 20.77

[3] with CNN feature 73.03 45.11 18.18 25.11 1.75 23.47 0.5 33.31 30.74 16.44 26.76
Ours 58.12 19.07 67.53 64.46 37.77 45.46 9.7 61.19 33.17 16.71 41.32

baseline approaches.

A. Dataset and Setup

We use the dataset from Tang et. al [9] which contains
144 video shots from 10 different object classes, including
aeroplane, bird, car, cow, etc. This dataset is originally built
from YouTube-Objects dataset [7]. Every video shot in the
dataset is annotated with the segmentation of main object
(i.e. object of interest) in it. Table II summarizes the number
of video shots and the total number of frames for each object
class in the dataset.

We divide this dataset into training and testing sets. We
randomly choose nearly 50 percent of video shots of each
class for training and use the rest for testing. In the end, our
test data contain 65 video shots with a total of 11169 frames
from 10 different object classes.

Table II
SUMMARY OF THE DATASET USED IN THE EXPERIMENTS.

Class Number of Shots Number of Frames
Aeroplane 9 1423

Bird 6 1206
Car 7 577
Cow 20 2978

Motorbike 10 827
Boat 17 2779
Cat 13 3870
Dog 27 3803

Horse 17 3990
Train 18 3270
Total 144 24723

We define our evaluation metrics in terms of the percent-
age of frames in which the object of interest is correctly
localized. We follow the PASCAL-criterion [27] to define
whether a localization is correct. For a frame in a test
video, let Pr be the set of foreground pixels returned by
our algorithm and Pgt be the set of ground-truth foreground
pixels provided by the annotation of the dataset. We define
a ratio r as:

r = |Pr ∩ Pgt| / |Pr ∪ Pgt| (9)

We consider the object of interest to be correctly localized
in a test video frame if the ratio r is greater than 0.5.
We evaluate the performance of our algorithm in terms
of percentage of frames in which the object of interest is
correctly localized.

B. Results

We compare the performance of our method with previous
work in [3]. For a given video, [3] first generates a set of
object proposals on each frame of the video. Then it builds a
video specific appearance model of the object of interest by
selecting top K (equal to number of frames in the video [3])
object proposals across all the frames of the video based on
the objectness score. In the end, it applies this appearance
model to select the best object proposal in each frame and
performs segmentation.

The appearance model in [3] uses color histogram, which
is not a very strong feature. As a second baseline, we replace
the color histogram feature with the state-of-the-art CNN
feature [25] to make their method more robust.

Table I shows the comparison of our method and the
baseline methods ( [3] and [3] with CNN feature) for 10
object classes. It is clear from the results that our method
significantly outperforms the baseline methods on 7 out of
10 object classes. Moreover, we also achieve a significant
improvement in overall average performance compared to
the baseline methods. Figure 5 and Figure 6 show some
sample results of our approach on these 10 object classes.

V. CONCLUSION

We have introduced a latent SVM framework for efficient
object localization in weakly labeled videos (e.g. YouTube
videos). The algorithm learns the object appearance models
from training videos with only video-level tags. Then these
appearance models can be applied on test videos to localize
the object of interest within them. Experimental results show
the effectiveness of our proposed approach.

There are many possible directions for future work. First,
we would like to extend our work to handle multiple instance
of object of interest in a video. Secondly, it would be
interesting to incorporate a temporal consistency model to
our framework as objects do not tend to move far apart
between consecutive frames. Lastly, we would also like
to consider the complex online videos where objects from
different classes appear at the same time.
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Figure 5. Visualization of results on videos tagged as (from top to bottom) “aeroplane”, “bird”, “boat”, “car”, and “cat”, respectively. For each video,
we show the original frames (1st row) and the segmentation results (2nd row).



Figure 6. Visualization of results on videos tagged as (from top to bottom) “cow”, “dog”, “horse”, “motorbike”, and “train”, respectively. For each video,
we show the original frames (1st row) and the segmentation results (2nd row).
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