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Abstract—We consider the problem of zero-shot recognition
of object categories from images. Given a set of object cate-
gories (called “known classes”) with training images, our goal
is to learn a system to recognize another non-overlapping set of
object categories (called “unknown classes”) for which there are
no training images. Our proposed approach exploits the recent
work in natural language processing which has produced vector
representations of words. Using the vector representations
of object classes, we develop a method for transferring the
appearance models from known object classes to unknown
object classes. Our experimental results on three benchmark
datasets show that our proposed method outperforms other
competing approaches.
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I. INTRODUCTION

Visual object recognition is a cornerstone problem in
computer vision. The standard approach is to formulate the
object recognition as a classification problem. Given an input
image, the goal is to predict the label of this image from a set
of predefined category labels. Object recognition systems are
usually trained using machine learning techniques. In order
to achieve good classification performance, they usually
require a large amount of labeled training data.

It has been estimated that humans can recognize between
5,000 and 30,000 object categories [1]. Collecting train-
ing images for all these object categories is tedious and
expensive. Therefore, various techniques for reducing the
number of training images have been proposed. Humans
are known to be capable to learn a new object category
from a small number (2 or 3) images [2]. They can learn
completely unseen classes purely from a high-level descrip-
tion without any training images. This is known as zero-
shot object recognition. In computer vision, there has been
work on using “attributes” as an intermediate layer for zero-
shot object recognition. These work first learn classifiers to
predict the attribute labels using the training images from
known classes. Then these attribute classifiers can be used
to recognize completely unseen object categories [3], [4].

The limitation of attribute-based approaches is that the
attributes have to be manually defined. Farhadi et al. [3]
manually define 64 visual attributes and use crowd-sourcing
to obtain the ground-truth attribute annotations for images.
Lampert et al. [4] use the data collected in the cognitive

science literature [5] to define 85 attributes for 50 animal
classes. Rohrbach et al. [6] try to extract class-attribute
relations by mining online resources. But the attributes
are limited to “part attributes” and it is not clear how to
generalize their approach to other attributes or object classes.

In this paper, we propose a new approach for zero-shot
object recognition. We assume that each object class (either
known or unknown) can be represented as a fixed-length
vector, which we call the semantic label vector. If two
objects (e.g. “cat” and “dog”) are semantically close, their
corresponding semantic label vectors tend to be close as
well. Attribute-based representation can be considered as
a special case of the semantic label vector. However, our
approach is not limited to attribute vectors. In the natural
language processing community has produced vector repre-
sentations of words by analyzing large collections of text
documents. Our approach can be used together with these
word vectors as well. The advantage of using word vectors
as the semantic label vectors is that these word vectors
can be obtained automatically from large collections of text
documents, so we do not have to define them manually. In
computer vision, these word vectors have been used in object
recognition [7], image-sentence mapping [8], etc.

Problem Statement: We assume that there are K known
object classes and L unknown object classes. There is no
overlap between known and unknown object classes. We
have training images only for the K known object classes.
Each object class (either known or unknown) is associated
with a semantic label vector. If two object classes are
semantically close, their semantic label vectors tend to be
close. We will discuss how to get the semantic label vectors
in II-A. During testing, we are given an image from one
of the L unknown classes. Our goal is to predict the class
label of this image. Note that since we do not have training
images for unknown classes, this problem cannot be solved
using traditional supervised learning approaches.

II. OUR APPROACH

The overview of our approach is summarized in Fig. 1.
For each object category (either known or unknown),
we assume that we have a vector representation of this
category. This vector representation can be obtained via
crowd-sourcing, or automatically from linguistic data. In



Figure 1. An overview of our approach. (Top) We represent the word
vector s of an unknown object class as a sparse linear combination of
the word vectors of known objects t1, t2,...,tK . The coefficients of this
linear combination are θ1, θ2,...,θK . (Bottom) We use the same coefficients
to represent the appearance model v of the unknown object as the linear
combination of the appearance models of known objects w1, w2,...,wK .
Then we can use the appearance model v for recognition.

Section II-A, we give details of how to obtain the word
vectors. For an unknown object category, we use the vector
representation to capture the semantic relatedness of this
object category to all the known object classes. In this paper,
we choose to represent the unknown object as a sparse linear
combination of known objects. For each known object, we
can learn its appearance model since we have the training
data. Then we transfer the appearance of the known objects
to the unknown object based on their semantic relatedness.
Finally, we use the transferred appearance models for the
unknown objects for prediction. Our approach is closely
related to [9]. The method in [9] deals with localizing unseen
objects in weakly labeled images or videos, while our work
focuses on recognizing unseen objects.

A. Semantic Label Vector

We assume that we have access to a vector representation
of an object class, which we call “semantic label vector”.
The label vectors capture the semantic knowledge about
objects. Ideally, if two objects (e.g. “cat” and “dog”) are
semantically similar, the corresponding label vectors will
be close. In this paper, we consider two different types of
semantic label vectors.

1) Attribute vectors: In computer vision, attributes have
been proposed to capture high-level concepts related to
objects. For example, Fig. 2 shows examples of attributes
of some object classes. The attributes can be defined either
per-image (e.g. [3]) or per-class (e.g. [4]). In this paper,
we consider attributes on a per-class basis. In other words,
each object class is associated with a vector describing the

Figure 2. Examples of attributes for three animal classes: skunk, buffalo,
and lion.

presence/absence of each attribute in the object category.
The attribute vector for an object category can be manually
defined. In some cases, they can be obtained from other
sources. For example, Lampert et al. [4] use the data
collected in cognitive science research [5] to define the
attribute vectors for animals.

2) Word vectors: The limitation of attribute vectors is
that they are available only for certain object classes pro-
vided by some datasets. An alternative is to use the word
semantic knowledge available from the natural language
processing (NLP) community. Recent work in NLP has
produced valuable resources on word semantic by analyzing
large collections of text documents. For example, a word is
represented as a fixed length vector in [10]. If two words
(e.g. “cat” and “dog”) are semantically close, the distance
of their word vectors tend to be small. Figure 3 shows a
visualization of the word vectors by projecting them on 2D
using t-SNE [11].

B. Unknown Object as Sparse Reconstruction

Now we have a vector representation for each object
class. In this section, we will describe how to represent an
unknown object as a linear combination of known objects
based on the label vectors. This will give us the semantic
relatedness of the unknown object and known objects. In
II-C, we will use this semantic relatedness to transfer the
appearance model from known objects to an unknown ob-
ject.

We denote the label vectors of the K known objects as tk
(k = 1, 2, ...,K). Let s be the label vector of an unknown
object class, we assume that s be approximated by a convex
combination of the label vectors of the K known objects,
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Figure 3. Visualization of word vectors in 2D. The 2D embedding of the word vectors is obtained using the t-SNE algorithm [11]. From the visualization,
we can see that semantically similar words tend to be close in terms of their word vectors.

i.e.

s ≈ θ1t1 + θ2t2 + ...+ θKtK (1)
where θk ≥ 0, k = 1, 2, ...,K (2)

We can estimate the coefficients Θ = [θ1, θ2, ..., θK ]
by solving an optimization problem similar to sparse cod-
ing [12].

min
Θ≥0
||

K∑
k=1

θktk − s||22 + λ||Θ||1 (3)

The first term in Eq. 3 is the reconstruction error. The second
term in Eq. 3 is a L1 regularization that encourages the
solution to be sparse, i.e. we would like to approximate
an unknown object with only a small number of known
objects. The parameter λ controls the trade-off between the
reconstruction error and the regularization.

C. Appearance Transfer

We now describe how to use the coefficients Θ obtained in
Eq. 3 to transfer the appearance models from the K known
object classes to an unknown object class.

Let wk represent the appearance model of the k-th
familiar object. Given the feature vector x of an image,
we use the linear model fk(x) = w>k x as the score of
predicting the the image as the k-th known object. Since

we have training data for the known objects, we can obtain
their appearance models wk (k = 1, 2, ...,K) using standard
supervised learning approaches. In this paper, we use a linear
SVM to learn the appearance models wk (k = 1, 2, ...,K).

Since we do not have training data for any unknown
object class, we cannot directly learn its appearance model
using standard supervised learning techniques. Instead, we
will construct the appearance model of an unknown object
class by transferring the appearance models of known object
classes. Our main assumption is that the label vectors and
appearance models of objects are related in similar ways.
In other words, we can use the coefficients Θ in Eq. 3 to
represent the appearance model v of an unknown object
class as:

v ≈
K∑

k=1

θkwk (4)

In Eq. 4, the coefficients θk (k = 1, 2, ...,K) are obtained
using the label vectors (see Eq. 3). So as long as we have
a vector representation of object classes, we can use Eq. 4
to transfer appearance models from known objects to an
unknown object.

D. Recognizing Novel Objects
Suppose we have L unknown object classes. For each

unknown object class, we obtain its appearance model vi



Figure 4. Examples of word vector distances. In each row, we show an
object class and the most similar four object classes according to the word
vector distances.

(i = 1, 2, ..., L) using the method in Section II-C. Given
an image x that belongs to one of the L unknown object
classes, we can simply predict the label y for this image
by choosing the appearance model that gives the maximum
score, i.e.:

y = arg max
i

v>i x (5)

III. EXPERIMENTS

We evaluate our approach on three benchmark datasets:
animal dataset [4], object attribute dataset [3], and a subset
(112 object classes) of the ImageNet [13]. Since the name of
an object class can be a phrase (e.g. “giant panda”), we use
Google’s word2phrase tool [10] to pre-process the training
text data when generating the word vectors. It allows to
generate vectors for phrases like “giant panda”. In the end,
we generate the word vectors for all object classes.

For comparison, we define several baseline approaches.
Since we have training images for the known classes, we
can learn a multiclass SVM classifier to predict the label as
one of the known classes. For a given image from one of the
unknown classes, we first use the learned SVM classifier to
predict one of the known classes. We then pick the unknown
class that is most similar to the predicted known class.
We define the following three different ways of measuring
the similarity of two object classes. Each of them gives a
baseline approach.

Word vector distance: this method measures the dis-
tance of two object classes using the L2 distance of their
corresponding word vectors. A smaller distance means that
the two object classes are more similar. Fig. 4 shows some
examples of several object classes and the most similar
object classes according to the word vector distances.

Figure 5. An illustration of how to compute the WordNet distance. For
two objects (“anteleope” and “beaver”) in the WordNet hierarchy, we use
the length of the path between them as the distance measurement. In this
case, the distance between these two objects is 7.

WordNet distance: this method measures the distance
of two object classes by considering their distance in the
WordNet hierarchy [14]. Fig. 5 illustrates how to compute
the WordNet distance of two object classes (“anteleope” and
“beaver”). Note that the distance is always an integer value
in this case. For a given object class, there might be multiple
unknown classes that have the minimum distance according
to this distance measurement. In this case, we simply assume
that the final prediction is achieved by randomly picking
an unknown class that has the minimum distance. Given
a test image, if there are T unknown classes that have the
minimum distance and the ground-truth class is one of them,
we consider this test image to be 1/T correct.

Attribute distance: this method measures the distance
of two object classes using the L2 distance of the attribute
vectors of these two classes. Fig. 6 shows some examples
of the object classes and the most similar object classes
according to the attribute vector distances.

A. Animal dataset

This dataset contains over 30,000 animal images of 50
classes. Each class is associated with 85 binary attributes.
These attributes are obtained from the cognitive science
literature [5]. Figure 7 visualizes the resulting 50×85 class-
attribute matrix.

Following [4], 40 animal classes are used as the known
classes and the remaining 10 used as the unknown classes.
We use Caffe [15] to extract the image features on this
dataset. The Caffe feature representation has been shown
to be effective in many object recognition tasks.

In Table I, we compare our approach (using both attribute
vector and word vector) with the three baselines. We also



Figure 7. Visualization of the class-attribute matrix on the animal dataset. Darker boxes mean stronger associated between an attribute and a class. Binary
attributes are obtained by thresholding the values in the matrix.

Figure 6. Examples of attribute vector distances. In each row, we show
an object class and the most similar four object classes according to the
attribute vector distances.

Table I
COMPARISON OF OUR APPROACH WITH SEVERAL BASELINE METHODS

ON THE ANIMAL DATASET.

method accuracy(%)
our approach (attribute vector) 46.21

our approach (word vector) 43.88
word vector distance 38.38

WordNet distance 35.6
attribute distance 35.59
Lampert et al. [4] 42.2

Rohrbach et al. [16] 42.7

compare with previous published work in [4], [16]. The
comparison shows that our proposed method outperforms the
competing approaches. In Fig. 8, we visualize the confusion
matrix of our approach with word vectors on this dataset.

Figure 8. Confusion matrix of our approach with word vectors on the
animal dataset. Each row corresponds to a ground-truth label and each
column corresponds to a prediction. The (i, j) entry of the confusion matrix
shows the percentage of images from class i that are classified as class j.

B. Object attribute dataset

This dataset contains images of 20 known object classes
and 12 unknown classes. On this dataset, the attributes are
annotated on the per-image level. Each image is annotated
with 64 binary attributes. In order to obtain the attribute
annotation for a class, we simply take the average of
the attribute vectors of all images in this class. Figure 9
visualizes the class-attribute matrix on this dataset.

The comparison of our approach and the baselines is
shown in Table II. Again, our method outperforms the
baseline approaches. We visualize the confusion matrix of
our approach with word vectors on this dataset in Fig. 10.

C. ImageNet-112 dataset

This dataset is collected in [13] and is a subset of the
ImageNet [14]. It contains images from 112 object classes.
We consider 76 of them as the known classes and the



Figure 9. Visualization of the class-attribute matrix of the object attribute dataset.

Table II
COMPARISON OF OUR APPROACH WITH SEVERAL BASELINE METHODS

ON THE OBJECT ATTRIBUTE DATASET.

method accuracy(%)
our approach (attribute vector) 30

our approach (word vector) 25
word vector distance 23.84

WordNet distance 18.21
attribute distance 18.79

Figure 10. Confusion matrix of our approach with word vectors on the
object attribute dataset.

Table III
COMPARISON OF OUR APPROACH WITH SEVERAL BASELINE METHODS

ON THE IMAGENET-112 DATASET.

method accuracy(%)
our approach (word vector) 28.23

word vector distance 24.36
WordNet distance 19.2

remaining 36 classes as the unknown classes. Similarly, we
use the Caffe [15] feature to represent each image in this
dataset.

Since this dataset does not have attribute annotations,
we only apply our approach with word vectors on this
dataset. The comparison of our approach and the baselines
is shown in Table III. Again, our method outperforms the
baseline approaches. We visualize the confusion matrix of
our approach on this dataset in Fig. 11.

IV. CONCLUSION

We have proposed an approach for zero-shot object recog-
nition. The novelty of our approach is that we use the
semantic label vectors of object classes to define how an
unknown class is related to known classes. In this paper, we
have considered both attribute vectors and word vectors of
object classes as the label vectors. Our experimental results
on three benchmark datasets have demonstrated that our
proposed method outperforms other baseline approaches.
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Figure 11. Confusion matrix of our approach with word vectors on the ImageNet-112 dataset.
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