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Abstract—We consider the problem of learning image/video
retrieval using a neural network based approach that optimizes
the ROC loss function. Neural network is one of the most
widely used techniques in computer vision. Standard neural
network uses simple loss functions, such as the softmax loss
or hinge loss over labels. Such loss functions are suitable
for standard classification problems where the performance
is measured by the overall accuracy. For image/video retrieval,
the performance is usually measured by some ranking-based
loss that is not well captured by the softmax loss or hinge loss.
In this paper, we develop a learning approach that incorporates
the ranking-based loss function in neural network. We apply
our approach in the problem of action retrieval in static images
and videos. The experimental results show that our proposed
approach outperforms standard neural networks trained with
softmax loss as well as an SVM-based approach that also
optimizes the ROC loss function.

Keywords-deep learning; image/video retrieval; ROC area
optimization

I. INTRODUCTION

Neural network is one of the most widely used machine
learning algorithms in computer vision nowadays. In par-
ticular, multi-layer convolutional neural networks have been
shown to be very effective in a variety of computer vision
problems, e.g., image classification [1], object detection [2],
etc. Classic neural networks use the softmax loss as the loss
function. The learning of neural networks involves optimiz-
ing this loss function using stochastic gradient descent and
backpropagation.

For standard multi-class classification, the softmax loss
is a reasonable choice as the loss function, since the per-
formance of multi-class classification is usually measured
by the overall accuracy. But for many computer vision
applications, the performance is measured by some complex
losses that do not decompose into a simple sum of individual
terms measured over each training instance. Examples of
such complex losses include the area under ROC curve,
the F1-score etc., which are commonly used in information
retrieval. For these applications, using the softmax loss as
the loss function is often suboptimal, since the learning will
end up optimizing the wrong performance measure. Ideally,
we would like the learning algorithm to directly optimize
the right performance measure.

Previous work [3] has developed methods for optimizing

such complex losses in the case of linear classifiers (e.g.,
linear SVM). But optimizing such complex losses in neural
networks is more challenging since neural networks are
nonlinear classifiers. In this paper, we propose a learning
algorithm based on backpropagation to optimize complex
loss functions. In particular, we consider the application in
image and video retrieval and use our approach to optimize
the area under ROC curve, which is commonly used to
measure the performance of image/video retrieval methods.
We apply our approach on the problem of action retrieval in
static images and videos.

II. RELATED WORK

Our work overlaps with two lines of research – one in-
volves directly optimizing application specific performance
measures, which in this case is ROC area, and the other
direction is the image/video retrieval using Deep Neural Net-
works (DNNs). Among the early approaches that used neural
networks for learning ranking functions with applications to
information retrieval, RankProp [4] is one which employs
point-wise training, i.e.; training on individual observations
only, and therefore, offers better running time. But, it lacks
a probabilistic model, and does not provide a well-defined
convergence condition. RankNet [5], on the other hand,
provides a probabilistic model for ranking by training a
neural network using gradient descent with a relative entropy
based general cost function. Like ours, RankNet is a pair-
wise approach, which trains on pairs of relevant-irrelevant
examples and gives preference ranking. RankOpt [6], on the
other hand, provides a linear model that optimizes ROC area
by approximating it using a sigmoid function.

The work of Joachims et al. [3] is most closest to ours.
Based on the structural SVM framework of [7], it provides
efficient algorithms to directly optimize a range of nonlinear
performance measures including ROC area and accounts for
linear running time in terms of total number of observations.
However, it offers a linear model, whereas, our approach
provides a nonlinear model that can directly optimize ROC
area. The superiority of our approach over this work is
demonstrated in the Results subsection.

The work of Mcfee et al. [8] is also based on structural
SVM framework. It uses gradient descent for metric learning
interpreted as an information retrieval problem and can



optimize a set of ranking measures including ROC area.
Having modified the 1-slack margin-rescaling cutting-plane
algorithm of [9] by incorporating a new constraint for the
metric and replacing the `2 penalty with an `1 penalty in the
regularization term, it ensured more sparsity and low-rank
solutions. Another pair-wise ranking approach was proposed
by Cao et al. [10] which was based on the ranking SVM
but was targeted for document retrieval. They modified the
loss function of ranking SVM to include two new cost
parameters called rank parameters and query parameters.
Rank parameters try to offset the bias due to the imbalance
in the number of instance pairs from different ranks, thereby
intensifying training on the top rankings. Query parameters
are intended to offset the bias introduced as the number of
relevant instances varies over the queries.

Regarding the use of DNNs to address the image retrieval
problem, recent advancement in learning high-level repre-
sentation of images via the use of Convolutional Neural
Networks (CNNs) has made it possible to close the semantic
gap between high-level representation of textual queries and
low-level representation of images. For example, Bai et
al. learned high-level representations of images by using a
multi-tasking transfer learning DNN architecture [11] and
trained a set of binary classifiers for different textual queries
based on these representations. Since it is very difficult for
such an approach to scale with a massive number of queries,
a bag-of-words (BoWs) based DNN model was proposed
in [12]. Here, the DNN learned high-level representations
of input images are mapped into BoWs space where visual
similarity between images is computed, whereas, relevance
between textual query and image is measured by the cosine
similarity between BoW representations of the two. To
further improve the results, a page rank algorithm was used
to consider the visual similarity of the retrieved images.

The work of Razavian et al. [13] is related to our work
as it also exploits image representations obtained from a
classification CNN for the task of image retrieval. Their
method does not require fine-tuning the classification CNN
with target domain data, still can deliver high retrieval
accuracy when compared to retrieval techniques not based
on CNN image representations. A very recent work [14]
in this direction of exploiting classification CNN for image
retrieval showed that image representations obtained from
the lower layers of the classification CNN performs better
than that obtained from the last layer as is usually done
with other approaches. Based on the recent successful clas-
sification CNNs like GoogleNet [15] and OxfordNet [16],
they leverage the benefit of using VLAD encoding of the
local convolutional features obtained from the lower layers
of these classification nets for instance level image retrieval.

III. PROPOSED APPROACH

In this work, we aim to learn binary ranking functions that
directly optimize ROC area. Since ROC area is a nonlinear

Figure 1. Architecture of the neural network for the proposed approach.

performance measure that cannot be decomposed over indi-
vidual instances of a training sample, we use the multivariate
structured SVM formulation to predict the ranking of the
whole sample instead of individual instances as described
in [3]. Unlike this SVM approach, we use a neural network
having the architecture as shown in Fig. 1, with a view to
learning complex nonlinear ranking functions.

To formally describe, let S represent a training sample of
n examples S = ((x1, y1), . . . , (xn, yn)), where xi ∈ IRd

represents the feature vector for a single example and
yi∈{−1,+1} represents one of two possible ranks of the
example, namely, irrelevant or relevant. Instead of predicting
the rank of each example individually, we try to learn
a mapping function h : X× · · ·×X→Y that takes all n
examples X = (x1, . . . , xn) at once and maps them to a
vector of n labels y = {y1, . . . , yn} ∈ Y = {−1,+1}n. In
order to obtain the best label vector y that gives the optimal
ordering of the sample giving the best ROC area measure,
we use a nonlinear discriminant function p as follows:

p(X) = arg max
y∈Y

FW (X, y) (1)

Here, FW (X, y) is a scoring function which in turn is
defined as follows:

FW (X, y) = WT
MΨ(φ(X), y) (2)

Here, φ(X) is a transformation function that performs a
sequence of nonlinear transformations on the sample X .
To be specific, each example xi ∈ X is passed through
m = 1, 2, . . . , (M − 1) layers of nonlinear transformations
in a neural network, where the output of the mth layer is
given by -

vm+1
i = s(WT

mv
m
i + bm) (3)

with the initial case of v1i = xi. Here, Wm and bm are the set
of weights and biases respectively, at layer m and s : IR 7→
IR is a nonlinear activation function, which in our case is
the sigmoid function. Therefore, the whole sample X =
(x1, . . . , xn) is transformed to a nonlinear representation
VM , such that VM = φ(X) = (vM1 , . . . , vMn ) .

Now, referring back to Eq. 2, Ψ(φ(X), y) is a compati-
bility function that measures the compatibility between the
transformed input VM and output label vector y. Following
[3], we used a simple compatibility function Ψ of the



following form that depends only on individual transformed
training example vMi and its rank label yi.

Ψ(φ(X), y) = Ψ(VM , y) =

n∑
i=1

vMi yi = VMy (4)

Finally, the (M − 1) nonlinear layers of the neural network
are followed by a linear scoring layer (the M th layer) with
weights WM (and no biases) to prduce the scores FW (X, y)
as shown in Eq. 2. Therefore, putting everything together, the
optimal labeling sequence for the training sample X would
be –

p(X) = arg max
y∈Y

WT
MV

My (5)

Once the scores for the whole sample is predicted, we
can simply sort the scores in descending order to get a
total ranking of the sample. A perfect ranking requires the
scores for all relevant examples to be higher than that of
the irrelevant ones. In order to learn the retrieval function
that minimizes ROC area loss of the training sample, the
neural network tries to optimize an objective function of the
following form:

arg min
Wm,bm

O = O1 +O2

= FW (X, y′) + ∆(y, y′)− FW (X, y)

+
λ

2
(

M∑
m=1

||Wm||2F +

M−1∑
m=1

||bm||22)

= WT
MV

My′ + ∆(y, y′)−WT
MV

My

+
λ

2
(

M∑
m=1

||Wm||2F +

M−1∑
m=1

||bm||22)

(6)

The objective function O includes two terms – the loss
term O1 and the regularization term O2. Minimizing O1 ac-
tually leads to maximizing FW (X, y), the score for the cor-
rect label vector y, while minimizing FW (X, y′), the score
for any incorrect label vector y′. Instead of an example-
based loss, O1 is having a sample-based loss ∆(y, y′) which
is actually an application specific loss and thus measures
the ROC area loss in this case. The regularization term O2

tries to keep the parameters of the neural network small.
Here, ||A||F represents the Frobenius norm of the matrix A
and λ is a regularization parameter. Like [3], we are using
pair-wise ranking to learn retrieval functions. Therefore, the
ROC area loss in this setting can be simply measured by the
number of misranked pairs as follows:

∆(y, y′) =
total misranked pairs

P ×N
(7)

Here, P is the total number of relevant examples and N
is the total number of irrelevant examples in the training
sample. To calculate the total misranked pairs for the current
parameters, we use Algorithm 3 as described in [3].

In order to obtain the set of weights Wm (for m =
1, 2, . . . ,M ) and biases bm (for m = 1, 2, . . . ,M − 1), we

solve Eq. 6, using stochastic gradient descent. The gradient
GW

M of the objective function O with respect to the weights
of the M th layer (i.e; WM ) can then be written as follows:

GW
M =

∂O

∂WM
= Ψ(φ(X), y′)−Ψ(φ(X), y) + λWM

= VMy′ − VMy + λWM

(8)

For the other layers of the neural network, i.e.; for m =
(M − 1), . . . , 1, the gradients GW

m and Gb
m with respect

to the weights Wm and biases bm, respectively can be
computed using the chain rule of derivates as follows:

GW
m =

∂O

∂VM

∂VM
∂VM−1

· · · ∂Vm+1

∂Wm
= δmVm + λWm (9)

Gb
m = δm + λbm (10)

where, δm is defined as follows:

δm =


WT

m+1(y′ − y)� s′(Zm) , if m = M − 1

WT
m+1δm+1 � s′(Zm) , otherwise

(11)

Here, s′(a) is the derivative of the sigmoid function s(a) =
1

1+e−a and � is an element-wise multiplication operator. Zm

is defined as -

Zm = WT
mVm + bm (12)

The update rule for the I th iteration of weight update then
becomes W I

m = W
(I−1)
m + ηGW

m , where η is the learning
rate. Update rule for the biases are similar. Details about
setting the hyper-parameters η and λ are discussed in section
IV.

IV. EXPERIMENTS

A. Setup and Datasets

In order to predict a binary ranking with a view to
retrieving images or videos from a repository, we directly
optimize the ROC area using a neural network. We compare
our approach with an structural SVM formulation called
SVMmulti [3] as implemented in SVMlight [17] that can
also directly optimize ROC area. Moreover, to support our
hypothesis that directly optimizing application specific loss
(in this case, ROC area loss) gives better performance than
optimizing some surrogate loss, we compare our approach
with a standard neural network having the same architecture
and parameters as ours, but optimized for general classi-
fication loss, more specifically, softmax loss. For the rest
of the paper, we call our neural network approach directly
optimizing for ROC area loss as NNROC and the other one
optimizing for softmax loss as NNGen.

To evaluate our approach, we conducted experiments on
two different datasets – the Stanford 40 actions dataset
[18] and the UCF101 actions dataset [19]. The Stanford 40
actions dataset contains 4,000 training images and 5,532 test



Table I
RETRIEVAL PERFORMANCE COMPARISON OF THE PROPOSED APPROACH WITH THE BASELINE APPROACHES.

Dataset
Average ROC

area (%)

Improvement
over the

baselines (%)

# of classes
showing

performance
gain

# of classes
showing

performance
decline

NNGen SVMmulti NNROC NNGen SVMmulti NNGen SVMmulti NNGen SVMmulti

Stanford 40 actions
Train/Test: 4000/5532
Features: 4096
Total Class: 40

84.65 88.00 91.11 6.46 3.11 all 35 none 5

UCF101 actions
Train/Test: 9537/3723
Features: 4096
Total Class: 101

95.12 98.66 99.13 4.01 0.47 all 51 none 34

images covering a total of 40 different human action cate-
gories. The UCF101, on the other hand, is a video dataset
containing videos of 101 action classes with a train and test
split of 9,537 and 3,783 videos respectively, summing up to
a total of 13,320 videos. For all the experiments, we used
the train/test splits as suggested by the datasets.

The neural network as shown in Fig. 1 was used for
both the proposed approach and the baseline approach of
NNGen. Having a biased hyperplane, it consists of four
layers (i.e.; M = 4) with 100, 50, 50 and 1 units in
the layers, respectively. Stochastic gradient descent with
momentum 0.9, weight decay 0.0005 and minibatch size
of 100 were used for training the network. We used fixed
learning rates of 10−3 and 10−4 for the Stanford 40 and
UCF101 datasets, respectively, as selected by line search.
All the weights and biases of the network were initialized
randomly. We implemented the neural network using a
popular deep learning tool called MatConvNet [20].

For the image dataset, we extracted 4,096 dimensional
feature vector for each image from the fc6 fully connected
layer of the Caffe implementation [21] of AlexNet deep
network model as described in [1]. We used activations from
fc6 layer, as they have have been reported to produce better
results for a variety of visual recognition tasks [22] .

For the UCF101 dataset, we used a deep-learning based
video representation tool called Convolutional 3D (C3D)
[23]. C3D is a deep 3-D convolutional network that is trained
on a large scale of video dataset. It has been reported to
provide state-of-the-art video representation used for video
analysis. C3D segments a video into chunks of 20 frames. It
then passes each chunk of frames through the deep network
and extracts 4,096 dimensional deep-learning feature vector
from the fully connected layer fc7. Finally, the individual
group feature vectors are averaged over each video to
produce a single 4,096 dimensional vector representation of
the video.

The regularization parameters λ (for NNROC and NNGen)
and C (for SVMmulti) were set empirically by using a valida-
tion set consisting of 1

3 of the training examples selected at
random. For the baseline SVM approach of SVMmulti both

linear and nonlinear kernels were used and the best results
are reported.

B. Results

For each of the classes in a dataset, we learn a binary
retrieval function considering the examples belonging to the
query class as relevant and all other examples as irrelevant.
Table I lists the average performance on the two datasets
as achieved by our approach NNROC and the two baseline
methods of SVMmulti and NNGen. We use ROC area as the
measure of retrieval performance.

While comparing our approach NNROC with the baseline
approach SVMmulti, among the 40 classes in the image
collection, 35 classes showed performance gain as opposed
to 5 showing decline in performance, whereas, for the
video collection, 51 showed performance gain, 34 showed
decline in performance and the rest were affected by neither
approach. On the other hand, while comparing with the
other baseline approach of NNGen, all the classes for both
datasets see performance improvement with an average
performance gain larger than that achieved over SVMmulti.
This is no surprise as NNGen is not optimizing ROC area
loss, rather general classification loss, and therefore, exhibits
poor retrieval performance.

Figure 2 shows ROC curves of our approach as well as the
two baseline methods for 40 different query classes on the
Stanford 40 actions dataset [18]. As depicted in Table I, the
ROC curves of our approach (blue curves) are covering the
respective ROC curves of the baseline methods for almost
all classes.

Since learning binary retrieval functions requires predict-
ing binary ranking that maximizes the scores for the relevant
examples while minimizing scores for the irrelevant ones,
we can perform classification by these scores. Therefore,
to further investigate the effectiveness of our approach, we
perform multi-class classification by taking the scores of an
example for all the classes and then predicting the class of
the example to be one that gives the maximum score. The
results are shown in Table II.
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Figure 2. ROC curves of the proposed method and the baseline methods for the Stanford 40 actions dataset [18]. TPR and FPR represent True Positive
Rate and False Positive Rate, respectively.

As shown in the table, our proposed approach outperforms
the two baseline methods for both datasets. The improve-
ment is more pronounced over the baseline approach of
NNGen than SVMmulti. This is attributed to the fact that
NNGen is optimizing for softmax loss which is a general
classification loss, whereas, SVMmulti and our approach both
optimize for the application specific loss, namely ROC area
loss. The reason for our approach to demonstrate superiority
over the SVM based approach is because, our approach
provides a nonlinear model which is able to better handle
the higher order nonlinearities inherent in the data. Figure 3
shows the confusion of our approach for the multi-class
classification on the Stanford 40 actions dataset [18].

We also show some retrieval examples of our approach
and the two baseline methods for three different queries
on the Stanford 40 actions [18] dataset as shown in Fig.
4. For each of the three methods, we show the top ten
retrieved examples believed to contain humans performing
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Figure 3. Confusion matrix of our approach on the Stanford 40 actions
dataset [18].

Table II
COMPARISON OF MULTI-CLASS CLASSIFICATION ACCURACY OF OUR

APPROACH WITH THE BASELINE METHODS.

`````````Method
Dataset Stanford 40 UCF101

NNGen 28.53% 64.72%
SVMmulti 36.75% 70.10%
NNROC 40.62% 75.06%

the query action. Qualitatively, better results are produced
by our method over the baselines as evidenced from the
retrieved examples.

V. CONCLUSION

Neural network is a very powerful technique for learning
complex nonlinear functions that can effectively capture the
higher-order nonlinearities inherent in the data. But standard
neural network learning algorithms are limited by the simple
loss functions being used. In this paper, we have proposed
a learning approach that trains a neural network to directly
optimize the ROC area loss, a ranking-based loss function.
We have demonstrated our approach in retrieving actions
from still images and videos. Our experimental results show
that our proposed approach is much more effective in retriev-
ing images/videos than traditional neural networks trained
with simple softmax loss functions. We also demonstrated
superiority of our approach over an SVM-based approach
that offers a linear model.
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Figure 4. Top ten retrieval results (from left to right) of our approach and the baseline methods for three different queries on the Stanford 40 actions
dataset [18]. For each query, first row and second row refer to the retrieval results of the two baseline methods of NNGen and SVMmulti, respectively,
while the third row refers to the retrieval results of our proposed approach NNROC. Images bounded in green boxes indicate relevant examples, while those
bounded in red boxes are irrelevant.
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