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Abstract—We consider the problem of dense image labeling.
In recent work, many state-of-the-art techniques make use of
Deep Convolutional Neural Networks (DCNN) for dense image
labeling tasks (e.g. multi-class semantic segmentation) given
their capacity to learn rich features. In this paper, we propose
a dense image labeling approach based on DCNNs coupled
with a support vector classifier. We employ the classifier based
on DCNNs outputs while leveraging features corresponding to
a variety of different labels drawn from a number of different
datasets with distinct objectives for prediction. The principal
motivation for using a support vector classifier is to explore
the strength of leveraging different types of representations
for predicting class labels, that are not directly related to the
target task (e.g. predicted scene geometry may help assigning
object labels). This is the first approach where DCNNs with
predictions tied to different objectives are combined to produce
better segmentation results. We evaluate our model on the
Stanford background (semantic, geometric) and PASCAL VOC
2012 datasets. Compared to other state-of-the-art techniques,
our approach produces state-of-the-art results for the Stanford
background dataset, and also demonstrates the utility of
making use of intelligence tied to different sources of labeling
in improving upon baseline PASCAL VOC 2012 results.

Keywords-Deep Convolutional Neural Network, Support Vec-
tor Classifier, Semantic Segmentation, Geometric Labeling

I. INTRODUCTION

Many computer vision problems involve producing a
pixel-wise dense labeling of a given image as the output.
One example of dense image labeling is the task of semantic
segmentation. The goal of semantic segmentation is to label
each pixel in an image according to the object classes
that this pixel belongs to. Another example is geometric
labeling, where the goal is to label each pixel according to its
geometric class (e.g. sky, vertical, horizontal). Traditionally,
these dense image labeling tasks are often solved by learning
a classifier that classifies each pixel based on some manually
defined visual features (e.g. [19]). Probabilistic models (e.g.
conditional random fields (CRFs)) are then used to refine
the final results.

In recent years, deep convolution neural networks (DC-
NNs) have shown tremendous success in high-level visual
recognition tasks, such as image classification, object detec-
tion and a variety of other problems. This has included work
on extending DCNNs for dense image labeling problems,
such as semantic segmentation. Most DCNN-based semantic

segmentation methods (e.g. [12]) use convolutional neural
networks to produce a coarse label map, then use upsampling
(sometimes referred to as deconvolution) to produce dense
outputs.

In order to properly train deep convolutional neural
networks, one typically needs a large amount of labeled
training data. Compared with image classification, training
data for dense image labeling tasks is much more onerous
to produce. For example, the current semantic segmentation
datasets are orders of magnitude smaller than datasets that
address the problem of image classification. Most DCNN-
based semantic segmentation methods use pre-trained image
classification models and fine-tune those models for seman-
tic segmentation.

The computer vision community has produced several
benchmark datasets for various dense image labeling tasks
over the years. For example, the Standard background
dataset [6] contains pixel-level annotations of 8 seman-
tic classes and 3 geometric classes. The PASCAL VOC
dataset [4] contains pixel-level annotations for 21 semantic
classes (20 object classes and the background class). The
possibility of combining these datasets (and others as they
become available) presents the opportunity to make use
of larger datasets, and more variety in labeling to learn
DCNN s for dense image labeling. Given that the class labels
corresponding to different datasets may not be identical,
there is a challenge in directly combining these datasets
to address a specific problem. For example, in considering
the semantic segmentation problem posed by the PASCAL
VOC dataset, it is unclear whether value may be derived
from considering images and labels resident in the Stanford
background dataset.

Our work is motivated by the aforementioned observation.
Even though the annotations on different datasets are not
compatible, the visual representations that are of value in
solving these different dense labeling tasks may overlap. In
making use of these diverse datasets to learn a good visual
feature representation, this may present the opportunity for
better performance for any specific dense labeling task
corresponding to any of the problems associated with a
specific subset of data corresponding to this larger dataset
comprised of heterogeneous and incompatible labels.

In this paper, we therefore propose a new approach



for dense image labeling by taking advantage of multiple
datasets, wherein class labels corresponding to different
datasets might not be compatible. We learn a DCNN for
each of the datasets separately. The outputs of the DCNNs
learned from different datasets are concatenated to provide
feature vectors that are directly driven by the target problem,
but also corresponding to other types of labels. An SVM
classifier is learned based on this feature vector to perform
dense image labeling on a particular dataset. This presents
a natural avenue for determining the extent to which added
value may be derived from making use of labeled data that
are not directly related to the target classification problem.

II. RELATED WORK

Semantic segmentation is fundamental to image under-
standing as it assigns class labels to individual pixels in
an image. The problem of semantic segmentation has been
studied over decades but remains a challenging task. Some
of the difficulty is due to variation in the appearance of
objects, background clutter, pose variations, scale changes,
occlusions, and other factors.

Approaches based on DCNNs have shown tremendous
success in computer vision. Krizhevsky et al. [9] introduced
a DCNN architecture named AlexNet for the image classi-
fication task. This model consists of millions of parameters
and neurons. Simonyan and Zisserman [!8] proposed a
deep network named VGG-16 to examine the impact of
network depth on classification accuracy. Recent, there has
been work on extending DCNNs for dense image label-
ing tasks, such as semantic segmentation. Mostajabi et al.
[14] introduced a feed-forward architecture for semantic
segmentation based on super-pixels. Starting from a super-
pixel, they consider small regions containing the super-pixel
along with the regions around it to extract rich features
using a CNN. Instead of predicting labels for each pixel,
their approach classifies super-pixels using a feedforward
multilayer network. Classifying super-pixels using a CNN
leads to significant improvement in accuracy.

Recent techniques apply DCNNs to the whole image in a
sliding window fashion. Long et al. [12] proposed the first
work which trains fully convolutional networks end-to-end.
They derived these results based on fine-tuning of the VGG-
16 [18] and GoogLeNet [20], models towards performing
segmentation by defining a novel skip architecture which
combines semantic information with deep, coarse, and ap-
pearance based information. Chen et al. [3] proposed a novel
architecture for semantic segmentation using a DCNN and
fully connected CRF. This is the first model where DCNN5s
and CRFs are combined to produce accurate segmentation
results.

The fixed sized receptive fields in CNNs imply certain
limitations during training and label prediction. If the image
size is larger or smaller than the defined receptive field, it is
more likely to be mislabeled as label prediction only depends

on local information for large objects. Noh et al. [15]
proposed a deconvolution network consisting of deconvolu-
tion and un-pooling layers for semantic segmentation which
improves the limitations of fully convolutional networks.
The proposed deconvolutional network [15] identifies more
detailed structure in upsampling the image, and leverages
cross-scale relationships to predict instance-wise segmen-
tation labels which are combined to produce the resulting
dense segmentation. Zheng et al. [23] proposed a new
segmentation model named CRFasRNN by expressing the
mean field inference of dense CRFs with Gaussian pairwise
potentials in the form of a Recurrent Neural Network (RNN).
CRFasRNN [23] can be trained end-to-end by conventional
back-propagation algorithms which yields a new state-of-
the art in terms of accuracy. For the pixel-level prediction
produced by a pre-trained CNN, CRFasRRN [23] use the
CRF inference as a post-processing method. Liu et al.
[11] introduced a CRF based segmentation model. Instead
of using conventional feature extractors they used 4096
dimensional CNN features to learn the CRF in order to
predict multi-class label.

Geometric labeling is another dense image labeling task
we consider in this paper. The goal of geometric labeling is
to label each pixel (or superpixel) in the image according to
its geometric class. Hoiem et al. [7] proposed a method for
geometric labeling by classifying each superpixel. Gould et
al. [6] used a CRF model to decompose an image scene into
geometric and semantically consistent regions.

III. OUR APPROACH

Given an input image, our goal is to produce a dense
labeling of the pixels in the image. In this paper, we consider
two dense labeling tasks, namely semantic segmentation [ 2]
and geometric labeling [6]. The goal of semantic segmen-
tation aims to label each pixel according to the labeled
object category (e.g. people, car, building, etc.). The goal
of geometric labeling is to label each pixel according to
its geometric class. Over the years, the computer vision
community has created several benchmark datasets for these
problems, but these datasets often consider different sets of
classes. For example, the Stanford background dataset [6]
contains 8§ categorical classes (sky, tree, road, grass, water,
building, mountain, foreground) and 3 geometric classes
(sky, horizontal, vertical) while the PASCAL VOC data [4]
contains 21 classes (20 object classes + background).

In this paper, we propose an approach for dense im-
age labeling based on deep convolutional neural networks
(DCNNs). The novelty of our approach is that we take
advantage of multiple datasets even though they are defined
by different sets of class labels. In particular, we use the
Standard background dataset (with both semantic labels and
geometric labels) and the PASCAL VOC dataset (with object
class labels) in this paper. An overview of our approach is il-
lustrated in Fig. 1. First, we train three separate DCNNs. The
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Figure 1. An overview of our proposed approach. Leftmost images are samples from different datasets. From each dataset, we learn a deep convolutional
neural network (DCNN). The architecture of the DCNN is shown in the middle of the figure and is described in detail in Sec. III-A. Convolution, pooling
and soft-max layers in the DCNNs are shown in different colors. ReLu layers are omitted from the box. The DCNN learned from each dataset will produce
a dense labeling for a given image. We concatenate the outputs from these DCNNs to form a feature vector for each pixel in the image. We then train an
SVM classifier based on these feature vectors to obtain the final labeling of each pixel in the image.

first DCNN is trained on the Stanford background dataset
to produce one of the 8 semantic classes for each pixel.
The second DCNN is trained on the Stanford background
dataset to produce one of the three geometric classes. The
third DCNN is trained on the PASCAL dataset to produce
one of the 20 object classes for each pixel (Sec. III-A). For a
given image, we apply these three DCNNs and concatenate
their outputs to form a feature vector. We then learn a SVM
classifier based on this feature vector to predict the label of
each pixel in the image (Sec. III-B).

A. Deep Convolutional Neural Network

The architecture of our deep network is based on
DeepLab [3], which in turn is based on the VGG-16 network
[18] trained on the ImageNet classification task. In total,
the network has 15 convolutional layers and 5 max-pooling
layers. Table I summarizes the different layers in the network
and their parameters.

An input image is passed through a stack of convolutional
layers with very small kernel sizes. Spatial pooling is carried
out by five max-pooling layers, which follow the convolution
layers. Two fully-connected layers of VGG-16 [18] network
are transformed to convolutional layers in order to get pixel-
wise prediction. The last 1x1 convolution (fc8) layer is used
to make sure that the number of output matches the number
of labels. For example, if we train this network on the
Standard background dataset to predict geometric classes
for each pixel, the number of labels will be 3. If we train
this network to predict object classes for each pixel, the
number of labels will be 21. We use Caffe [8] for training
the network.

Suppose that we want to train the network to predict
semantic classes on the Stanford background dataset. There

are 8 semantic categories on this dataset. Each image is
rescaled to 513x513 during training. Through convolution
and pooling, the deep network extracts multi-class visual
deep features and generates 8 coarse score maps. Each
feature map indicates the probabilistic label map of each se-
mantic category. The resulting feature maps are up-sampled
to 513x513 using bilinear interpolation to equate the size of
the input image. Therefore, the network predicts 513x513x8
labels in the end. Similarly, we will get 513x513x3 labels
by training a DCNN for the geometric labeling task on
the Stanford background dataset, and 513x513x21 labels
by training a DCNN for the semantic labeling task on the
PASCAL VOC dataset. We concatenate these three sets of
features maps together in the end to get a feature map of
513x513x(8+3+21). Each pixel corresponds to a (8+3+21)
dimensional feature vector in the feature map.

B. SVM Learning

In this section, we consider how the feature maps obtained
from the DCNNs in Sec. III-A are processed and used to
train a SVM classifier for producing the final the dense
labeling on a particular dataset.

For ease of presentation, let us consider the semantic
segmentation problem on the PASCAL VOC dataset. This
problem requires labeling each pixel as one of the 21
semantic classes defined in the PASCAL VOC. We first
run the three DCNNs from Sec. III-A on both training and
test images in the PASCAL VOC datasets (these DCNNs
are trained from both the PASCAL VOC and the Standard
background datasets with heterogeneous labels). Each pixel
in an image is then represented by a (8+3+21=32) dimen-
sional feature vector. We then learn a linear SVM classifier
to predict the 21 semantic classes on the PASCAL VOC
dataset using this 32 dimensional feature vector.



[ 1 |2 | 3 | 4] 5 |6 | 7 |8 9 |10 | 1| 12 ] 13
layer 2X conv | max | 2 X conv | max | 2X conv | max | 3X conv | max | 3X conv | max fco fc7 fc8
filter-stride 3-12 3-2 3-12 3-2 3-12 3-2 3-12 3-1 3-12 3-1 3-12 | 1-12 1-12
#channel 64 64 128 128 256 256 512 512 512 512 | 1024 | 1024 | #label
activation relu idn relu idn relu idn relu idn relu idn relu relu soft
size 321 161 161 81 81 41 41 41 41 41 41 41 41

Table I

DETAILS OF THE ARCHITECTURE OF THE CONVOLUTIONAL NEURAL NETWORK.

We have experimented with several approaches for con-
structing the training data for learning the SVM classifier.

ConvNet-SVM: This approach randomly selects a set
of pixels from all the training images on PASCAL VOC.
Each pixel will be a training instance with 21 dimensional
feature vector from DCNN. Since we know the ground-
truth semantic labels of these pixels, we can learn a SVM
classifier using the ground-truth labels.

ConvNet-CSVM: This approach randomly selects a set
of pixels from all the training images on PASCAL VOC.
Each pixel will be a training instance with 32 dimensional
feature vector, corresponding to the concatenated feature set.

Both ConvNet-SVM and ConvNet-CSVM learn the SVM
classifier from the pixels sampled from the PASCAL training
images. We have also experimented with sampling the pixels
from the PASCAL test images.

ConvNet-CSVM2: This approach randomly selects a set
of pixels from all the test images on PASCAL VOC. Each
pixel will be a training instance with 32 dimensional feature
vector. An image-specific SVM technique is then applied
to each test image separately assuming the predicted labels
(i.e. based on ConvNet-SVM) represent the ground-truth for
that specific image. That is, given a general classifier, and
associated label predictions, these may be refined by training
an SVM specific to the image under consideration by making
the assumption that the assigned class labels are mostly
correct and treating this as the ground truth. This stage of
image-specific SVM classification takes full advantage of the
support vector classification stage to refine the initial generic
predictions to produce those that may better characterize a
specific test image. An overview of the process is shown in
Fig. 2

ConvNet-CSVM3: This approach is similar to Convnet-
CSVM2 apart from how pixels are sampled from the test
images on PASCAL VOC. We select class-wise positive
pixels (those for which ConvNet-SVM produces a higher
score among all other categories) with a 32 dimensional
feature vector.

ConvNet-WSVM: This approach randomly selects class-
wise positive pixels with a 32 dimensional feature vector
from all the test images on PASCAL VOC. Then instead
of linear SVM, we train a weighted SVM by assigning a
different weight to each pixel to vary the contribution of
each pixel in the second SVM training stage. We use the
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Figure 2.  (a) Test image. Predicted labels produced by the classifier are
used to train image specific classifier again along with the corresponding
test image. Note that the known label values themselves are not used in
training, but rather the labels produced by the generic SVM are assumed to
be mostly correct and define the image specific ground truth for subsequent
SVM training based on 1 image. (b) Output image.

Kernel-based Possible C-means (KPCM) algorithm [21] to
generate a weight for each pixel. Finally the refined pixel-
wise segmentation is predicted by the refined SVM.

Table II summarizes these different approaches.

Method Procedure

ConvNet-SVM Trained linear SVM by choosing random sam-
ples from training images

Trained linear SVM by choosing samples from
training images with concatenated feature maps
Trained linear SVM by choosing samples from
test images with concatenated feature maps (note
that for this case and those that follow, the
ground truth labels are assumed (from the pre-
ceding classifiers), and do not come from the
known test image labels)

Trained linear SVM by choosing class-wise
positive samples (where the DCNN produces a
higher score among all other categories) from
test images with concatenated feature maps
Trained weighted SVM by choosing class-wise
positive samples from test images with concate-
nated feature maps.

ConvNet-CSVM

ConvNet-CSVM2

ConvNet-CSVM3

ConvNet-WSVM

Table 11
DESCRIPTION OF DIFFERENT CONFIGURATIONS USED IN OUR
EXPERIMENTS. IN EACH CASE, WE PERFORM IMAGE-SPECIFIC SVM TO
GET FINAL PREDICTIONS.

IV. EXPERIMENTAL EVALUATION



[ Method [ sky [ tree [ road |

grass | water [ building | mountain | foreground [ average (%) [ overall (%) |

ConvNet 955 | 854 | 937 94.4 92.1 88.6 86.2 77.4 89.1 90.4

ConvNet-SVM 93.2 | 90.5 | 93.1 92.7 91.3 89.4 85.8 78.6 89.3 90.8

ConvNet-CSVM 944 | 859 | 95.1 91.0 92.7 90.9 85.5 86.5 89.6 91.2

ConvNet-CSVM2 | 932 | 90.3 | 96.5 92.7 92.6 96.2 65.3 75.3 87.8 91.6

ConvNet-CSVM3 | 939 | 90.1 | 944 | 94.2 91.7 94.2 90.7 75.4 90.4 90.9

ConvNet-WSVM 94.0 | 90.1 | 942 | 942 91.4 94.2 90.8 74.5 90.4 91.0
Table III

QUANTITATIVE RESULTS OF DIFFERENT APPROACHES FOR THE SEMANTIC SEGMENTATION TASK ON THE STANFORD BACKGROUND DATASET [6]. WE
SHOW THE ACCURACY FOR EACH SEMANTIC CLASS, THE AVERAGE ACCURACY OF THESE EIGHT CLASSES (MCA), AND THE OVERALL PIXEL
ACCURACY (OVERALL).

E S ¥

Z g 8] 2| 3
ConvNet 90.1 | 928 | 932 | 92.0 | 935
ConvNet-SVM 90.5 | 942 | 938 | 92.8 | 94.0
ConvNet-CSVM | 90.6 | 93.9 | 94.6 | 93.1 | 93.8
ConvNet-CSVM2 | 90.5 | 953 | 96.1 | 94 | 95.1
ConvNet-WSVM | 90.6 | 947 | 96.6 | 94 | 95.2

Table IV

QUANTITATIVE RESULTS OF DIFFERENT APPROACHES FOR THE
GEOMETRY LABELING TASK ON THE STANFORD BACKGROUND
DATASET [6].

We present experimental results on two different datasets:
the Stanford background dataset (SBD) [6] and the PASCAL
VOC 2012 [4] segmentation benchmark dataset. On the
Stanford backgound dataset, we report several metrics for
measuring the pixel accuracy. Let n;; be the number of
pixels of class i predicted to be class j, and t; = > ; Tij
be the total number of pixels of class ¢. Let K be the total
number of classes. We compute:

e per-class accuracy for the i-th class: n;;/t;

o average per-class accuracy: (1/K) > . ni;/t;

o overall accuracy: >, nii/ >t

On the PASCAL VOC 2012 dataset, we report results
using intersection-over-union (IoU) for each class and the
mean IoU overall all classes as follows:

o IoU for the i-th class: n“/(tl + Zj Nj; — n“)

o mean IoU: (1/K) 37, mii/(ti + D25 mji — nii)

A. Implementation

ConvNet-CSVM model is trained and tested with Caffe
[8] on a machine with 10 cores (2.3GHZ Intel Xeon E5-
2630V3 CPU), 64GB RAM, 4TB hard drive, and two
NVIDIA Titan X GPUs. We use some of the parameters
from DeepLab [3] to initialize the network. Following [3],
the batch size and initial learning rate are initialized to 30
and 0.001 respectively. We fix the momentum to 0.9, weight
decay of 0.0005 and maximum iteration to 6000. The total
number of parameters in the model is approximately 20.5M
and training requires approximately 6 hours.

Detailed description of different configurations used in our
experiments are presented in Table II. Each configuration
differs in the approach of creating training proposals for
linear and weighted SVM. For the image specific SVM, each
test image is trained separately assuming the predicted labels
produced by linear or weighted SVM as ground-truth.

B. Dataset

We evaluate the proposed method on the Stanford Back-
ground Dataset [0] and the PASCAL VOC 2012 [4] segmen-
tation challenge dataset. The Stanford background dataset
contains total 715 images of urban and rural scenes. Each
pixel is labeled with one of the 8 semantic classes (sky, tree,
road, grass, water, building, mountain, and foreground) and
one of the 3 geometric classes (sky, horizontal, and vertical).
Each image is approximately 240x320 and contains at least
one foreground object. The PASCAL VOC 2012 dataset [4]
consists of 1464 training and 1456 test images. Each pixel
in this dataset is labeled with one of the 21 categories (20
object categories and the background class).

C. Evaluation on Stanford background dataset

In this section, we report our evaluation results on the
Stanford background dataset. Following [6], [1 1], [14], [16],
we use 5-fold cross-validation which splits the dataset into
572 training images and 143 test images. A challenging class
within this dataset is the foreground class, since it includes
a wide range of objects like person, cow, bicycle, sheep, car
as a singular class. The appearance of the foreground class
can vary drastically across different object types. Another
challenging class is the mountain class, since it appears
in very few images. In order to explore the strength of
leveraging different types of representations for predicting
labels, we report results for different configurations. The
quantitative results of semantic and geometric classes are
shown in Table III and Table IV, respectively. We can see
that our method performs quite well on this dataset. Some
qualitative semantic segmentation examples are shown in
Fig. 3. Some qualitative examples for geometric labeling
are shown in Fig. 4

We compare our approach with several baseline methods.
The comparisons are summarized in Table V and Table VI.



Figure 3. Sample results of semantic segmentation on the Stanford background dataset [6]. 1st row: test images; 2nd row: ground-truth semantic
segmentations; 3rd-row: segmentation results produced by ConvNet-CSVM2. Different semantic classes are represented by different colors.

Figure 4. Sample results of geometric labeling on the Stanford background dataset [0]. 1st row: test images; 2nd row: ground-truth geometric labels;
3rd-row: geometric labeling results produced by ConvNet-CSVM2. Different geometric classes are represented by different colors.
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FCN-8s [12] 91.2 | 76.8 | 342 | 689 | 494 | 603 | 753 | 747 | 77.6 | 214 | 625 | 46.8 | 71.8 | 63.9 | 76.5 | 73.9 | 452 | 724 | 374 | 709 | 55.1 | 62.2
Zoom-out [14] 89.8 | 81.9 | 35.1 782 | 574 | 565 | 80.5 | 74.0 | 79.8 | 224 | 69.6 | 53.7 | 740 | 76.0 | 76.6 | 68.8 | 443 | 70.2 | 40.2 | 689 | 553 | 64.4
DeepLab-CRF [3] 93.1 844 | 545 81.5 | 63.6 | 659 | 85.1 79.1 834 | 30.7 | 74.1 59.8 | 79.0 | 76.1 832 | 80.8 | 59.7 | 822 | 504 | 73.1 63.7 | 71.6
DeConvNet+CRF [15] | 929 | 87.8 | 41.9 | 80.6 | 639 | 67.3 | 88.1 784 | 813 | 259 | 73.7 | 61.2 | 720 | 77.0 | 799 | 78.7 | 59.5 | 783 | 55.0 | 752 | 61.5 | 70.5
CRFasRNN [23] - 904 | 553 88.7 | 684 | 69.8 | 883 824 | 85.1 326 | 785 | 644 | 79.6 | 819 | 864 | 81.8 | 58.6 | 824 | 535 | 774 | 70.1 74.7
ConvNet 89.5 | 72.1 299 | 735 | 56.7 | 64.3 | 81.1 739 | 774 | 272 | 62.0 | 496 | 70.8 | 61.3 | 66.8 | 758 | 423 | 66.3 | 41.5 | 733 | 49.7 | 62.1
ConvNet-CSVM 83.0 | 79.2 | 30.1 775 | 543 | 674 | 80.8 | 754 | 76.0 | 29.6 | 62.3 | 532 | 68.5 | 63.1 68.1 754 | 462 | 69.7 | 40.8 | 73.8 | 52.6 | 63.2
ConvNet-CSVM2 86.2 | 775 | 294 | 78.1 54 66.9 | 83.7 | 77.1 | 76.7 | 328 | 632 | 529 | 732 | 634 | 704 | 775 | 446 | 70.1 | 40.8 | 53.1 743 | 64.1
ConvNet-WSVM 87.0 | 77.7 | 29.5 | 78.0 57 67.1 83.7 | 77.0 | 783 | 329 | 629 | 53.0 | 735 | 63.2 | 709 | 774 | 458 | 70.2 | 40.2 | 54.7 | 744 | 64.5

Table VII

QUANTITATIVE RESULTS OF DIFFERENT APPROACHES FOR THE SEMANTIC SEGMENTATION TASK ON THE PASCAL VOC 2012 DATASET [4].

Figure 5.
VOC 2012 dataset [4]. Ist column: test images; 2nd column: ground-truth
semantic segmentations; 3rd-column: segmentation results produced by
ConvNet-CSVM2. Different semantic classes are represented by different
colors.

Sample results of semantic segmentation on the PASCAL

[ Method [ overall (PPA) [ average (MCA) |
Gould et al. [6] 76.4 -
Pylon [10] 81.9 72.4
RCN [16] 80.2 69.9
Multiscale Net [5] 81.4 76.0
TM-RCPN [17] 82.3 79.1
DeconvNet-16 [13] 84.2 78.4
LSTM-RNN [1] 78.56 68.79
CNN-CRF [11] 83.5 76.9
Zoom-Out [14] 86.1 80.9
ConvNet 90.4 89.1
ConvNet-SVM 90.8 89.3
ConvNet-CSVM 91.2 89.6
ConvNet-CSVM2 91.6 87.8
ConvNet-CSYVM3 90.9 90.4
ConvNet-WSVM 91.0 90.4

Table V

COMPARISON WITH STATE-OF-THE-ART SEMANTIC SEGMENTATION
APPROACHES ON STANFORD BACKGROUND (SEMANTIC) DATASET [6].

[ Method | overall (PPA) | average (MCA) |
Gould et al. [6] 89.1 -
ConvNet 93.5 92.0
ConvNet-SVM 94.0 92.8
ConvNet-CSVM 93.8 93.1
ConvNet-CSYM2 95.1 94.0
ConvNet-WSVM 95.2 94.0

Table VI

COMPARISON WITH GOULD ET AL. [6] ON THE GEOMETRIC LABELING
TASK ON THE STANFORD BACKGROUND DATASET.

We can see that our proposed approach outperforms all the
baseline methods.

D. Evaluation result on PASCAL VOC 2012

The segmentation results on PASCAL VOC 2012 test
set for different configurations are reported in Table VIIL.
Following [12], [3], [23], we have used augmented training
data with extra annotation for training the deep network.
However, for training the SVM model, we didn’t use any
images other than the PASCAL VOC 2012 training set.
Initially we achieve performance of 63.2 mean IoU for
ConvNet-SVM and 64.5 IoU for Convnet-WSVM. Sample



segmentation outputs are illustrated in Fig. 5. It is important
to note that there is evidently an advantage in making use of
the data and labels from the SBD that are not directly related
to the PASCAL VOC 2012 problem, and this suggests value
in the proposed approach in a more general sense given
future availability of datasets that include dense pixel-wise
labeling.

V. CONCLUSION

We present the problem of supervised semantic segmenta-
tion based on pixel-wise class label assignments at a coarse
level of abstraction. Our proposed approach can produce se-
mantically accurate predictions. The novelty of our approach
is the integration of deep convolutional neural networks
with image-specific weighted support vector classification,
and demonstration of the value in leveraging distinct and
heterogeneous datasets. Experimental results demonstrate
the effectiveness of our approach.

There are many potential directions to extend this work.
Continuation of this work will involve design of an end-
to-end segmentation network motivated by the principles
of the VGG-16 network [18] as well as aiming to study
and visualize how the depth of neural nets interacts with
semantic segmentation results. Further work will involve
developing a framework to solve problems related to se-
mantic segmentation improving on existing capabilities, and
integrating additional sources of imagery and labeling.

ACKNOWLEDGMENT

This work is supported by NSERC and the University of
Manitoba Research Grants Program (URGP). We gratefully
acknowledge the support of NVIDIA Corporation with the
GPU donation used in this research.

REFERENCES

[1] W. Byeon, T. M. Breuel, F. Raue, M. Liwicki. Scene labelling
with LSTM Recurrent Neural Networks. In CVPR, 2015.

[2] G. Cardinal, X. Boix, J. van de Weijer, A. D. Bagdanov,
J.Serrat, and J. Gonzalez. Harmony Potentials for Joint Clas-
sification and Segmentation. In CVPR, 2010.

[3] L-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Semantic Image Segmentation with Deep Convolutional
nets and Fully Connected CRFs. In ICLR, 2015.

[4] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge
a Retrospective. International Journal of Computer Vision
(ICCV), 111(1), pp. 98-136, 2015.

[5] C. Farabet, C. Couprie, L. Najman, Y. LeCun. Learning
Hierarchical Features for Scene Labeling. PAMI, 35(8), pp.
1915-1929, 2013.

[6] S. Gould, R. Fulton, D. Koller. Decomposing a Scene into
Geometric and Semantically Consistent Regions. Proceedings
of International Conference on Computer Vision (ICCV), 2009.

[7] D. Hoiem, A. Efros, M. Hebert. Geometric Context from a
Single Image. IEEE ICCV, 2005.

[8] 1.Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.
B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convo-
lutional architecture for fast feature embedding. CoRR, vol.
abs/1408.5093, 2014, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classi-
cation with Deep Convolutional Neural Networks. Advances in
Neural Information Processing Systems, pp. 1106-1114, 2012.

[10] V. Lempitsky, A. Vedaldi, A. Zisserman. Pylon Model for
Semantic Segmentation. Advances in Neural Information Pro-
cessing Systems, pp. 109-117, 2011.

[11] F. Liu, G. Lin, C. Shen. CRF Learning with CNN Features
for Image Segmentation. In Pattern Recognition.48, 2015 pp.
2893-2992.

[12] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[13] R. Mohan. Deep Deconvolutional Network for Scene Parsing.
In CVPR, 2014.

[14] M. Mojtabi, P. Yadollahpour, G. Shakhnarovich. Feed-forward
Semantic Segmentation with Zoom-out Features. In CVPR,
2015.

[15] H. Noh, S. Hong, and B. Han. Learning Deconvolution
Network for Semantic Segmentation. /EEE International Con-
ference on Computer Vision, 2015.

[16] P. O. Pinheiro, R. Collobert. Recurrent Convolutional Neural
Network for Scene Parsing. In /CML,China, 2015.

[17] A. Sharma, Oncel Tuzel, David W. Jacobs. Deep Hierarchical
Parsing for Semantic Segmentation. In CVPR, 2015.

[18] K. Simonyan, A. Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In /CLR, 2015.

[19] J. Shotton, J. Winn, C. Rother, A. Criminisi. TextonBoost:
Joint Appearance, Shape and Context Modeling for Multi-class
Object Recognition and Segmentation. European Conference
on Computer Vision, 2006.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich. Going Deeper with
Convolutions. In CVPR, 2014.

[21] X. Yang, Q. Song, A. Cao. Weighted Support Vector Machine
for Data Classification. In International Joint Conference on
Neural Networks, 2005.

[22] J. Yao, S. Fidler, R. Urtasun. Describing the Scene as a
Whole: Joint Object Detection, Scene Classification and Se-
mantic Segmentation. In CVPR, 2012.

[23] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z.
Su, D. Du, C. Huang, and P. Torr. Conditional Random Fields
as Recurrent Neural Networks. In International Conference on
Computer Vision (ICCV), 2015.



