
Context-Aware Action Detection in Untrimmed Videos Using Bidirectional LSTM

Jaideep Singh Chauhan
Indian Institute of Technology, Kharagpur

Kharagpur, West Bengal, India
Email: jaideepiit2@gmail.com

Yang Wang
Department of Computer Science
University of Manitoba, Canada
Email: ywang@cs.umanitoba.ca

Abstract—We consider the problem of action detection in
untrimmed videos. We argue that the contextual information
in a video is important for this task. Based on this intuition,
we design a network using a bidirectional Long Short Term
Memory (Bi-LSTM) model that captures the contextual infor-
mation in videos. Our model includes a modified loss function
which enforces the network to learn action progression, and
a backpropagation in which gradients are weighted on the
basis of their origin on the temporal scale. LSTMs are good
at capturing the long temporal dependencies, but not so
good at modeling local temporal features. In our model, we
use a 3-D Convolutional Neural Network (3-D ConvNet) for
capturing the local spatio-temporal features of the videos.
We perform a comprehensive analysis on the importance of
learning the context of the video. Finally, we evaluate our
work on two action detection datasets, namely ActivityNet
and THUMOS’14. Our method achieves competitive results
compared with the existing approaches on both datasets.

Keywords-action detection, LSTM, video analysis

I. INTRODUCTION

Understanding actions in videos is an important task
in computer vision. A lot of previous work [1], [2] has
focused on action classification. Impressive results have
been achieved in classifying trimmed videos (lasting a
few seconds). Action classification only provides a coarse
description of a video. Real-world applications often require
localizing actions in untrimmed videos, which is a particu-
larly challenging task since untrimmed videos [3], [4] have
actions which are long, complex and come with a lot of inter-
class variations. In this paper, we consider action detection
in an untrimmed video where the goal is to localize the
temporal extent of the action in the video.

A popular approach for action detection is based on
frame-wise classification [5], [6]. Frame-wise classifiers use
either hand-crafted features [7], [8] or deep features [9], [2]
learned using Convolutional Neural Networks (ConvNets).
These features are good at capturing the local spatio-
temporal characteristics of the activities occurring in the
videos but fail to learn the long-term dependencies.

Recurrent Neural Networks (RNNs) provide a potential
solution for modeling the long-term temporal dependencies.
They have been successfully used in various sequence la-
beling problems, such as sequence generation [10], machine
translation [11], image and video captioning [12], etc. RNNs

model temporal dependencies by maintaining hidden states
over time. The prediction at each time step is a function of
previous hidden states and the current input. In our work, we
use a popular variant of RNN called the Bidirectional Long
Short Term Memory (Bi-LSTM). Bi-LSTM uses memory
states to control the flow of information in both directions
in the network.

In this work, we tackle action detection using deep
features learned by a 3D Convolutional Neural Network (3D-
ConvNet). These features are fed to a modified Bi-LSTM
for the temporal localization of the actions. In real-world
videos, there are often multiple long activities separated by
periods of non-activity. As an LSTM sees more frames of
the video, it should become more confident in its predictions.
To capture this intuition, our Bi-LSTM uses a loss function
suggested in [13] to enforce the network to learn action pro-
gression. This loss function penalizes the network if it does
not give a monotonically increasing score for the ground-
truth class as the video progresses. To further improve the
model, we introduce a linear bias on the gradients during
backpropagation. Again, this is based on the intuition that as
the model sees more of the activity, it should become more
confident in its prediction. Thus the gradients encountered
further on the temporal scale should be more informative.

This paper makes the following contributions:
• We introduce a modified Bidirectional LSTM network

for action detection and show its effectiveness in learn-
ing the context of the video.

• We show the importance of learning the context and
progression in predicting the overall class by comparing
models with and without learning the context.

• We perform extensive evaluations on two publicly
available untrimmed video datasets and demonstrate the
effectiveness of our approach.

II. RELATED WORK

Traditional action recognition pipelines capture the local
spatio-temporal information using hand-crafted feature de-
scriptors, such as Histogram of Oriented Gradients (HOG)
[14], [7], Histogram of Optical Flow (HOF) [7] and Motion
Boundary Histograms [8]. These features are then encoded
to represent the video using some encoding techniques, such
as bag of Words (BoW) [7] or Fisher Vector (FV) [15]. The

video-level features are then fed to standard classifiers for
the recognition task.

Recently, ConvNet based methods have been shown to
outperform previous methods using hand-crafted features.
ConvNets have achieved the state-of-the-art performance on
many image based tasks such as image classification [16],
[17], scene labeling [18] and object detection [19]. There
have been several attempts to adopt ConvNet in action
detection. Simonyan et al.[20] use a two-stream ConvNet
with one stream for the spatial and the other stream for
the temporal features. The temporal ConvNet uses multi-
frame optical flow for training whereas the spatial ConvNet
is trained on RGB images. They classify the action but do
not localize it in the video. Karpathy et al.[9] explore several
approaches which exploit the local spatio-temporal features
by extending the connectivity of ConvNets from the spatial
domain to the temporal domain. Their method only slightly
outperforms single-frame classification based methods. This
shows the difficulty in learning temporal dependencies in
long videos.

Several 3-D ConvNet based approaches [21], [22], [23]
have been proposed for action recognition. 3-D ConvNet
extends 2-D ConvNet by adding an extra temporal dimen-
sion. In [2], it is shown that 3-D ConvNets are more appro-
priate for learning local spatio-temporal features than 2-D
ConvNets. The limitation of 3-D ConvNets is that although
they are extremely effective for learning short dependencies,
they do not work well for the longer dependencies that are
common in long untrimmed videos.

RNNs provide a potential solution to the problem of action
detection in long untrimmed videos. In particular, a variant
of RNN called LSTM [24] has been shown to be very
effective in learning long term dependencies. Deep features
learned using 3-D ConvNets followed by a LSTM classifier
have recently shown promise in video detection tasks for
long videos [25], [26], [27]. 3-D ConvNets tend to learn
the local spatio-temporal features whereas LSTMs learn the
long temporal dependencies. [13], [28] use the combination
of LSTM and ConvNet to detect actions at every frame.
[29] uses a bi-directional LSTM for action recognition. [13]
learns the progression in videos by enforcing it using a
modified loss function. Our model is similar to theirs. But in
addition to learning the progression, we also incorporate the
local spatio-temporal dependencies by using features learned
by a 3-D ConvNet on short clips of the whole video.

III. APPROACH

Our framework is shown in Figure 1. We divide an input
video into a sequence of short clips, where each clip has 16
frames. These clips are then passed to a 3-D Convolutional
Network called C3D [2]. C3D takes in a 3×16×128×171
(channels × frames × width × height) video clip as the
input and produce a 4096 dimensional feature vector. The
feature vectors of the short clips are then fed to a Bi-LSTM

consisting of a forward and a backward running LSTM. Both
LSTMs are connected to the same output layer. We apply a
softmax layer on top of the output layer to get the probability
scores for each activity class (and a no-activity class) for
each clip. Finally we combine the scores of all the clips
to get the activity class for the whole video by taking a
weighted average of the scores. The clips where the activity
is happening are identified as those with the highest scores
for the class assigned to the whole video.

A. Bi-LSTM Architecture

For an input sequence x = (x1,, xT), a standard RNN
model computes the hidden states h = (h1,, hT) and the
output sequence y = (y1, ., yT). The recurrence equations
in RNN are shown in Eq. 1 and Eq. 2 :

ht = Γ(Wxh · xt +Whh · ht1 + bh) (1)

yt = Γ(Why · ht + bz) (2)

Here Γ is a nonlinear activation function. Wxh is a matrix
which maps the input to the hidden state. Whh captures the
relationship between the hidden states in adjacent time steps.
Why maps the hidden state at a time step to the output. A
popular variant of the RNN model is called the Long Short
Term Memory (LSTM) model. LSTM implements memory
using three gates which control the flow of information from
the previous time steps and the current input. The update
equations for LSTMs are as follows :

it = σ(Wxi · xt +Whi · ht +Wci · ct + bi) (3)

ft = σ(Wxf · xt +Whf · ht +Wcf · ct + bf) (4)

ct = ft · ct−1 + it · tanh(Wxc · xt +Whc · ht−1 + bc) (5)

ot = σ(Wxo · xt +Who · ht +Wco · ct + bo) (6)

ht = ot · tanh(ct) (7)

where σ is the element-wise sigmoid function and i, f , c and
o are the gates (input gate, forget gate, cell activation, output
gate) which control the flow of memory from previous time
steps.

For a given clip, other clips (either come before or after
this clip) provide contextual information about the video.
In our work, we would like to incorporate this contextual
information to a RNN cell when it processes a clip. An
elegant solution is to use Bi-LSTM. Bi-LSTM has two
LSTMs running in opposite directions providing contextual
information both from the future and the past. To implement
Bi-LSTM, we need to calculate two different hidden states.
This calculation is done as follows :

hft = Γ(W f
xh · xt +W f

hh · h
f
t1 + bfh) (8)

hbt = Γ(W b
xh · xt +W b

hh · hbt1 + bbh) (9)

Figure 1. Illustration of the architecture of our model. (Left) A video is divided into a sequence of 16-frame clips. (Middle) The C3D network is used to
convert each clip into a feature vector. (Right) Finally, the feature vector of each clip is fed to a Bi-LSTM model. The Bi-LSTM consists of two LSTMs
running in forward and backward directions.

Figure 2. An illustration of an LSTM cell. It has an input gate i, an output
gate o, a forget gate f and a memory cell c.

where the subscript f is for forward running hidden states
and b is for backward running hidden states. Then we
combine the two hidden states to get the output yT as follows
:

yT = ∇(U [g · hft , (1− g) · hbt] + c) (10)

In Eq. 10, we introduce a term g which we call the gain
term. This term controls the relative contributions of the two

LSTMs on the final output. The intuition is that the hidden
states of either LSTMs know more about the video when it
has seen more video clips. Thus we weight the hidden states
with the term g which is linearly interpolated between 1 and
0 for the clip from T to 0. We concatenate the hidden states
of both LSTMs using the gain term g. The concatenated
vector is used to predict the final output. On top of this
output layer, we apply a softmax layer to obtain the scores
for each clip.

B. Bi-LSTM Training

In this section, we introduce several modifications of the
standard Bi-LSTM for our problem. First, we use a loss
function which enforces Bi-LSTM to learn the progression
of an action in the video. This allows Bi-LSTM to better
capture the contextual information in the video. Second,
we propose to weight the gradients in backpropagation
according to where the gradients originate along the time
scale. Gradients encountered further on the temporal scale
hold are more informative than the ones before them. This
speeds up the convergence and improves the performance of
the model.

1) Loss Function: The standard classification loss com-
monly used in LSTM learning does not explicitly ensure
that the action progression in the videos is properly learned.

Standard LSTMs only implicitly learn the context in long
videos through previous hidden states. To properly capture
the action progression in videos, a ranking loss function
was introduced in [13] for unidirectional LSTMs. Before
we discuss the loss function, we like to point out that using
Bi-LSTM is a potential solution for learning the context as
well, since it uses both the future and past hidden states in
calculating the output. Thus it is interesting to see the effect
of the ranking loss function on the Bi-LSTMs in learning
action progression. As we will show in the experiments,
these two strategies complement each other and the final
model using both achieves the best performance.

The new loss function is modeled on two principles [13].
First, LSTM gathers more info as it sees more frames in the
video. Thus the score given to the ground-truth activity class
should not decrease as the model observes more of the video.
Second, the margin of the scores between the ground-truth
action class and other classes should not decrease either as
the model observes more of the video. Based on these two
principles, the loss function is defined as follows:

Ls = Ls
c + ΩLs

r (11)

Our video is divided into 16-frame long clips. They are
arranged as a sequence S = (s1, s2,, sN). The subscript
in Eq.11 denotes this sequence. Here Ls

c is the standard
cross entropy classification loss function. Ls

r is the ranking
loss function and Ω is a parameter that controls the relative
contributions of these two losses. Ls

r consists of two terms
Ls
det and Ls

margin based on the two principles defined above.
Here Ls

det is the detection score loss function and Ls
margin

is the margin loss function. The two terms are defined as
follows.

In order to define the detection score loss function Ls
det,

let us first introduce some notations for convenience. For a
given clip s, we use ys to denote the ground-truth action
label of this clip. We use the term time sequence to refer to
a continuous sequence of clips (si−n,, si,, si+n) for
which the ground-truth activity class is same. We use Ss

to denote the starting position of the current time sequence
defined as follows:

ss = min{s′ |ys′ = ys∀s′ ∈ (ss, s)} (12)

We use pys
s to denote the detection score for the ground-truth

class of the clip s. We define p∗ys
s to be the highest detection

score encountered for the ground-truth class of the current
time sequence since the beginning of the time sequence. It
is mathematically defined as:

p∗ys
s = max{p∗ys

s |∀s ∈ [ss, s− 1]} (13)

Then we can define the detection score loss function Ls
det

as follows:

Ls
det =

{
max(0, p∗ys

s − pys
s) if ys = ys−1

p
ys−1
s otherwise (14)

The intuition of Eq.14 is as follows. If there is no activity
transition between the clips s and s − 1, the loss is equal
to the difference between the highest encountered detection
score in the time sequence and the detection score for the
current clip s for the ground-truth class. Otherwise, if there
is an activity transition, the detection score for the ground
class of the previous step (s− 1) is taken as the loss for the
current step (s).

Similarly, the margin loss function Ls
margin penalizes the

model if the margin between the correct and the incorrect
class is decreasing as it observes more frames. It is imple-
mented as follows :

Ls
margin =

{
max(0,m∗ys

s −mys
s) if ys = ys−1

m
ys−1
s otherwise (15)

In Eq.15, mys
s is defined as the discriminative margin, which

is the difference between the detection score of the ground-
truth class and the highest scoring class other than the
ground-truth class for the current clip s. It is calculated as
follows :

mys
s = pys −max{py′s |∀y′ ∈ Y, y′ 6= y} (16)

In Eq.15, m∗ys
s is analogous to p∗ys

s in Eq. 14. In other
words, it is the highest discriminative margin score which
has been encountered in the current time sequence for the
ground-truth class. It is calculated as follows :

m∗ys
s = max{m∗ys

s |∀s ∈ [ss, s− 1]} (17)

where ss denotes the start of the current time sequence,
defined in Eq. 12.

Intuitively, Eq. 15 means that if there is no activity
transition between clips s and s− 1, the margin loss would
be the difference between the highest encountered margin
score in the time sequence and the margin score for the
current clip s for the ground-truth class. Otherwise, if there
is an activity transition, the margin score for the ground-
truth class of the previous step (s − 1) is taken as the loss
for the current step (s).

2) Training: When calculating the loss, we encounter
three cases: (i) Previous and current clips have the same
activity for which the loss is calculated using the first halves
of Eqs. 14 and 15. (2) Previous clip has an activity, but
current clip does not (i.e. background). Then the loss is
calculated using the second halves of Eqs. 14 and 15. (iii)
Previous time step does not have any activity label for which
the loss would be 0. For training the model, we need to
backpropagate the gradient of the loss function over the
softmax output as follows :

∂Ls

∂pys
=
∂Lc

s

∂pys
+ g · Ω∂L

r
s

∂pys
(18)

which can be backpropagated independently in the two
opposite running LSTMs as the hidden states of the two
are not dependent on each other.

The term g in Eq.18 is the gain term which we have
introduced to weigh the gradients on temporal scale. The
intuition is that when LSTM sees more of the activity, it
becomes more aware of the context of the video. As a result,
the gradients further down the temporal scale hold more
information than the ones occurring early. The value of the
gain term g is linearly interpolated between 0 to 1 for clip
sequence 0 to S in the forward running LSTM, and between
1 to 0 for clip sequence 0 to S in the backward running
LSTM.

IV. EXPERIMENTS

In this section, we first introduce the two datasets used
in the experiments. Then we discuss our experimental setup
on these two datasets. Finally, we present our experimental
results and compare our approach with other baselines.

A. Datasets

We evaluate our method on two publicly available
datasets: THUMOS’14 [3] and ActivityNet [4]. Sample
frames from videos for both datasets are shown in Figure 3.

1) ActivityNet Dataset: The ActivityNet [4] dataset con-
sists of 10024, 4926 and 5044 videos in training, validation
and test sets, respectively. These videos are untrimmed and
contain activities belonging to one of the 200 different
classes. We use a split ratio of 4 : 1 to divide the train
dataset for training and cross-validation purposes. Evaluation
is done on the validation dataset. Multiple instances of a
class may be present in a video and there are time intervals
which do not have any annotated activities. On average, 1.4
activities are present per video. In total, it amounts to 849
hours of untrimmed videos with 68.8 hours of annotations.
This is a particularly challenging dataset as the videos are
taken from YouTube, so the videos have large variations.

2) THUMOS’14 Dataset: The THUMOS’14 dataset con-
sists of 2765 trimmed, 200 and 213 untrimmed videos in the
training, validation and test sets, respectively. As the training
set only consists of trimmed videos, we only use it for fine-
tuning the C3D architecture. The validation set is divided
into training and validation with a split ratio of 4 : 1. The
evaluation is done on the test set. The dataset contains 20
activity classes. Each video may contain multiple activities
belonging to the same class.

B. Experimental Setup

For both datasets, we extract the frames from the videos at
5fps due to memory constraints and resize them to 128×171.
Each video is divided into a collection of 16 frame long
clips. C3D [2] is used as the feature descriptor for the clips.
We fine-tune the pre-trained C3D on our datasets. The output
of the second fully connected layer (fc6) of C3D is taken as
the feature vector (4096 dimension) that describes the clip.

1) Experiment on ActivityNet: The original C3D network
is pre-trained on the Sports-1M dataset [9]. We first fine-tune
the C3D network on the training videos in the ActivityNet
dataset. For fine-tuning, we freeze the first two convolutional
layers of the network and introduce a softmax layer with
an output of 201 dimensions (200 classes + 1 non-activity
class). A learning rate of 10−4 for 20 epochs is used. This
is followed by a decay by a factor of 10 for every 5 epochs.
We stop the fine-tuning at 30 epochs. The next step is to
train the Bi-LSTM network. We use a batch size of 64 with
each instance in the batch being a sequence of 64 vectors of
length of 4096. We begin with a learning rate of 10−3 for
the first 20 epochs, then decay it periodically by a factor of
10 for the next 40 epochs. Along with the Bi-LSTMs, we
also train the fc6 layer of the C3D but with a small constant
learning factor of 10−5.

2) Experiment on THUMOS’14: On the THUMOS’14
dataset, we also fine-tune C3D on the training set in the
same way as ActivityNet except that the softmax layer
has 102 dimensions (101 classes + 1 non-activity class).
Since THUMOS’14 is a smaller dataset compared with
ActivityNet and is more similar to the Sports-1M dataset, it
requires less fine-tuning than ActivityNet. We use a constant
learning rate of 10−5 over 15 epochs. For THUMOS’14,
we also train the fc6 layer along with the Bi-LSTMs with a
constant learning rate of 10−5.

C. Results

We show our results in terms of the mean Average
Precision (mAP). For a detection to be true positive, the
Intersection-Over-Union (IOU) between the temporal pre-
diction and the ground-truth annotation should be above a
threshold (α), and the class labels should match. This is
called mAP@α and is a standard metric used to evaluate
action detection methods in the literature [28], [13].

1) Results on THUMOS’14 Dataset: Table I shows
mAP@α of our results compared with other baselines. First,
we compare our results with the top 3 performers of the
THUMOS’14 challenge [5], [6], [30]. We outperform them
with a margin of 10.7 for the α = 0.1. Next, we compare
our model with a recent work in [31]. It uses proposals
and a localization network for detection. Our results are
comparable to [31] even though we do not use proposals.

Figure 4(a) shows a comparison between models with and
without learning context on THUMOS’14. We train LSTM
and Bi-LSTM models with and without the modified loss
function, and also with and without the modified backprop-
agation (weighted backpropagation using gain term g). From
the comparisons, we can make three main observations.
First, Bi-LSTM models in general perform better than LSTM
models. For example, when α = 0.1, the margin between
the best performing Bi-LSTM and LSTM models is 8.6%.
Second, the modified loss helps improving the results. Bi-
LSTM trained with the modified loss outperforms the one

Figure 3. The first three rows are example frames from the videos taken from the THUMOS’14 dataset. This dataset has 20 classes corresponding to
different sport activities, such as “Golf swings”, “High Jumps”, etc. The last three rows are example frames from the ActivityNet Dataset. The dataset
consists of 200 classes of human activities, such as “Playing Drums”, “Polo Matches”, etc. In both datasets, ground-truth annotations are provided to
indicate the start and end time of each action in a video, as illustrated in the figure.

without this loss by a margin of 2.4% for α = 0.1. Third, the
weighted backpropagation also improves the performance.
Bi-LSTM trained with the modified backpropagation out-
performs the alternative by a margin of 1.5% for α = 0.1.
The best performing model is a Bi-LSTM which is trained
using modified backpropagation and modified loss.

2) Results on ActivityNet: Table II shows the results on
ActivityNet. We compare our results with UPC [32]. Their
network uses deep features learned through a 3D-ConvNet
and a LSTM setup, so their work is similar to ours. For
α = 0.5, we outperform the method in [32] on validation
set by 2.3%.

Figure 4(b) shows a comparison between models with and
without learning context on ActivityNet. We train LSTMs

and Bi-LSTMs with and without modified loss, also with
and without the modified backpropagation. These results
show similar conclusions. The worst performing model is
the LSTM network without the modified loss or backprop-
agation. The best performing model is the Bi-LSTM model
with the modified loss and backpropagation (margin between
the two being 15.9% for α = 0.1). Bi-LSTM networks in
general outperform LSTM networks with similar training
routines. With the best Bi-LSTM network outperforming the
best LSTM network by 10.6% for α = 0.1.

V. CONCLUSION

We have introduced a Bi-LSTM model for action detec-
tion in untrimmed videos. Our model which explicitly learns

Table I
EXPERIMENTAL RESULTS ON THE THUMOS’14 DATASET. WE USE MAP@α TO MEASURE THE PERFORMANCE OF EACH METHOD AND REPORT THE

RESULTS FOR DIFFERENT VALUES OF α.

Models α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
Karman et al.[5] 4.6 3.4 2.1 1.4 0.9
Wang et al.[6] 18.2 17.0 14.0 11.7 8.3

Oneata et al.[30] 36.6 33.6 27.0 20.8 14.4
Shou et al.[31] 47.7 43.5 36.3 28.7 19.0

Ours 47.3 43.2 35.8 27.5 18.3

Table II
EXPERIMENTAL RESULTS ON THE ACTIVITYNET DATASET. WE USE MAP@α TO MEASURE THE PERFORMANCE OF EACH METHOD AND REPORT THE

RESULTS FOR DIFFERENT VALUES OF α.

Models α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
Caba et al.[4] 12.5 11.9 11.1 10.4 9.7
UPC et al.[32] - - - - 22.5

Ours 46.1 41.8 36.4 29.5 24.2

(a) THUMOS’14 (b) ActivityNet

Figure 4. Comparison of different variants of our method on THUMOS’14 and ActivityNet. On each dataset, we compare different methods by varying
these three design choices: (1) LSTM vs Bi-LSTM; (2) modified loss vs standard loss; (3) modified backpropagation vs standard backpropatation.

the contextual information in the video. We have demon-
strated the importance of learning the contextual information
for action detection through a comparative study. We find
that Bi-LSTMs are better suited for learning the context
of videos than LSTMs and hence are better at the task of
detection. We achieve competitive results on two benchmark
datasets.

ACNOWLEDGMENT

This work was done during Jaideep Singh Chauhan’s
internship at the University of Manitoba funded by the
MITACS Globalink program. Yang Wang is supported by
grants from NSERC. We thank NVIDIA for the GPU
donations used in this work.

REFERENCES

[1] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, “To-
wards good practices for very deep two-stream convnets,”
arXiv:1507.02159, 2015.

[2] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional net-
works,” in IEEE International Conference on Computer Vi-
sion, 2015, pp. 4489–4497.

[3] Y. Jiang, J. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah,
and R. Sukthankar, “Thumos challenge: Action recognition
with a large number of classes,” 2014.

[4] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Car-
los Niebles, “Activitynet: A large-scale video benchmark

for human activity understanding,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 961–
970.

[5] S. Karaman, L. Seidenari, and A. Del Bimbo, “Fast saliency
based pooling of fisher encoded dense trajectories,” in ECCV
THUMOS Workshop, vol. 1, no. 2, 2014, p. 5.

[6] L. Wang, Y. Qiao, and X. Tang, “Action recognition and
detection by combining motion and appearance features,”
THUMOS14 Action Recognition Challenge, vol. 1, no. 2, p. 2,
2014.

[7] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld,
“Learning realistic human actions from movies,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on. IEEE, 2008, pp. 1–8.

[8] N. Dalal, B. Triggs, and C. Schmid, “Human detection using
oriented histograms of flow and appearance,” in European
Conference on Computer Vision. Springer, 2006, pp. 428–
441.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei, “Large-scale video classification with convo-
lutional neural networks,” in IEEE conference on Computer
Vision and Pattern Recognition, 2014, pp. 1725–1732.

[10] A. Graves, “Generating sequences with recurrent neural net-
works,” arXiv:1308.0850, 2013.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation,” arXiv:1406.1078, 2014.

[12] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and
tell: A neural image caption generator,” in IEEE conference
on Computer Vision and Pattern Recognition, 2015, pp. 3156–
3164.

[13] S. Ma, L. Sigal, and S. Sclaroff, “Learning activity progres-
sion in lstms for activity detection and early detection,” in
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 1942–1950.

[14] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, vol. 1. IEEE, 2005, pp. 886–893.

[15] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the
fisher kernel for large-scale image classification,” European
Conference on Computer Vision, pp. 143–156, 2010.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” International
Conference on Learning Representations, 2015.

[18] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1915–1929, 2013.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated recognition, localization and
detection using convolutional networks,” arXiv:1312.6229,
2013.

[20] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” in Advances in
Neural Information Processing Systems, 2014, pp. 568–576.

[21] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and
A. Baskurt, “Sequential deep learning for human action
recognition,” in International Workshop on Human Behavior
Understanding. Springer, 2011, pp. 29–39.

[22] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural
networks for human action recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 221–231, 2013.

[23] V. Escorcia, F. C. Heilbron, J. C. Niebles, and B. Ghanem,
“Daps: Deep action proposals for action understanding,” in
European Conference on Computer Vision. Springer, 2016,
pp. 768–784.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] G. Gkioxari and J. Malik, “Finding action tubes,” in IEEE
Conference on Computer Vision and Pattern Recognition,
2015, pp. 759–768.

[26] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici, “Beyond short
snippets: Deep networks for video classification,” in IEEE
Conference on Computer Vision and Pattern Recognition,
2015, pp. 4694–4702.

[27] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and
A. Baskurt, “Action classification in soccer videos with long
short-term memory recurrent neural networks,” International
Joint Conferece on Artifical Neural Networks, pp. 154–159,
2010.

[28] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori,
and L. Fei-Fei, “Every moment counts: Dense detailed label-
ing of actions in complex videos,” International Journal of
Computer Vision, pp. 1–15, 2015.

[29] A. Ullah, A. Jamil, K. Muhammad, M. Sajjad, and S. W.
Baik, “Action recognition in video sequences using deep bi-
directional lstm with cnn features,” IEEE Access, vol. 6, pp.
1155–1166, 2017.

[30] D. Oneata, J. Verbeek, and C. Schmid, “The LEAR submis-
sion at thumos 2014,” 2014.

[31] Z. Shou, D. Wang, and S.-F. Chang, “Temporal action local-
ization in untrimmed videos via multi-stage cnns,” in IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 1049–1058.

[32] A. Montes, A. Salvador, and X. Giro-i Nieto, “Temporal
activity detection in untrimmed videos with recurrent neural
networks,” arXiv:1608.08128, 2016.

