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Abstract—We consider the problem of domain adaptation in
crowd counting. Given an input image of a crowd scene, our
goal is to estimate the count of people in the image. Previous
work in crowd counting usually assumes that training and test
images are captured by the same camera. We argue that this
is not realistic in real-world applications of crowd counting.
In this paper, we consider a domain adaptation setting in
crowd counting where we have a source domain and a target
domain. For example, these two domains might correspond
to cameras at two different locations (i.e., with differing
viewpoints, illumination conditions, environment objects, crowd
densities, etc.). We have enough labeled training data from the
source domain, but we only have either unlabeled data or a
small number of labeled data in the target domain. Our goal
is to train a crowd counting system that performs well in the
target domain. We believe this setting is closer to real-world
deployment of crowd counting systems. Due to the domain
shift, a model trained from the source domain is unlikely to
perform well in the target domain. In this paper, we propose
several domain adaptation techniques for this problem. Our
experimental results demonstrate the superior performance of
our proposed approach on several benchmark datasets.

Keywords-domain adaptation; crowd counting; few-shot
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I. INTRODUCTION

We address the problem of domain adaptation in crowd
counting. Given crowd scenes from two different domains,
namely a source domain and a target domain, our goal is
to learn a crowd counting model that performs well in the
target domain. We assume that in the source domain we have
access to far more labeled examples than the target domain.
For instance, this scenario may arise in the case of crowd-
monitoring cameras installed at two different locations. It
is very likely that the images captured from these two
cameras will have a domain shift due to the fact that the
respective images are going to be visually dissimilar (e.g.,
different viewpoints, illumination conditions, environment
objects, crowd densities), as they belong to different crowd
scenes. Therefore, it is essential to design efficient domain
adaptation-based crowd counting systems (see Fig. I).

Crowd counting is a research area in computer vision
that has many potential applications, such as traffic control
and urban planning [1]. Most previous work in this area
uses supervised learning. However, the supervised learning
setting is not suitable for many real-world applications. To
better understand this, let us consider the datasets commonly
used in this area of research. For some datasets (e.g. [2],

minimizing domain  
shift

Source domain

Target domain

( )FΘ x
s

i

( )FΘ x
t

i

Figure 1. Illustration of high-level intuition of domain adaptation. We
have a source domain and a target domain. The key idea is to minimize
the domain shift between the feature representations of images from these
two domains.

[3]) used in this area, both training and testing images are
from the same camera. In this case, the learned model might
overfit to the specific scene captured in the camera. This
implies that in order to deploy the crowd counting system
to the target camera, we require a large number of labeled
training images collected by the target camera. However,
this is not realistic in most applications. For some datasets
(e.g. [4], [5]), both training and testing images are captured
by different cameras from various scene locations. In this
case, the learned model will not overfit to a particular scene
and may perform better across different scenes. However,
this setting has a disconnect from how crowd counting
systems are deployed in real-world applications. In practice,
once a camera is installed, the crowd counting system on
target camera only needs to operate on images captured
by this particular camera. We do not necessarily need the
crowd counting system to work across different scenes and
cameras. In other words, in crowd counting applications, it is
often reasonable to build a system tuned to the target scene.
However, the challenge is that there is typically insufficient
training data from the target scene for a fully supervised
approach.

In this paper, we study the new problem of domain
adaptation in crowd counting. We believe this new problem
setup is closer to real-world applications. Consider the
scenario where a company tries to develop crowd counting
systems to be deployed to a user. The company might set up
a camera at some location to collect labeled training images.
We can consider these images to be from the source domain.
In addition, we can consider the images captured by the
user’s camera to be from the target domain. A successful



domain adaptation solution will enable a model to work well
in the target domain by taking advantage of the available
training images in the source domain. In this paper, we
consider three different settings of domain adaptation: 1)
unsupervised domain adaptation, where the target domain
has a large number of unlabeled images; 2) supervised
domain adaptation, where the target domain contains a
small number of labeled images; 3) semi-supervised domain
adaptation, where the target domain consists of a small
number of labeled images and a large number of unlabeled
images. These three settings correspond to different appli-
cation scenarios. For example, if we want to add the crowd
counting capability to an existing camera that has been
operating for some time, this camera would have already
collected a large amount of unlabeled images in the target
domain. In this case, we can use the unsupervised domain
adaptation. In contrast, if we want to deploy a new camera
at some location, we will not have to access a large amount
of unlabeled images in the target scene since the camera
has not be operating for a long time. In this situation, it
might be reasonable to expect that the user can collected a
small amount of labeled images in the target scene during
the initial calibration stage after the camera was just put
into operation. Supervised domain adaptation can be applied
in this scenario. The semi-supervised domain adaptation is
applicable when there are a large number of labeled images
in the source domain and a small amount of labeled images
in the target domain.

The contributions of this paper can be summarized as
follows. First, this is the first paper on deep learning based
domain adaptation in crowd counting. Although there exists
an early work [6] on this problem, this work uses hand-
crafted features. It also requires “corresponding examples”
with identical labels from source and target domains. As a
result, it is difficult to apply the method of [6] in general
settings. Most existing deep learning based domain adapta-
tion work focuses on tasks such as image classification, and
segmentation. To the best of our knowledge, there has not
been much work on domain adaptation for crowd counting.
The closest work to ours is [7] which learns a model for
counting different object types (e.g., people, penguins, cars).
Each object type has a domain-specific layer that adjusts to
that object. The main goal of [7] is different from ours. Our
goal is to adapt a model that works well on a target domain
with limited labeled data, while [7] focuses on allowing a
model to work well on several object types simultaneously.
We believe crowd counting is an area more likely to benefit
from domain adaptation since the test images often come
from the same camera at a fixed location and angle (i.e., one
domain). Moreover, we only care how well the system works
in that particular domain. Second, we propose three different
domain adaptation settings in crowd counting, which can be
applied in various application settings depending on specific
requirements. Finally, we experimentally demonstrate that

our proposed approach outperforms other alternatives. In
addition to standard domain adaptation where the object
of interest is the same in both domains, we also demon-
strate cross-object domain adaptation. For example, in this
paper the cross-object domain experiment considers people
counting in the source domain and car counting in the target
domain.

II. RELATED WORK

Crowd Counting: Earlier work on crowd counting
uses either detection or regression-based approaches. The
detection-based approaches use region proposals [8], [9] to
generate candidate regions of the crowd. The regression-
based crowd estimation techniques do not consider the pre-
cise locations of people in the images. In recent years, con-
volutional neural networks (CNNs) have shown to achieve
great success in crowd counting. The CNN-based approaches
involve a learnable mapping function from the input (image)
to the output space (a density map). Zhang et al. [5] pro-
pose cross-scene crowd counting with alternating objective
functions during training. Zhang et al. [10] propose a Multi-
column Convolutional Neural Network (MCNN) to han-
dle perspective distortion and scale variance. Consequently,
Hossain et al. [11] propose crowd counting using a scale
aware attention network. Sam et al. [1] propose a Switch-
CNN architecture to handle crowd density variation in an
image. Sindagi and Patel [12] introduce a Contextual Pyra-
mid CNN (CP-CNN) by incorporating the global and local
contextual information from the crowd images to generate
high-quality crowd estimation and density. Liu et al. [13]
first learn an initial counting model by ranking different
regions on unlabaled data, and then fine-tune the counting
network on a smaller set of labeled data.
Few-Shot Learning: The goal of few-shot learning is to
learn a visual representation from a small number of ex-
amples. Some early work in few-shot learning [14] uses
Bayesian approaches for object recognition. Koch et al. [15]
propose a deep Siamese neural network for similarity-based
ranking between inputs and later using the trained model to
generalize on new data from a different distribution with a
single image. Lake et al. [16] propose a generative model
based on one-shot learning. Vinyals et al. [17] propose a
matching network that adopts ideas from metric learning for
training a model to map from small labeled and unlabeled
sets to their corresponding labels. Hossain et al. [18] propose
scene specific crowd counting using the concept of one-shot
learning.
Domain Adaptation: Our work is related to domain adapta-
tion [19], [20] where the objective is to transform the models
learned in one domain (i.e., source domain) such that they
perform well in a in a slightly different domain (i.e., target
domain). Over the years, various domain adaptation methods
have been proposed. Some previous works [21], [22] focus
on instance-based domain adaptation and others [23], [24],



[25], [26] focus on features domain adaptation. The instance-
based approaches primarily dealt with the reduction of
the discrepancy between the domains, whereas the feature-
based approaches find a common latent space to match the
domains.

Some domain adaptation approaches work by enforcing
similarity between the features from the two domains. Gret-
ton et al. [27] propose a statistical test based on a distance
method to measure the similarity between two distributions
by mapping the distributions to Reproduce Kernel Hilbert
Space (RKHS) also commonly known as Maximum Mean
Discrepancy (MMD). Huang et al. [28] use MMD by re-
weighting training data points to minimize the domain gap.

III. PROBLEM SETUP

We assume that we have a source domain Ds and a target
domain Dt in the crowd counting problem. For example,
the source and target domains might correspond to images
captured by two different cameras installed at two different
locations (i.e., with different viewing angles, illumination
conditions, scene objects, etc.). Our goal is to deploy a crowd
counting system in the target domain. Let us suppose we
do not have enough labeled training images in the target
domain. However, we have an extensive collection of labeled
images in the source domain. Due to the domain shift, a
model directly trained in the source domain may not work
well in the target domain. In this paper, we would like to
use domain adaptation to transfer the knowledge from the
source domain to the target domain.

The source domain Ds consists of Ns labeled images,
i.e. Ds = {(xsi , ysi )}Ns

i=1 where (xsi , y
s
i ) denote the i-th

image and its corresponding label in the source domain.
Usually, ysi is represented as a density map. Depending
on the application scenario and the availability of data in
the target domain Dt, we consider three domain adaptation
settings defined as follows.
Unsupervised Domain Adaptation (UDA): In this setup,
the target domain consists of a large collection of unlabeled
images, i.e. Dt = {xti}

Nt
i=1 where Nt is the total number of

images and xti denotes the i-th image in the target domain.
The unsupervised domain adaptation setup is useful in the
following application scenario. Suppose the target domain
corresponds to a surveillance camera that is already installed
at a certain location and has been running over a period
of time. In this case, we already have access to a large
number of images in the target domain. Now we would
like to add a new capability to this installed camera for
crowd counting in the target domain. In the ideal case, we
can collect labeled training images in the target domain by
manually annotating the unlabeled images that have been
collected by this camera. However, this is very expensive and
time-consuming since it requires the end-user to annotate
their images. The UDA setup will allow us to make use

of unlabled images in the target domain that are readily
available.
Supervised Domain Adaptation (SDA): The UDA setup is
not applicable in some real-world applications. For example,
suppose the target domain corresponds to a newly installed
camera. In this case, we do not have access to a large number
of unlabeled images captured by this camera. However,
it might be reasonable for the user to collect a small
number of images and manually label them. In this setup,
the target domain consists of a small amount of labeled
images, i.e. Dt = {(xti, yti)}Ki=1 where (xti, y

t
i) denote the

i-th training image and its label in the target domain. Here
K is the number of labeled training images in the target
domain. Usually, K is very small. In this paper, we consider
K ∈ {1, 5, 10} in the experiments.
Semi-Supervised Domain Adaptation (SSDA): This setup
is similar to UDA. But we assume that the user is able to
annotate a small number of images in the target domain.
In other words, the target domain Dt consists of two
subsets of training images, i.e. Dt = Dl

t ∪ Du
t . The subset

Dl
t = {(xti, yti)}Ki=1 contains K labeled images in the target

domain. Again, K is a very small number. The subset
Du

t = {xti}
Nt

i=K+1 contains Nt − K unlabeled images. In
other words, the total number of images in the target domain
is Nt. Only a small subset K of them are labeled. Note that
UDA and SDA can be considered as special cases of SSDA
when Dl

t = ∅ (i.e. K = 0) and when Du
t = ∅ (i.e. K = Nt

and is a small number), respectively.

IV. OUR APPROACH

We firstly introduce the backbone network, then describe
our learning mechanism for domain adaptation.

A. Network Architecture

Our approach is general and can be used with any
crowd counting network. Exploration of the best backbone
architecture is not our focus and is beyond the scope of this
paper. For simplicity, we use the multi-column convolutional
neural network (MCNN) [10] as the backbone architecture in
this paper, although our approach is certainly not limited to
this particular choice of the backbone network. We use Θ to
denote the model parameters of MCNN. For an input image
x, we use FΘ(x) to denote the final feature map before the
prediction and ΨΘ(FΘ(x)) to represent the predicted density
map. In a supervised setting, Θ is learned by optimizing a
loss function defined on labeled images.

B. Domain Adaptation for Crowd Counting

Without loss of generality, we present our domain adap-
tation approach in the following under the semi-supervised
setting (SSDA), since the other two setups (UDA and SDA)
are just special cases of SSDA.
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Figure 2. The architecture of our backbone network based on the multi-column convolutional neural network (MCNN) [10]. This architecture consists
of a parallel branch to extract features at different scales. The features from all three branches are concatenated together in the end to predict the output.
The output of the network is an estimated density map of the input image. Taking an integral over the density map gives the final count. In our work, we
consider the blue colored network as source and the purple network as the target. We employ maximum mean discrepancy to minimize the domain shift
between the source and target feature representations.

In the SSDA setting, we learn the model parameters Θ of
MCNN by optimizing the following loss functions:

LSSDA(Θ) = Lsource(Θ) + Ltarget(Θ) + αLmmd(Θ) (1)

where Lsource(Θ) and Ltarget(Θ) in Eq. 1 are loss functions
defined on Ds and Dl

d, respectively. The last term Lmmd(Θ)
is a loss defined for domain adaptation. The hyperparameter
α controls the relative weight of the domain adaptation
loss. The details of these loss functions are described in
the following.
Supervised Loss: The loss Lsource(Θ) measures how well
the model parameters perform on the labeled training images
in the source domain Ds. It is defined as:

Lsource(Θ) =
1

Ns

Ns∑
i=1

||FΘ(xsi )− ysi ||2F (2)

where ySi denotes the ground-truth density map of the xi
and || · ||F denotes the Frobenius norm.

Similarly, the loss Ltarget(Θ) measures how well the
model parameters perform on the small set of labeled
training images in the target domain Dl

t. It is defined as:

Ltarget(Θ) =
1

K

K∑
i=1

||FΘ(xti)− yti ||2F (3)

Domain Adaptation Loss: We define a domain adaptation
loss that measures the distance of the feature space between
the source and target domains. This loss is based on MMD
[27] as used in [29], [30], [31]. MMD projects the feature
of each data point to a Reproducing Kernel Hilbert Space
(RKHS) to construct a mean embedding. Then the distance
is computed between the constructed mean embeddings. The
expression for the source feature representation is denoted
by Fs

i = FΘ(xsi ) (where i ∈ {1, 2, ..., Ns}). Similarly,
the expression for target stream is represented by F t

j =

ΨΘ(FΘ(xtj)) (where j ∈ {1, 2, ..., Nt}). The calculation of
MMD between the feature representations can be expressed
as:

Lmmd(Θ) =

∥∥∥∥∥
Ns∑
i=1

χ(Fs
i )

Ns
−

Nt∑
j=1

χ(F t
j )

Nt

∥∥∥∥∥
2

(4)

where χ(·) denotes the mapping to RKHS. Eq. 4 can be
further expanded to replace the inner products by kernel
values based on the kernel trick and is expressed as:

Lmmd(Θ) = ∆(Fs
i ,Fs

i′ , Ns, Ns)− 2 ∗∆(Fs
i ,F t

j , Ns, Nt)

+∆(F t
j ,F t

j′ , Nt, Nt),where (5)

∆(Fs
i ,Fs

i′ , Ns, Ns) =
∑
i,i′

k(Fs
i ,Fs

i′)

(Ns)2
(6)

∆(Fs
i ,F t

j , Ns, Nt) =
∑
i,j

k(Fs
i ,F t

j )

(NsNt)
(7)

∆(F t
j ,F t

j′ , Nt, Nt) =
∑
j,j′

k(F t
j ,F t

j′)

(Nt)2
(8)

Here k(·, ·) is a kernel function defined as k(x, x′) =
exp(−‖x − x′‖2/σ), with bandwidth parameter σ. In our
work, we fix σ to be 1.

For the unsupervised domain adaptation, we ignore the
loss term Ltarget(Θ) since we do not have labeled images
in the target domain. So the loss function in UDA can be
written as:

LUDA(Θ) = Lsource(Θ) + αLmmd(Θ) (9)

For the supervised case, the loss function is identical the
same as Eq. 1. The only difference is that Nt in Eq. 4 will
be K in this case.



Table I
DIFFERENT DOMAIN ADAPTATION SETTINGS IN OUR EXPERIMENT. FOR
EACH SETTING, WE SHOW THE NUMBER OF LABELED TRAINING IMAGES

IN THE SOURCE DOMAIN (I.E., Ns), THE NUMBER OF IMAGES IN THE
TARGET DOMAIN (Nt), AND THE NUMBER OF TEST IMAGES IN THE

TARGET DOMAIN. FOR SDA AND SSDA IN EACH SETTING, THE
NUMBER OF LABELED TRAINING IMAGES IN THE TARGET DOMAIN (I.E.,

K) IS {1, 5, 10}.

Source→Target Ns Nt No. of
test images

ShanghaiTechA→Mall 300 800 1200
Mall→ShanghaiTechA 100 300 182

UCSD→Mall 100 800 1200
Mall→UCSD 100 800 1200

UCSD→TRANCOS 100 403 421
Mall→TRANCOS 100 403 421

V. EXPERIMENTS

In this section, we first give details of the datasets and
experiment setup in Sec. V-A. In Sec. V-B, we define several
baseline methods for comparison, which are followed by
our experimental results in Sec. V-C. Also, to demonstrate
our method, we perform a cross-object domain adaptation
experiment. In this setting, the source and target domains
involve counting objects of different classes. Specifically,
we consider a source domain involving people counting,
while the target domain is the task of counting cars. The
motivation of this cross object domain adaptation is that
current crowd counting datasets are limited to a handful
of object categories (e.g., mostly people [2], [3], [5]).
However, in real-world applications, we might be interested
in counting other objects in images. If we can perform well
in cross-object domain adaptation, we can use the existing
object counting datasets to help to count other objects in the
target domain.

A. Datasets and Setup

Datasets: We use 4 datasets in the experiment, including
ShanghaiTech Part A(SHA) [10], Mall [3], UCSD [2] and
TRANCOS [4]. ShanghaiTechA is a dataset containing
dense crowds of people, while Mall and UCSD contain
relatively sparse crowds. TRANCOS is a dataset of vehicle
counting. We use these datasets to evaluate our approach
when adapting between domains of different cameras (with
different viewpoints, illumination conditions, etc.), density
levels, and even between objects. For all datasets, we use the
standard training/testing splits. From the training splits, we
then perform domain adaptation by using different subsets
of these datasets as shown in Table I. For example, the setup
“UCSD→Mall” corresponds to using the UCSD dataset
as the source domain and the Mall dataset as the target
domain. For simplicity, we randomly select 100 labeled
images (Ns = 100) as the source domain. The last column
in Table I shows the total number of test images in the target

Table II
AN ILLUSTRATION OF THE DOMAIN SHIFT PROBLEM IN COMMONLY
USED COUNTING DATASETS. WHEN LEARNING THE MODEL ON THE

TRAINING IMAGES OF A DATASET AND TESTING THE MODEL ON THE
TEST DATA OF THE SAME DATASET, THE PERFORMANCE IS GENERALLY

GOOD (FIRST FOUR ROWS). HOWEVER, WHEN WE TAKE A MODEL
LEARNED FROM THE TRAINING IMAGES OF ONE DATASET AND TEST ON

THE TEST IMAGES IN A DIFFERENT DATASET, THE PERFORMANCE
DROPS DRAMATICALLY (LAST SIX ROWS).

Train Test MAE MSE
ShanghaiTechA ShanghaiTechA 110 169

UCSD UCSD 1.07 1.35
Mall Mall 2.60 3.32

Trancos Trancos 5.53 7.39
Mall ShanghaiTechA 407 683

ShanghaiTechA Mall 22.67 23.24
UCSD Mall 24.25 25.17
Mall UCSD 11.26 11.55

UCSD TRANCOS 22.08 30.52
Mall TRANCOS 21.15 26.59

domain. For the supervised (SDA) and semi-supervised
(SSDA) domain adaptation, we consider the number of
labeled images (i.e., K) to be {1, 5, 10}.
Generation of Ground-truth Density Maps: Similar to
[10], we generate the ground-truth density maps for super-
vised learning from the provided point annotations (i.e., the
center of the head of a person) in each of the datasets. The
process involves applying a Gaussian kernel to the point
annotations and normalizing the result to have a sum of one.
Evaluation Metrics: We use Mean Squared Error (MSE)
and Mean Absolute Error (MAE) as the evaluation metrics.
They are defined as follows:

MAE =
1

N

N∑
i=1

|ĝi − gi|, MSE =
1

N

N∑
i=1

(ĝi − gi)2 (10)

where ĝi and gi denote the predicted and ground-truth counts
of the i-th test image, respectively. The predicted count ĝi
is obtained by integrating over the predicted density map.
Implementation Details: To speed up the training, we first
pre-train the model only using the training images in the
source domain by minimizing Lsource(Θ) defined in Eq. 2.
We then fix the model parameters in the backbone network
except for the fusion and the 1 × 1 conv layer. The MMD
loss is defined on the output of the 1 × 1 conv layer.
We use a learning rate of 1e − 5, a momentum of 0.9, a
batch size of 1 and the Adam optimizer. Since the original
MCNN code from [10] is not publicly available, we use a
3rd-party implementation of MCNN 1, which gives similar
performance to that reported in [10] (see Table II).

1https://github.com/svishwa/crowdcount-mcnn



Table III
QUANTITATIVE RESULTS FOR THE SUPERVISED (SDA) AND SEMI-SUPERVISED (SSDA) DOMAIN ADAPTATION SETTINGS. WE COMPARE OUR MODELS
(“OURS(SDA)” AND “OURS(SSDA)”) AGAINST THE TWO BASELINE MODELS REPRESENTED AS “PRE-TRAINED” AND “FINE-TUNING”. WE COMPARE

THE RESULTS USING MAE AND MSE METRICS FOR K-SHOTS, WHERE K ∈ {1, 5, 10}. LOWER MAE/MSE MEANS BETTER PERFORMANCE. THE
FIRST TWO ROWS CORRESPOND TO DOMAIN ADAPTATION BETWEEN SHANGHAITECHA (DENSE CROWD) AND MALL (SPARSE CROWD) DATASETS

WHERE THE SOURCE AND TARGET DOMAINS HAVE DIFFERENT DENSITY LEVELS. THE 3RD AND 4TH ROWS SHOW THE ADAPTATION BETWEEN MALL
(SPARSE CROWD) AND UCSD (SPARSE CROWD) WHERE TWO DOMAINS HAVE SIMILAR DENSITY LEVELS, BUT THE CAMERAS CAPTURE DIFFERENT

ENVIRONMENTS WITH DIFFERING VIEWPOINTS, ETC. THE LAST TWO ROWS CORRESPOND TO CROSS-OBJECT DOMAIN ADAPTION, WHERE THE
SOURCE DOMAIN (UCSD, MALL) IS FOR PERSON COUNTING AND THE TARGET DOMAIN (TRANCOS) IS FOR VEHICLE COUNTING. THE 1ST AND

2ND BEST RESULTS IN EACH SETTING ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

Source→Target Models 1-shot (K = 1) 5-shot (K = 5) 10-shot (K = 10)
MAE MSE MAE MSE MAE MSE

ShanghaiTechA→ Mall

pre-trained 22.67 23.24 22.67 23.24 22.67 23.24
fine-tuning 5.61 7.04 5.58 6.98 5.56 6.92

Ours (SDA) 5.36 6.65 5.34 6.62 5.42 6.72
Ours (SSDA) 5.30 6.53 5.32 6.59 4.98 6.49

Mall→ ShanghaiTechA

pre-trained 407 683 407 683 407 683
fine-tuning 392.98 661.98 390.22 659.10 392 658.166

Ours (SDA) 388.21 639.54 388.60 642.72 386.22 640.30
Ours (SSDA) 384.83 641.94 382.56 639.50 382 639.88

UCSD→ Mall

pre-trained 24.25 25.17 24.25 25.17 24.25 25.17
fine-tuning 3.45 4.34 3.40 4.30 3.42 4.33

Ours (SDA) 2.95 3.65 3.07 3.77 2.95 3.63
Ours (SSDA) 2.93 3.62 2.92 3.60 2.92 3.64

Mall→ UCSD

pre-trained 11.26 11.55 11.26 11.55 11.26 11.55
fine-tuning 2.43 3.70 2.45 3.72 2.44 3.80

Ours (SDA) 2.38 3.49 2.39 3.50 2.38 3.56
Ours (SSDA) 2.36 3.57 2.35 3.48 2.35 3.55

UCSD→ TRANCOS

pre-trained 22.08 30.52 22.08 30.52 22.08 30.52
fine-tuning 19.21 24.64 19.22 24.65 19.22 24.61

Ours (SDA) 17.85 23.14 17.07 22.49 17.06 22.34
Ours (SSDA) 17.07 22.10 17.04 22.07 17.03 22.06

Mall→ TRANCOS

pre-trained 21.15 26.59 21.15 26.59 21.15 26.59
fine-tuning 17.58 22.97 17.59 22.99 17.58 22.97

Ours (SDA) 17.54 23.04 17.55 22.92 17.58 22.92
Ours (SSDA) 17.49 22.72 17.48 22.69 17.46 22.68

B. Baselines

There is no previous work with which we can directly
compare our method. Nevertheless, we define several base-
lines by ourselves, so that we can compare and demonstrate
the effectiveness of the proposed approach. These baselines
are the default methods that might currently be used in
practice.
Pre-trained: The baseline method ignores the data (either
labeled or unlabeled) in the target domain. It uses the labeled
source training images to learn the model parameters. Then
it directly applies the pre-trained model to the test data in
the target domain.
Fine-tuning: This baseline is the standard fine-tuning tech-
nique commonly used in deep learning. First, we train the
model using the labeled images in the source domain to
generate a pre-trained model. Then we fine-tune the model
on the small number of labeled images in the target domain.
Note that this baseline is only applicable in the SDA and

SSDA settings since these two settings assume the target
domain has some labeled training images. However, it does
not work in the UDA setting in which there are no labeled
training images in the target domain.

C. Experimental Results

Before presenting our main experimental results, we first
perform an experiment as a sanity check to illustrate the
domain shift problem in commonly used crowd counting
datasets. This will demonstrate the need for domain adapta-
tion in crowd counting. In Table II, we show the quantitative
results using training/test datasets from different combina-
tions of various datasets. We see that the performance is
generally good when both training and test data are from the
same dataset. However, when we train the model using one
dataset and test on another dataset, there is a significant drop
(on the order of 10-20 times) in performance. This shows
that there is a notable domain shift between the common
datasets used in crowd counting. Without explicit domain



adaptation, a model trained on one dataset (i.e. source)
usually does not generalize well to another different dataset
(i.e. target).

Table III shows the results of supervised and semi-
supervised domain adaptation when K = 1, 5, 10. We
compare our approach (“Ours (SDA)” and “Ours (SSDA)”)
with the two baselines (“pre-trained” and “fine-tuning”). Our
proposed method significantly outperforms the baselines. In
most cases, our semi-supervised method performs the best.
This is reasonable since this setting makes the best use of
all the training information available. Interestingly, there is
no significant difference among the results when we vary
the value of K from 1 to 10. One possible explanation is
that the value of K is relatively small. When we increase K
from 1 to 10, it is not enough to have a significant impact
on the learning.

We present the results of unsupervised domain adaptation
in Table IV. We compare our method with the baseline
which directly applies the pre-trained model from the source
domain to the target domain. Our method significantly
outperforms this baseline. Note that we cannot compare with
the “fine-tuning” baseline as it requires access to labeled
training images in the target domain.

Table IV
QUANTITATIVE RESULTS OF THE UNSUPERVISED DOMAIN ADAPTATION

(UDA), WHERE THE TARGET DOMAIN ONLY HAVE UNLABELED
TRAINING IMAGES. THE BEST RESULTS ARE HIGHLIGHTED IN RED.

Source→Target Models MAE MSE
ShanghaiTechA→ pre-trained 22.67 23.24
Mall Ours (UDA) 5.61 7.04
Mall→ pre-trained 407.00 683.00
ShanghaiTechA Ours (UDA) 392.98 661.88

UCSD→ Mall
pre-trained 24.25 25.17

Ours (UDA) 2.93 3.65

Mall→ UCSD
pre-trained 11.26 11.55

Ours (UDA) 2.52 3.38

UCSD→ TRANCOS
pre-trained 22.08 30.52

Ours (UDA) 17.19 22.14

Mall→ TRANCOS
pre-trained 21.15 26.59

Ours (UDA) 17.90 23.36

D. Analysis

We perform additional analysis to get further insight into
our proposed approach. Considering two oracle methods
to be the upper bound of our approach. The difference
between these two oracle methods is as follows. Oracle-1
only considers the training data in the target domain and
it can overfit to this domain. Oracle-2 is trained with more
training data since it uses training images from source and
target domains. However, Oracle-2 is not explicitly trained
to fit the target domain.

In Table V, we compare our domain adaptation approach
to these oracle methods. Note that in the case of SDA and

Table V
COMPARISON OF OUR DOMAIN ADAPTATION APPROACHES WITH TWO

ORACLE METHODS. THE 1ST AND 2ND BEST RESULTS IN EACH SETTING
ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

Target Method Source MAE MSE

SHA

Oracle-1 - 110 169
Oracle-2 Mall 369.51 486.66

Ours (UDA) Mall 392.98 661.88
Ours (SDA) Mall 388.21 639.54

Ours (SSDA) Mall 384.83 641.94

Mall

Oracle-1 - 2.60 3.32
Oracle-2 SHA 5.23 6.42

Ours (UDA) SHA 5.61 7.04
Ours (SDA) SHA 5.36 6.65

Ours (SSDA) SHA 5.30 6.53

Mall

Oracle-1 - 2.60 3.32
Oracle-2 UCSD 2.90 3.60

Ours (UDA) UCSD 2.93 3.65
Ours (SDA) UCSD 2.95 3.65

Ours (SSDA) UCSD 2.93 3.62

UCSD

Oracle-1 - 1.07 1.35
Oracle-2 Mall 2.28 3.37

Ours (UDA) Mall 2.52 3.38
Ours (SDA) Mall 2.38 3.49

Ours (SSDA) Mall 2.36 3.57

TRANCOS

Oracle-1 - 4.67 6.61
Oracle-2 UCSD 16.98 21.05

Ours (UDA) UCSD 17.19 22.14
Ours (SDA) UCSD 17.85 23.14

Ours (SSDA) UCSD 17.07 22.10
Oracle-2 Mall 17.43 22.65

Ours (UDA) Mall 17.90 23.36
Ours (SDA) Mall 17.54 23.04

Ours (SSDA) Mall 17.49 22.72

SSDA, we have used the result from the 1-shot (K = 1)
setting. We can make several interesting observations. First,
Oracle-1 consistently outperforms Oracle-2 on all datasets.
This suggests that if we have enough labeled data in the
target domain and if we only care about the model perfor-
mance in the target domain, we should directly use standard
supervised method trained in the target domain. The benefits
of domain adaptation are more relevant when the labelled
data in the target domain is scarce. Second, the difference
between Oracle-2 and our approach is not significant. This
means if we use the proposed domain adaptation method,
the number of labeled images in the target domain does not
significantly impact the performance of the model. This is in
fact good news for practical applications, since it implies that
annotating a small number of images in the target domain
is enough to achieve competitive performance.

VI. CONCLUSION

We have proposed deep learning-based domain adaptation
in crowd counting. Our method can operate in supervised,
unsupervised, and semi-supervised settings. The proposed
approach has been demonstrated to outperform other alter-



native approaches experimentally on several public datasets.
In addition to standard domain adaptation where the object
of interest is the same in both source and target domains,
we have shown that our method is also applicable for
cross-object domain adaptation. Although we have used
MCNN as the backbone network and MMD as the domain
adaptation loss in this paper, we are certainly not limited to
these specific choices – our model can be used with other
backbone architectures and domain adaptation losses.
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