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ABSTRACT

We consider the problem of object instance segmentation.
The goal is to label each pixel in an image according to its
object class as well as its object instance. The proposed
approach consists of three steps including object instance
detection, category-specific instance segmentation and depth-
aware ordering. The novelty of the proposed approach is
that it uses the depth information to resolve the ambiguity
of pixel labels when two object instances are overlapping.
Experimental results on the PASCAL VOC 2012 benchmark
demonstrate the competitive performance of the proposed
approach compared with other state-of-the-art methods.

Index Terms— instance segmentation, depth, occlusion
reasoning

1. INTRODUCTION

We consider the problem of object instance segmentation.
Given an image, the goal is to label each pixel according to
its object class as well as its object instance. Instance segmen-
tation is closely related to two important tasks in computer
vision, namely semantic segmentation and object detection.
The goal of semantic segmentation is to label each pixel ac-
cording to its object class. However, semantic segmentation
does not differentiate between two different object instances
of the same class. For example, if there are two persons in
an image, semantic segmentation will assign the same label
to pixels belonging to either of these two persons. The goal
of object detection is to predict the bounding box and the
object class of each object instance in the image. However,
object detection does not provide per-pixel labeling of the
object instance. Compared with semantic segmentation and
object detection, object instance segmentation is strictly more
challenging, since it aims to identify object instance as well
as provide per-pixel labeling of each object instance.

Object instance segmentation is a relatively new area in
computer vision. Depending on how the instance segmenta-
tion results are represented, existing work on object instance
segmentation can be classified into two categories: detection-
level instance segmentation (e.g. [1, 2, 3]) and image-level
instance segmentation (e.g. [4, 5]). Detection-level instance

segmentation methods usually involve two stages, namely ob-
ject detection and semantic segmentation. These methods
consider all generated instances over the image and allow
overlapping among different instances. In other words, a pixel
in the image can belong to the segmentation masks of two
different object instances. In contrast, image-level instance
segmentation aims to assign each pixel to at most one object
instance in the image. Since image-level instance segmenta-
tion needs to resolve the possible ambiguity of the pixel labels
and assign each pixel to a unique object instance, it is more
challenging than detection-level instance segmentation.

In this paper, we focus on image-level object instance seg-
mentation. In other words, our goal is to assign each pixel in
the image to at most one object instance. We propose a depth-
aware object instance segmentation approach. The proposed
approach consists of three steps: object instance detection,
category-specific instance segmentation and depth-aware or-
dering. Our main contribution of our work is to introduce
a novel depth-based occlusion reasoning that can resolve the
ambiguity of pixel labels when two object instances are over-
lapping.
Related Work: Object instance segmentation is related to ob-
ject detection and semantic segmentation. In recent years,
convolutional neural networks (CNN) have been shown to be
effective in solving both tasks. The state-of-the-art object de-
tectors (e.g. [6, 7, 8]) work by generating object proposals [9]
and then classifying each object proposal using CNN. Most
recent semantic segmentation methods (e.g. [10, 11, 12]) use
CNN with deconvolution or atrous convolution.

Recently, some efforts have been made for object instance
segmentation. The detection-level instance segmentation
methods generally focus on simultaneous detection and seg-
mentation [1]. [2] proposes an intuitive energy minimization
framework for category specific reasoning and shape predic-
tion. A multi-task cascade network is designed by [3], which
has a similar network as [7] for object proposals and adds an
additional segmentation network for instance segmentation
masks. For image-level instance segmentation, [13] intro-
duces an associative embedding method using a tag label
to identify the instance to obtain the segmentation result at
one time. Affinity learning and boundary-based method are
proposed in [5] to parse and separate instances directly from



semantic segmentation result.

2. OUR APPROACH

Figure 1 shows an overview of our approach. Given an input
image, we first generate a set of candidate object instances
using off-the-shelf object detectors. Each instance is repre-
sented as a bounding box. We also apply a depth estimation
algorithm to estimate the depth of each pixel in the image.
The result of the depth estimation is used to establish the
depth ordering of the candidate instances according to their
distances to the camera. We then apply a category-specific
segmentation network to perform a pixel-wise labeling of the
pixels in each candidate bounding box. Finally, the segmen-
tation masks generated from candidate instances are placed
within an output image in the order of their depth. The depth
information can help resolve the ambiguity due to occlusions.
For example, if two candidate object instances are overlap-
ping, it is possible for a pixel to be claimed as foreground by
both object instances. In this case, we can resolve the ambi-
guity using the depth information and assign the pixel to the
object instance closer to the camera.

2.1. Object Instance Detection

Given an input image, the first step of our approach is to gen-
erate candidate object instances in the image. Each candidate
object instance is represented as a bounding box. We can use
any off-the-shelf object detectors for generating the candidate
object instances. In this paper, we choose to use Faster R-
CNN [8], since it is a state-of-the-art object detector and has
been proved to be both effective and efficient. Faster R-CNN
consists of two sub-networks, namely Region Proposal Net-
work (RPN) for generating object proposals and Fast R-CNN
[7] for detection. These two networks share features in their
common convolutional layers resulting in the faster speed for
object detection.

We use Iin to denote the n-th detection of the object cat-
egory i, where n = 1, ..., Ni and i denotes a specific object
class (e.g., i is one of twenty object categories in PASCAL
VOC dataset [14]), and Ni denotes the number of detected
instances of the i-th object class. Figure 1(a) shows exam-
ples of four object instances (two instances of “people” and
two instances of “horse”) detected by Faster R-CNN. Due to
occlusions, these instances are overlapping.

2.2. Category-Specific Instance Segmentation

The object detector in Sec. 2.1 provides a collection of de-
tected object instances. For each detected object instance
(i.e. bounding box), our next step is to produce a pixel-wise
segmentation mask, where each pixel is labeled according to
whether it belongs to the object or the background. Note that
it is possible to produce this segmentation mask by applying a

generic semantic segmentation method on each detected ob-
ject instance. However, since we already know the object cat-
egory of each detected object instance and only need to label
each pixel in the bounding box as whether it belongs to the ob-
ject category or not, our problem is easier than generic multi-
class semantic segmentation. So instead of using a generic
semantic segmentation model, we choose to learn a category-
specific segmentation network for each object category. For
each object instance, we apply the corresponding category-
specific segmentation network to produce the segmentation
mask.

We build our category-specific segmentation network
based on DeepLab [12] to produce the segmentation mask for
each detected object instance. DeepLab is a state-of-the-art
method for semantic segmentation. The original DeepLab is
designed for multi-class semantic segmentation, where the
goal is to label each pixel as one of the several classes. But in
our case, we would like to have a category-specific segmen-
tation network that can produce a binary segmentation mask
for a specific object category. We tailor category-specific
segmentation network to each category i by fine-tuning the
DeepLab network. Each category instance is cropped and re-
scaled to the same size of 321x321 from the original image
and used for the learning. At test time, each instance Iin ob-
tained from Sec. 2.1 is passed to the corresponding category-
specific segmentation network to generate the segmentation
mask M i

n for this instance. Some examples of generated
instance segmentation masks are shown in Fig. 1(c).

Since the segmentation mask for each object instance is
generated independently, some pixels can be claimed by two
different object instances. This often happens when the two
object instances are occluding each other. Figure 1(d) shows
a simple fusion of all instance segmentation masks, where
pixels claimed by more than one object instance are colored as
white. We can see that a large block of regions are claimed by
three potential instances, i.e. two horses and the person on the
right. Since the goal of this paper is to do image-level instance
segmentation, we would like to resolve this ambiguity caused
by occlusion and assign each pixel to at most one instance.

2.3. Depth-Aware Ordering

In order to resolve the ambiguity caused by occlusion and
assign each pixel to at most one object instance, we introduce
depth-aware ordering based on relative depth to address this
problem.

Consider two overlapping segmentation masks M i
n and

M j
m, we would like to resolve the ambiguity in assigning the

overlapping region. We consider two cases separately. The
first case is that there is partial overlap between these two
segmentation masks. We propose to assign the overlapping
region to a specific instance segmentation mask in the image
based on relative depth of these two object instances. In order
to estimate the relative depth of object instances, we adopt
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Fig. 1. Overview of the proposed instance segmentation approach. Given an input image (a), we produces a number of
candidate object instances (b). Then these instances are passed to the category-specific segmentation network to generate
their corresponding category-specific instance segmentation masks (c). (d) shows some overlapping regions colored as white
between different instances. To resolve the ambiguity of the pixels in the overlapping regions, depth estimation is used to
predict pixel-wise depth value (e) and followed by an depth-aware ordering strategy to generate the final instance segmentation
result (f).

the hourglass network [15], which outputs pixel-wise relative
depth value D(p) for each pixel p in the image. Figure 1(e)
shows an example of the estimated depth map where darker
pixels correspond to regions closer to the camera. Then the
relative depth for each instance segmentation mask is defined

as D(M i
n) =

∑
p∈Mi

n
D(p)

num(p∈Mi
n)

, where num(·) is the total number
of pixels in the instance segmentation mask. For the occluded
mask region Mn,m between M i

n and M j
m, Mn,m will be as-

signed to the mask that has a smaller depth value as follows:

Mn,m ∈


M i

n if |D(M i
n)−D(Mn,m)|

< |D(M j
m)−D(Mn,m)|

M j
m otherwise

(1)

The second case is that M i
n (M j

m) is completely covered
by M j

m (M i
n). We adopt near-to-far strategy to place these

two instance segmentation masks in the order of their dis-
tance to the camera. After all instance segmentation masks
are processed, the final instance segmentation result is shown
in Fig. 1(f) where the occluded regions shown in Fig. 1(d)
are successfully assigned to people and horses respectively
and the four individual instances are defined clearly with their
boundaries.

3. EXPERIMENTAL RESULTS

Following [1, 5, 13], we evaluate our object instance segmen-
tation approach on the PASCAL VOC 2012 validation dataset
[14]. We use the segmentation dataset in [16] to train the
category-specific segmentation network used in our approach.
It contains 20 object categories and 10582 images. We com-
pare our approach with several existing state-of-the-art in-
stance segmentation methods, including both image-level in-

stance segmentation methods [4, 5] and detection-level in-
stance segmentation methods [1, 2, 3]. We also compare with
two baselines based on the semantic segmentation results ob-
tained from DeepLab [12]. The first baseline (DeepLab +
connected components) directly extracts connected compo-
nents from the semantic segmentation mask as individual in-
stances. The second baseline (DeepLab + Faster R-CNN)
uses the Faster R-CNN object detection results to obtain in-
stances from the semantic segmentation masks. The semantic
segmentation mask with the same category label as object de-
tection result in the bounding box is labeled as an instance.

Table 1 shows the comparison result using mAP r [1] un-
der IoU threshold at 0.5. Our approach consistently outper-
forms all image-level instance segmentation methods [4, 5].
This clearly demonstrates the effectiveness of our proposed
approach and the contribution of category-specific segmen-
tation network and depth-aware ordering. In addition, the
performance of our approach is either better than or com-
parable to other detection-level instance segmentation meth-
ods [1, 2, 3]. However, it should be noted that detection-level
instance segmentation methods are not directly comparable to
image-level instance segmentation methods under this metric,
since detection-level instance segmentation ignores the oc-
clusion between different instances and can assign the same
pixel in the image to more than one instance. Compared with
detection-level instance segmentation, image-level instance
segmentation is a more challenging problem since we have
to assign a pixel to at most one object instance.

Jin et al. [5] propose a metric called AR@10 to make the
detection-level and image-level instance segmentation com-
parable. This metric measures the average recall between
IoU overlap threshold from 0.5 to 1 and allows at most 10
instances used for instance segmentation evaluation over an
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Fig. 2. Some qualitative examples of our approach on the PASCAL VOC 2012 validation dataset. For each input image, we
show the results of object detection, depth estimation, semantic segmentation, and object instance segmentation.

Method mAP r(%)
Detection-level instance segmentation

SDS [1] 43.9
OH [2] 46.3

MNC [3] 63.5
DeepLab [12] + Faster R-CNN [8] 46.7

Image-level instance segmentation
AE [4] 35.1

ODF [5] 49.9
DeepLab [12] + connected components 45.3

Ours 53.9

Table 1. Comparison of instance segmentation results on the
PASCAL VOC 2012 validation dataset in terms of mAP r.
Note that detection-level instance segmentation and image-
level instance segmentation are not directly comparable under
this metric, since the former allows a pixel to be assigned to
more than one instances.

image. As shown in Table 2, our proposed approach performs
either better than or comparable to other state-of-the-art ob-
ject instance segmentation methods under this metric.

Figure 2 shows some qualitative examples. We can see
that the proposed approach is capable of distinguishing mul-
tiple overlapping instances of different categories (e.g. people
and bicycle/motorbike in the 1st and 4th images). It can also
identify partially occluded instances of same categories (e.g.
cow and sheep in the 2nd and 3rd images).

Method AR@10(%)
Detection-level instance segmentation

SDS [1] 7.0
MNC [3] 33.4

Image-level instance segmentation
ODF [5] 38.8

Ours 38.7

Table 2. Comparison of instance segmentation results on the
PASCAL VOC 2012 validation dataset in terms of AR@10
defined in [5].

4. CONCLUSION

In this work, we have proposed a novel depth-aware object
instance segmentation approach. Our approach consists of
three steps: object instance detection, category-specific in-
stance segmentation and depth-aware ordering. The novelty
of our approach is that it uses the estimated depth information
to resolve the ambiguity of pixel labels when object instances
are overlapping. The experimental results have demonstrated
that the effectiveness of the proposed approach.
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