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ABSTRACT

Image compression plays an important role in saving disk
storage and transmission bandwidth. Among traditional
compression standards, JPEG is one of the commonly used
standards in lossy image compression. However, the decom-
pressed JPEG images usually have inevitable artifacts due to
the quantization step, especially at low bitrate. Many recent
works leverage deep learning networks to remove the JPEG
artifacts and have achieved notable progress. In this paper,
we propose a stacked multi-context channel-wise attention
model. The channel-wise attention adaptively integrates fea-
tures along the channel dimension given a set of feature maps.
We apply multiple context-based channel attentions to enable
the network to capture features from different resolutions.
The entire architecture is trained progressively from the im-
age space of low quality factor to that of high quality factor.
Experiments show that we can achieve the state-of-the-art
performance with lower complexity.

Index Terms— Compression artifact removal, image
restoration, hourglass network, attention

1. INTRODUCTION

We consider the problem of artifact removal in lossy im-
age compression. Compared to lossless compression stan-
dards such as PNG [13], lossy compression methods (e.g.
JPEG [23], JPEG2000 [12] and WebP [8]) can produce
smaller compressed files at the expense of a small amount of
information loss. JPEG is the most commonly used standard
in lossy image compression nowadays. The main components
in JPEG include DCT, quantization, and entropy coding.
Among them, almost all the information loss is caused by the
quantization, which introduces various artifacts (blocking,
ringing, blurring) that degrade the reconstructed images at
the decoder. Compression artifact removal is a post-filtering
process that aims to restore the degraded image as close to
the artifact-free image as possible. Recent works show that
deep learning is a promising technique for artifact removal.
Methods based on deep learning can significantly improve

perceptual and metric similarities between the reconstructed
and the original images.

Since JPEG operates at block level with block size of
8×8 pixels, it may cause one object to be divided into sev-
eral blocks during the compression and lead to artifacts in the
reconstructed image. As different parts of an object are highly
correlated and share similar textures, contextual information
may help capturing patterns in this region and reducing the ar-
tifacts. In this paper, we propose to use attentions to capture
contextual information in an image for artifact removal. The
attention mechanism has been used in other computer vision
and image processing tasks. For example, Chu et al. [5] apply
spatial attentions for human pose estimation. Spatial attention
allocates different weights in different spatial positions in an
image. In image restoration, the evaluation is based on the
whole image and we average the computed values of all pix-
els, which means learning individual importance to different
pixels may not work. Besides, spatial attention will produce
a large number of zeros. When the attention map is applied
to features of deep learning network, most of the features will
be mapped to zeros.

Based on these observations, we propose a deep learning-
based stacked multi-context channel-wise attention model
and apply it to JPEG compression artifact removal. In our
model, feature maps are integrated by a learnt rescaling atten-
tion vector along the channel dimension. In [26], the channel
attention is incorporated into each residual block with the
same architecture. Different from [26], we augment the chan-
nel attention with multiple contexts at different scales. This
allows our model to effectively exploit multi-scale contex-
tual information. During training, we also take advantage of
decompressed images with different quality factors to pro-
gressively supervise the network. Experiments show that
our method can achieve the state-of-the-art performance with
lower complexity.

2. RELATED WORK

Several researches on compression artifact removal have been
proposed in recent years. In [6], a 4-layer convolutional net-



Fig. 1. Stacked multi-context channel-wise attention model. There are four stacks of hourglass networksH1, H2, H3, H4 in our
system. H2 and H3 have the same architecture as H1. X̂1, X̂2, X̂3 and X̂4 are reconstructed outputs for the four sub-networks
respectively.

work is proposed, where the easy-to-hard transfer learning is
used to initialize the parameters from a shallow network and
transfer features learnt from high compression factors to that
of low quality factors, which facilitates faster convergence
than random initialization. The model in [20] includes 8 lay-
ers. It predicts residual map between the input and ground
truth image, and uses skip connections to help to propagate
information. It also combines the direct mapping loss with
the Sobel edge loss to focus on high-frequency recovery for
better perceptual reconstructions. In [3], a 12-layer deep net-
work with hierarchical skip connections and a multi-scale loss
is proposed. The architecture has multiple downsampling and
upsampling, and predicts the reconstructed outputs at differ-
ent scales. It demonstrates that deeper network has better ca-
pability to restore images and is also effective in low-level
vision tasks.

Some works [10, 7] follow the spirit of Generative Ad-
versarial Network (GAN). Basically GAN contains a gen-
erator and a discriminator, where the generator produces a
candidate image output to fool the discriminator so that it is
hard for the discriminator to distinguish whether the image
is from the generator or it is a real image. These methods
show that they can generate more realistic reconstructions,
but may get relatively lower PSNR performance. They also
apply extra perceptual loss where a pre-trained VGG network
is used to share similar high-layer features between the pre-
dicted and the original images. The dual domain learning
is adopted in [10, 9, 25] where features from both pixel do-
main and DCT domain are integrated to enhance the final re-
construction. However, it is not clear that whether the im-
provement is due to the proposed DCT-domain reconstruc-
tion or the increase in the number of parameters from the
branch. In [21], a very deep MemNet consisting of many
memory blocks is developed. Gate units are applied to con-
trol how much previous memory blocks and the current state

are reserved. The densely connected structure helps restoring
mid/high-frequency signals. In [7, 15], it is shown that image
restoration can benefit subsequent high level computer vision
tasks such as detection and segmentation.

Most recent works [14, 26, 11] focus on image super-
resolution and achieve superior performance. However, their
models have many more parameters (10M+) and require a
larger training dataset to support. On the other hand, they are
not specifically designed for compression artifact removal. As
the noises in compression and super-resolution are quite dif-
ferent, the techniques in super-resolution do not necessarily
achieve satisfactory results when applied to compression arti-
fact removal task.

3. PROPOSED MODEL

In this section, we propose a deep learning-based multi-
context channel-wise attention model to reduce JPEG com-
pression artifacts. Our proposed model is based on the
stacked hourglass network [17] which is originally devel-
oped for human pose estimation. Fig. 1 gives an overview of
our proposed model. We use 4 stacks of hourglass networks
{H1, H2, H3, H4} to allow for iterative reconstructions. Each
yellow box in Fig. 1 represents a single residual module same
as in [17]. For the last few layers in each stack of the hour-
glass network, we collect the outputs of residual blocks from
different scales, and apply the channel-wise attention for each
scale (as shown in green boxes in Fig. 1).

Before the first hourglass network, we use a convolution
layer and a residual block to obtain high frequency compo-
nents. Each stack of hourglass network produces a 2D resid-
ual map between the input decompressed image and the tar-
get image with a channel dimension of 1. The residual map
is added to the input decompressed image X to generate the
reconstructed image X̂i at current stack. A 1×1 convolution



layer remaps the residual map to match the number of fea-
ture channels, and then add the output feature and input of
this stack as an input for the next hourglass network. The last
stack of hourglass network outputs X̂4 without further steps.
Given the input decompressed JPEG image X , the final re-
constructed image X̂4 is obtained by

X̂4 = X +H4(H3(H2(H1(X, θ1), θ2), θ3), θ4). (1)

Θ = {θ1, θ2, θ3, θ4} are parameters of the four sub-networks.
The model parameters are trained end-to-end.

3.1. Channel-wise Attention Network

Channel attention network has shown great success in image
super-resolution [26]. It adaptively integrates features by con-
sidering the interdependencies among different channels in a
feature map.

Suppose the size of the feature map F is C × H × W ,
where C is the channel dimension, and H × W is the spa-
tial size. First, we use a global average pooling to get a C-
dimension channel vector z where the c-th element zc is cal-
culated as:

zc = HGP (F ) =
1

H ×W
ΣH

i=1ΣW
j=1Fc(i, j). (2)

Fc(i, j) is the feature value at spatial location (i, j) of the c-th
channel in the feature map F . This channel statistics can be
viewed as a collection of the local descriptors for each feature
map. To get the attention scores, we use a linear layer to
map the pooled features z followed by a softmax operation.
A ReLU layer is added for nonlinear interactions.

g = ReLU(Wz)

ac =
exp(gc)

ΣC
j=1exp(gj)

(3)

where W ∈ RC×C is the weight of the linear layer and
ΣC

c=1ac = 1. Attentions in each stack of hourglass network
share the same parameter W to get scores and W is learnt
during training.

3.2. Multi-context Channel-wise Attention Network

As shown in Fig. 1, the upsampling process generates features
with different sizes r, i.e. r = 8, 16, 32. Previous work [2]
has shown that deconvolution can produce checkerboard ar-
tifacts in the output image. PixelShuffle [19] is a popular al-
ternative applied in super-resolution tasks [14, 26, 11], but it
will lead to more parameters (from channel size c increased
to c × s × s, where s is upsampling factor). Here we simply
use bilinear layer for upsampling. The downsampling oper-
ation in the hourglass network not only reduces computation
complexity, but also enlarges receptive field. The consecutive
downsamplings and upsamplings enable our model to capture

Classic 5 LIVE1
Method PSRN SSIM PSNR SSIM
JPEG 27.82 0.7595 27.77 0.7730
ARCNN [6] 29.03 0.7929 28.96 0.8076
TNRD [4] 29.28 0.7992 29.15 0.8111
DnCNN [24] 29.40 0.8026 29.19 0.8123
CAS-CNN [3] ∼ ∼ 29.44∗ 0.8333∗
MemNet [21] 29.69 0.8107 29.45 0.8193
hourglass 29.61 0.8100 29.37 0.8182
hourglass(PS) 29.63 0.8109 29.38 0.8186
Ours(PS+atten) 29.70 0.8121 29.45 0.8201

0.8297∗ 0.8342∗

Table 1. Average PSNR/SSIM on datasets Classic5 and
LIVE1 with quality factor 10. ∗ indicates using different pa-
rameter setting for SSIM.

contextual information at different scales. We use ar to rep-
resent the attention vector produced from the feature size r
(r = 8, 16, 32). All attention vectors are summed up and then
applied to the feature f to generate the refined feature hatten

by
hatten = f ? (Σr=8,16,32ar) (4)

where f is the output feature for an hourglass stack and ?
denotes the channel-wise multiplication operation.

3.3. Progressive Supervision

Since we stack multiple hourglass networks and train them
end-to-end by feeding the output of one stack as input of the
next stack, the entire network can be quite deep. We can em-
ploy a loss at the end of each sub-network to avoid gradi-
ent vanishing problem. We use a sequence of JPEG decom-
pressed images with higher quality factors for supervision af-
ter each stack, which allows the network to gradually learn
the mapping from the space of low quality factor to the orig-
inal image space (we call PS). The sequential decompressed
images can guide the network to build a progressive path to
predict the residual map at the end. Even without transfer-
ring features from high-quality decompressed images, we can
still obtain good performance for low-quality decompressed
images.

We use Mean Square Error (MSE) as the loss function
for training. For an input decompressed image X with com-
pression quality factor 10, Ω = {X1, X2, X3} represent im-
ages with quality factors from 20 to 40 respectively. Y is the
artifact-free image, therefore the final loss function is

` =
1

N
ΣN

j=1(Σ1,2,3
i=1 ||X̂

i
j −Xi

j ||2 + ||X̂4
j − Yj ||2) (5)

where N is the number of samples, X̂i is the corresponding
intermediate output and X̂4 is the final output given in Eq. 1.



Original JPEG (25.78/0.762) ARCNN (26.92/0.797) MemNet (28.13/0.835) Ours (28.26/0.837)

Fig. 2. Quantitative results on image “barbara” from Classic 5 dataset with quality factor 10, shown as (PSNR/SSIM).

4. EXPERIMENT

Datasets: We train on images from the Berkeley Segmenta-
tion Dataset (BSD) [16]. We use the 400 images including the
default split of training and test sets for learning our model.
To compare with previous papers, we report testing results on
the two popular benchmarks: Classic 5 (5 images) and LIVE1
(29 images) [18]. The LIVE1 dataset contains images with
diverse properties.

Training Details: We modify the hourglass network
from [17] in several ways. In order to reduce computation
complexity, we fix all the layers with channel dimension as
64 instead of 128. Each hourglass contains 3 pairs of down-
sampling and upsampling. Our multi-context channel-wise
attention network has 2.1M parameters in total, while the
original hourglass network for human pose estimation [1] has
around 40M parameters. Note that we calculate the released
model for [21], it has around 2.91M parameters.

Before training, we first convert images from RGB color
space to YCrCb, and then only use the luminance component
during training and testing. We first train on 32×32 patches
with a stride of 16 and then finetune on larger patch size
64×64 with a stride of 48. Results are reported on the en-
tire test images. Following [21], data augmentation is applied
for the training images. We do not use quality augmentation
as in [21]. We apply the standard JPEG compression encoder
in MATLAB to get the images with quality factors involved
in the experiment.

Our model is built based on [1]. We use RMSprop [22]
optimizer to train with a batch size of 256 for input size 32×
32 and a batch size of 60 for size 64×64. We set the momen-
tum parameter to 0.9 and weight decay of 10−4. The initial
learning rate is set to 0.0001 and then decreased by 10 every
10 epochs. PSNR and structural similarity (SSIM) are ap-
plied to evaluate the performance, where SSIM uses the same
parameter setting as in [21].

Results and Discussions: Table 1 shows results (in terms
of both PSRN and SSIM) for JPEG artifact removal on dataset
Classic5 and LIVE1 for quality factor 10. We compare with
several baseline approaches. Our method (PS+atten) with
the proposed attention module achieves either comparable or
better results compared to previous works. Note that CAS-
CNN [3] uses 396k training images, which is far more than
BSD dataset. They also use a different window for SSIM
evaluation. We show our results on both parameter settings
for SSIM.

The hourglass and hourglass(PS) models are the simpli-
fied hourglass network trained without and with progressive
supervision as mentioned in Sec. 3.3 respectively. These two
models do not use the multi-context channel-wise attention
module. The performance of the baseline hourglass degrades
0.09dB in PSNR and 0.002 in SSIM compared with our pro-
posed model. This shows the effectiveness of our proposed
multi-context channel-wise attention model.

We show quantitative results on image “barbara” from
Classic 5 dataset with quality factor 10 in Fig. 2. Compared
to the original JPEG decompressed image, the reconstructed
result from our approach has much clearer textures as well
as less blocking artifacts. Even though the MemNet method
in [21] has satisfactory restoration of the table cloth, ours can
further eliminate the blurring artifact. Besides, our complex-
ity is lower than that in [21].

5. CONCLUSION

In this paper, we propose a stacked multi-context channel-
wise attention model which is trained in a progressive man-
ner for JPEG artifact removal. The multi-context channel-
wise attention can adaptively integrate information from dif-
ferent scales. Experiment results show that the proposed at-
tention mechanism achieves the state-of-the-art performance
with lower complexity.
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