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Abstract—Visual relationship detection can serve as the in-
termediate building block for higher level tasks such as image
captioning, visual question answering, image-text matching. Due
to the long tail of relationship distribution in real world images,
zero-shot predication of relationships that it has never seen
before can alleviate stress of collecting every possible relationship.
Following zero-shot learning (ZSL) strategies, we propose a
joint visual-semantic embedding model for visual relationship
detection. In our model, the visual vector and semantic vector
are projected to a shared latent space to learn the similarity
between the two branches. In the semantic embedding, sequential
features in terms of <sub, pred, obj> are learned to provide the
context information and then concatenated with corresponding
component vector of the relationship triplet. Experiments show
that the proposed model achieves superior performance in zero-
shot visual relationship detection and comparable results in non-
zero-shot scenario.

I. INTRODUCTION

We consider the problem of visual relationship detection.
A visual relationship is represented as a triplet <sub, pred,
obj>. It involves two participating objects (sub and obj in the
triplet). The predicate in a visual relationship can be a verb
(e.g. ride), or preposition (e.g. by), spatial phrase (e.g. in the
front of ), or comparative phrase (e.g. taller than). The goal of
visual relationship detection is to localize the two participating
objects and their mutual relationship with bounding boxes.
See Fig. 1 (2nd column) for an illustration of the visual
relationship detection: the bounding boxes for pairs of objects
(“pants” and “dog”) and the corresponding visual relationship
(“behind”) are localized with separate bounding boxes. For a
given image, the output will detect all the interacted objects
pairs and their mutual relationships. In this work, we are
particularly interested in methods that can perform zero-shot
visual relationship detection. In this setting, we assume that
the triplet <sub, pred, obj> never appears in training data,
although each component (sub, pred, or obj) in the triplet
has appeared during training.

The relationship triplet <sub, pred, obj> can serve as the
intermediate building block for higher level tasks such as
image captioning [1], visual question answering [2] and image-
text matching [3]. It helps to better understand how the entities
interact with each other at their current pixel locations in
the images. Visual relationship detection is related to several
standard visual recognition tasks, such as object detection,

Fig. 1. Difference between visual phrase detection and visual relationship
detection. (Left) In phrase detection, we only need to localize one bounding
box for the entire phrase. (Right) In visual relationship detection, we need to
localize the bounding boxes for all participating objects and the corresponding
visual relationship.

phrase detection. But there are some important differences
as well. Unlike object detection where the visual appear-
ance of an object is the most important cue for detection,
relationship detection requires reasoning about the relative
spatial relationship of objects. The relative spatial information
also provides important cues for predicting the predicate in
the visual relationship. Unlike phrase detection where the
relationship is detected with one bounding box, relationship
detection requires separate bounding box for each component
in the triplet <sub, pred, obj>, as showed in Fig. 1. This will
give more detailed information concerning how the subject
interacts with the object. Since we can use off-the-shelf object
detectors to detect sub and obj in a relationship, the key
challenge of visual relationship detection is predicting the
predicate given the candidate sub and obj bounding boxes.

Most previous work treats predicate prediction as a classifi-
cation problem where a classifier is learned for each possible
predicate. However, the classification-based approach usually
does not consider the phrase context information when predict-
ing the predicate. For example, for the relationship “person
ride bike”, most previous work simply learns a predicate
classifier for “ride”. But this approach ignores the fact that
person is the subject and bike is the object in this relationship.
This kind of sequential information has been well studied with
LSTM [4] in natural language processing (NLP) and some
computer vision tasks such as image captioning [1] and visual



question answering [2]. When dealing with a text sequence,
each word in the sequence corresponds to one unique word
in the vocabulary and we assign a vector to each word in
the vocabulary to represent its meaning. LSTM can learn the
hidden relations among the word vectors during training and
map the word meanings to the relationship space.

Instead of considering predicate prediction as a classifica-
tion problem, we propose a joint visual-semantic embedding
approach for predicate prediction (see Fig. 2). Our model
consists of a semantic embedding branch and a visual em-
bedding branch. The goal of the semantic embedding branch
is to embed a visual relationship triplet <sub, pred, obj> as a
vector. The goal of the visual embedding branch is to represent
the appearance and spatial features from subject, object and
predicate bounding boxes as a vector. Finally, we project the
semantic and visual vectors from these two branches in a
shared latent space. The two vectors will be projected close
to each other if the relationship triplet <sub, pred, obj> is
a good match to the visual information from the bounding
boxes. The advantage of this embedding approach is that we
can easily handle zero-shot visual relationship detection.

II. RELATED WORKS

In this section, we review prior work in several lines of
research relevant to our work.

A. Object Detection
There has been significant advances in object detection

in the past few years. Some object detection systems (e.g.
Fast/Faster-RCNN [5], [6]) generate object proposals in image
and classify each proposal using convolutional neural networks
(CNN). Recent work such as SSD [7] and YOLO [8] proposes
more efficient methods that can detect objects in an image in
one shot without generating object proposals.

B. Visual Relationship Detection
Recent visual relationship detection work follows two

pipelines. Most of them train object and predicate detectors
separately. Lu et al. [9] applies R-CNN for object detection
and leverages language prior module that considers similarity
between relationships and relative rank of frequent occurrence,
along with the visual appearance features to predict different
types of relationships. Dai et al. [10] integrates appearance
and spatial features, and proposes a DR-Net to capture the
statistical relations among the triplet components. Zhang et
al. [11] extracts three types of object features and models
the relationships as a vector translation into the relation
space. Zhang et al. [12] proposes a context-aware model that
can augment with an attention mechanism to improve the
performance.

Others train object and relationship detectors in an end-to-
end manner. Yi et al. [14] proposes a phrase-guided message-
passing structure to learn the interdependency of the triplet
components and predict them simultaneously. Zhang et al. [15]
addresses it by using pairs of related regions in images to train
a relationship proposer in order to reduce the related regions
at test time.

C. Recurrent Neural Network and LSTM

Recurrent neural networks (RNN), especially the long-short
term memory models [4], have achieved great success in
many applications including natural language processing [17]
and video processing [18]. Recently, RNN/LSTM has been
widely applied in computer vision tasks such as image cap-
tioning [1] to generate language descriptions, natural language
object retrieval [19] and referring image segmentation [20] to
encode and comprehend language descriptions. As relationship
phrases can be considered as a particular sequential representa-
tion (sub + pred + obj), we use LSTM to map the relationship
triplet to a semantic embedding space in our work.

D. Zero-shot Learning

Zero-shot learning (ZSL) aims to recognize objects that are
unseen during training. Humans have the ability to recognize
objects without seeing these samples before but only based on
some background knowledge, e.g., attribute information and
some similar objects. In computer vision, there is a surge of
interest in ZSL recently [21]–[23]. Socher et al. [22] performs
zero-shot learning by mapping the CNN visual feature vector
to the semantic space. Lei et al. combines visual features and
semantic features and learns a classifier based on the combined
features [21]. In our work, we adopt an approach similar to
[22].

III. OUR APPROACH

Figure 2 shows an overview of our proposed model. Our
model has a semantic branch and a visual branch. The goal of
the semantic branch is to embed a triplet <sub, pred, obj> as
a vector, while the goal of the visual branch is to embed the
bounding boxes corresponding to the triplet as a vector. The
distance of these two embedding vectors is used to indicate
whether the visual information from bounding boxes and the
triplet is a good match. In this section, we describe the details
of each component of our model.

A. Visual Embedding

Given an input image, we first use a standard object detector
(e.g. R-CNN [24], Faster-RCNN [6]) to detect the objects
in an image. Given a pair of bounding boxes, the goal of
visual embedding is to represent the visual information of the
bounding boxes as a vector. In our work, we extract both
appearance features and spatial features to form the visual
embedding vector.
Appearance Features: Each detected object comes with a
bounding box and an appearance feature extracted from the
image patch within the bounding box. To obtain a fixed
length appearance feature vector, a region of interest (ROI) [6]
pooling layer is applied for each detected object box. The
bounding box for the visual relationship (which we refer to as
the predicate bounding box) can be obtained directly as the
union of the bounding boxes for <sub, obj>. In the end, we
extract three appearance features, one for each of the bounding
boxes in the relationship <sub, pred, obj>. Each appearance
feature has a dimension of 1000.



Fig. 2. Overview of our proposed model. The visual embedding branch (bottom) extracts appearance and spatial features from feature maps based on subject,
predicate and object boxes as denoted with s, p and o. The semantic embedding branch (top) first embed the relationship components with vectors and then
applies LSTM on these component vectors to encode the relationship triplet as a semantic vector. The projected semantic vector and visual vector should be
close to each other if the relationship triplet is a good match to the visual information from the bounding boxes.

Spatial Features: The spatial relationship of the bounding
boxes can be helpful in recognizing predicates such as spatial
phrases or prepositions. From the object bounding boxes, we
compute coordinate features as follows:

txmin =
xmin

W
, txmax =

xmax

W
,

tymin =
ymin

H
, tymax =

ymax

H
,

(1)

where (xmin, xmax, ymin, ymax) represent the coordinates of
subject/object/predicate box. W and H are the width and
height of the input image.

Moreover, in order to keep the relative position of subject
and object to be scale-invariant, we add another 4-dimension
spatial features:

tx =
x− x′

w′
, ty =

y − y′

h′
, tw = log

w

w′
, th = log

h

h′
, (2)

where (x, y, w, h) and (x′, y′, w′, h′) represent subject/object
and object/subject box coordinates, (tx, ty) specifies a
scale-invariant translation and (tw, th) specifies the relative
height/width ratio. In the end, we get a 16-dimensional spatial
feature vector representing the spatial information of each box
pair.

The visual embedding vector is formed by concatenating
the appearance features for <sub, pred, obj> and the spatial
features.

B. Semantic Embedding
Given relationship triplets <sub, pred, obj> for one image,

the goal of semantic embedding is to represent each triplet
as a vector. In our work, we apply LSTM [4] to map the
relationship triplet to a semantic embedding space.
LSTM Encoding: Assume that each component of a triplet
is represented as a vector, we use X = {x1, x2, x3} to denote

the relationship sequence of the input component vectors. Each
LSTM unit includes three gates (e.g. input gate i, output gate
o and forget gate f ) and a memory cell c. At each time step t,
given the input xt and the previous hidden state ht−1, LSTM
updates as follows:

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ft = σ(Wfxt + Ufht−1 + Vfct−1bf )

zt = tanh(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � zt
ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ottanh(ct)

(3)

where σ is the sigmoid function and � is the element-
wise multiplication operator. W∗, U∗ and V∗ are the weight
matrices, and b∗ are the bias terms. The memory cell ct is a
weighted sum of the previous memory cell ct−1 and a function
of the current input it. The last time step ht can be viewed as
an aggregated relationship information from the first time step
to t, which contains the semantic context for this particular
relationship.
Component Vectors: There are existing tools to embed
words as vectors (e.g. word2vec [16], Glove [26]). We can
integrate the vectors of object and subject classes as feature
representations using pre-trained word2vec model which maps
semantically similar words into similar vectors. This semantic
similarity is commonly employed for sub and obj embeddings
in previous work [9], [12]. But there are no off-the-shelf
methods for embedding the relationship triplet. The pre-
trained phrase vectors cannot be directly applied to produce
relationship vectors because of different word combinations. In
this work, we have experimented with two different strategies
to obtain each component vector of a relationship triplet.
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Embedding with pretrained word2vec
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Embedding without pretrained model

Fig. 3. An illustration of two methods for 70 predicate vectors in visual
relationship dataset (VRD) [9] by using t-SNE visualizations [25]. This figure
is best viewed with PDF magnification.

• We first attempt to use pre-trained word2vec [16] (we call
it “w/ pre-trained”), where semantically similar words are
mapped to vectors that are close (e.g. “adjacent to” and
“next to”). Since some of the predicates contain more than
one word (e.g. “in the front of”, “next to”), we average
each word vector for the whole predicate in this case
as the second component vector of a relationship triplet.
An illustration of 70 predicate vectors are given on the
top of Fig. 3 by using the t-SNE visualization [25]. As
a result, we have a 1000-dimension vector to represent
each component of a triplet.

• We also experiment without pre-trained models (we call it
“w/o pre-trained”). We define an index for each predicate
and map all predicates to a |V | × D matrix, where D
is the dimensionality of the embeddings and |V | is the
number of predicates. The weights are not initialized
with pre-trained model, so each embedded component
vector is independent and has no connection to each other.
Accordingly, the 70 predicate vectors are reflected at the
bottom of Fig. 3. We see that “adjacent to” and “next to”
are not related to each other. We get the subject/object
vectors in the same way. In the end, a 1000-dimension
vector is formed for each component of a given <sub,
pred, obj>.

Fused Semantic Embedding Vector: With the encoded fea-
ture vectors from LSTM, we concatenate them with each
corresponding component vector of a triplet as the fused
feature representation for the text branch. The intuition is that
local evidence and context information both contribute to the

text feature representation. Then they are followed by two
more fully connected layers to make the output dimension
same as that from the visual branch.

C. Loss Function

After we get the final embedding vectors from both
branches, we apply the L1 hinge embedding loss (Eq. 4) to
measure their distance:

l(x1, x2) =

{
||x1 − x2||1, if y = 1

max(0,m− ||x1 − x2||1), if y = −1
(4)

where x1 and x2 are embedding vectors from the visual and
text branches, and m is the margin with default value of 1.
Label y = 1 if the visual representation and text representation
match and y = −1 otherwise.

D. Testing

For a test image, we apply object detection first. With the
detected object bounding boxes, visual and spatial features
are extracted for each box pair. Suppose there are N objects
detected, we will have N(N −1) box pairs. We also filter out
the box pairs that are too far away and unlikely to form a visual
relationship. For each box pair, we compare the visual feature
vector with the semantic embedding vector corresponding
to a query triplet. The predicate associated with the query
relationship phrase nearest to the given visual feature is the
predicted interaction between the two object pair as showed
in Eq. 5.

pred = argmin
i∈M

||Vs,o − Ts,o(Pi)||1 (5)

where Vs,o denotes the visual embedding vector from a box
pair <sub, obj>, Ts,o(Pi) is the semantic embedding vector
associated with predicate Pi for the object pair <sub, obj>.
M is the number of predicates in the dataset.

The final relationship prediction score is calculated as:

Srelation = −dp(1− Ssub)(1− Sobj) (6)

where dp is shortest distance between Vs,o and Ts,o(Pi). Ssub

and Sobj are the corresponding subject and object detection
scores respectively.

IV. EXPERIMENTS

In this section, we perform experimental evaluation of our
proposed method and compare with other baseline approaches.

A. Dataset

We evaluate our work on the Visual relationship dataset
(VRD) [9]. It contains 5000 images with 100 object categories
and 70 predicates. There are 4000 images for training and 1000
for testing. In total, the dataset have 37,993 relationships with
6672 relationship types and on average 24.25 predicates per
object category. Due to the long tail of relationship distribution
in real world images, zero-shot predication of relationships that
it has never seen before can alleviate stress of collecting every
possible relationship. It is inevitable that some relationships
like “computer on stove” never appear in the training data.



Phrase Det. Relation Det.
R@100 R@50 R@100 R@50

Lu’s-V [9] 2.61 2.24 1.85 1.58
Lu’s-VLK [9] 17.03 16.17 14.70 13.86

CLS 10.28 9.14 8.86 7.87
Ours (w/ pre-trained) 12.37 11.43 10.75 9.91
Ours (w/o pre-trained) 17.28 15.87 15.34 14.00

VTransE [11]∗ 22.42 19.42 15.20 14.07
Ours (w/o pre-trained∗) 24.12 20.53 16.26 14.23

TABLE I
NON-ZERO-SHOT VISUAL RELATIONSHIP DETECTION ON VRD DATASET. ∗

DENOTES USING FASTER-RCNN FOR OBJECT DETECTION. CLS TREATS
PREDICATE PREDICTIONS AS A CLASSIFICATION PROBLEM BY USING

CROSS ENTROPY LOSS WITH THREE TYPES OF FEATURES (APPEARANCE +
SPATIAL + SUB AND OBJ WORD VECTORS). OURS (W/ PRE-TRAINED)

OBTAINS EACH COMPONENT VECTOR OF A RELATIONSHIP TRIPLET BASED
ON PRE-TRAINED WORD2VEC [16] AND WE AVERAGE VECTORS IF THE

PREDICATE CONTAINS MORE THAN ONE WORD. OURS (W/O
PRE-TRAINED) GETS EACH COMPONENT VECTOR OF A RELATIONSHIP

TRIPLET WITHOUT PRE-TRAINED MODELS.

Phrase Det. Relation Det.
R@100 R@50 R@100 R@50

Lu’s-V [9] 1.12 0.95 0.78 0.67
Lu’s-VLK [9] 3.75 3.36 3.52 3.13
VTransE [11]∗ 3.51 2.65 2.14 1.71

CLS 4.45 3.85 4.19 3.59
Ours (w/ pre-trained) 5.73 5.30 5.30 4.88
Ours (w/o pre-trained) 6.16 5.05 5.73 4.79

TABLE II
ZERO-SHOT VISUAL RELATIONSHIP DETECTION ON VRD DATASET. ∗

DENOTES USING FASTER-RCNN FOR OBJECT DETECTION.

The 1000 test image set contains 1,877 relationships that never
occur in the training set, which allows us to evaluate for the
zero-shot relationship detection task.

B. Evaluation Metric

Following [9], Recall@x is applied to measure the per-
formance. This metric computes the fraction of times the
correct relationship is predicated in the top x relationship
predictions ranked by their confidence scores. Compared with
mean average precision (mAP), Recall@x is more appropriate
in this problem since the annotations on the dataset are
incomplete. We evaluate two tasks on this dataset:

Phrase detection (Fig. 1 left): Given an input image and
a query triplet <sub, pred, obj>, the goal is to localize the
entire relationship with one bounding box. We consider the
localization to be correct if the intersection-over-union (IoU)
between the predicted bounding box and the ground-truth box
is at least 0.5.

Relation detection (Fig. 1 right): Given an input image
and a query triplet <sub, pred, obj>, the goal is to localize
subject, predicate, object with separate bounding boxes. The
localization is considered correct if all three bounding boxes
have at 0.5 IoU with their corresponding ground-truth boxes.

C. Implementation Details

We use VGG16 [27] to obtain the feature maps that are
pre-trained on PASCAL [28] for object detection [5]. To
compare with [9] and [11], we use the object detection results

provided in [9] and trained object detector provided in [11]
respectively during the object detection stage. Other than the
object detection, the rest of the architecture is trained end-to-
end. The learning rate is 0.001, and is decreased by a factor
of 10 every 10 epochs. Training is stopped when reaching 50
epochs and the loss almost does not change. Batch size is set to
1. During training, we sample negative samples by randomly
selecting the box pairs in this image that their visual features
do not match with their relationship triplets. We keep the
positive and negative sample ratio as 1 and randomly shuffle
these samples before training.

D. Results

The results for non-zero-shot and zero-shot visual relation-
ship detection are shown in Tab. I and Tab. II respectively.

From Tab. I, ours (w/ pre-trained) does not perform very
well. It is probably because the average of pre-trained word
vectors cannot differentiate between predicates with overlap-
ping words, such as “sleep next to”, “stand next to” and
“sit next to”. Furthermore, some similar predicates (such as
“next to” and “near”) are treated as two different entries in
the ground-truth annotation. The pre-trained word embedding
considers these two predicates to be close to each other, so
it is difficult to distinguish these two predicates. Ours (w/o
pre-trained) achieves big improvement in terms of prediction
accuracy. In particular, the performance of our method is either
better than or comparable to other state-of-the-art approaches.

In the zero-shot visual relationship detection (Tab. II), our
proposed methods clearly outperform other baselines. This
demonstrates the advantage of the proposed embedding ap-
proach in the zero-shot scenario.

We also experiment with Faster-RCNN for object detection
by using the trained object detector provided in [11] to
compare with [11]. In Tab. I, Faster-RCNN has a significant
impact on improvement in relationship detection. Ours (w/o
pre-trained∗) performs better than the state-of-the-art result
in [11].

In Fig. 4, we show some qualitative results of both [9] and
ours (w/o pre-trained). Fig. 5 displays sample results from ours
(w/o pre-trained∗).

V. CONCLUSION

In this paper, we have proposed a joint visual-semantic
embedding model that maps the visual vector and semantic
vector to a shared latent space to learn the similarity between
the two branches. Our model can easily handle zero-shot
visual relationship detection. We experiment on VRD dataset
for phrase detection and relationship detection tasks. The
proposed model achieves superior performance in zero-shot
visual relationship detection and comparable results in non-
zero-shot scenario.
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