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Abstract. In this paper, we tackle the problem of efficiently segment-
ing objects in weakly labeled videos. Internet videos (e.g., YouTube) are
often associated with a semantic tag describing the main object within
the video. However, this tag does not provide any spatial or temporal in-
formation about the object within the video. So these videos are weakly
labeled. We propose a novel and efficient approach to localize the object
of interest within the video and perform pixel-level segmentation. Given
a video with an object tag, our proposed method automatically localizes
the object and segments it from the background in each frame of the
video. Our method combines object appearance modeling and temporal
consistency among frames in a principled framework. Our method does
not require user inputs or object detectors, so it can be potentially ap-
plied to videos of any object categories. We evaluate our method on a
dataset consisting of more than 100 video shots of 10 different object
categories. Our experimental results show that our method outperforms
other baseline approaches.

1 Introduction

Today we have access to an enormous amount of video content through video
sharing websites like YouTube. These videos are often associated with textual
descriptions, such as tags. These tags are created by users to provide some in-
formation about the visual content (e.g., main object) present in the video. The
object tag tells us whether an object is present in the video, but it does not pro-
vide any spatial or temporal information to localize the object within the video.
Thus these videos are weakly labeled. In this paper, we tackle the problem of
segmenting the object of interest in weakly labeled videos. This line of research
will play an important role in many tasks related to video understanding. For
example, it can enhance the browsing experience of users on video-sharing web-
sites (e.g., YouTube). It can also improve video retrieval algorithms by removing
the noisy videos or false positives from the search results.

Video segmentation is a fundamental problem in computer vision. Supervised
learning of segmentation models requires all pixels in the training videos to
be fully labeled. This is very time consuming and expensive. To address this
drawback, weakly-supervised methods are proposed to alleviate the burden of
labeling training video data. Weakly labeled videos have video-level labeling
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instead of pixel-level labeling. For example, a video may have a video-level tag
assigned to it, say “dog”. From this tag we can interpret that an object “dog”
may be present in the video. However, we do not have any spatial or temporal
information of the object “dog” within the video.

Fig. 1. A demonstration of our proposed approach. Given an input video with an object
tag, e.g. “dog” (1st row), our proposed method can localize (2nd row) and segment
(3rd row) the object in each frame.

Figure 1 demonstrates the pipeline of our proposed method. Given an input
video with a tag, say “dog”, we want to localize the dog in each frame, and
segment the pixels corresponding to “dog” from the background. Our method is
generic and can be applied to videos of any object category.

2 Related Work

Video segmentation is an active area of research in computer vision. Some of
the proposed approaches are unsupervised, e.g. region tracking [1], hierarchical
graph model [2, 3], multiple hypothesis tracking [4] and spatio-temporal based
segmentation [5, 6]. Unsupervised methods can only perform low-level video seg-
mentation and can not provide semantic labels for the segments.

Supervised methods have also been studied for semantic video segmentation,
e.g. [7]. The major drawback of supervised video segmentation is that it requires
lots of labeled video data for training. To address this issue, semi-supervised
video segmentation [8, 9] methods are proposed. These methods address the lim-
itation of supervised methods to some extent, but getting sufficient pixel-level
labeled data is still nontrivial.

Weakly supervised video segmentation methods [10–12] are proposed to cur-
tail the need of pixel-level labeled training video data. Our proposed method is
inspired by this line of research. These methods use the semantic tags associated
with the videos and do not require pixel-level labels. Since it is much easier to
tag a video than labeling every pixels in the video, the labeling effort required
is greatly reduced for weakly supervised methods. Rochan et al. [12] used video
specific appearance model to localize object of interest in the video. Tang et
al. [13] incorporated a temporal consistency model to their framework in order
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to make their localization algorithm robust. These two recent works are the most
relevant to our work.

3 Our Approach

In this paper, we tackle the problem of segmenting objects in weakly labeled
videos. An input video is labeled with an object tag. Our goal is to segment
the corresponding object in each frame of the video. Similar to [12], we make
two assumptions about the input video. First, the object tag corresponds to the
main object in the video. Second, there is a single instance of the tagged object
within a video.

Our approach consists of four stages. 1) We generate a set of candidate object
proposals for each frame within a video. Each object proposal is a bounding box
that is likely to contain an object. 2) We build the appearance model of object
of interest based on the object proposals. 3) We localize the object by selecting
one bounding box for each frame. We model the object localization problem as
performing the maximum a posterior (MAP) inference in an undirected chain
graphical model. Each node in the graphical model corresponds to a frame and
object proposals within a frame are the possible states of the node. An edge in
the model enforces temporal consistency between two consecutive frames. The
object in the video is localized by finding the optimal labeling of nodes in the
graphical model. 4) After getting object localized in each frame, we segment the
object from the background using the GrabCut [14] algorithm.

3.1 Generating Object Proposals and Building Appearance Model

For a given video, we generate a set of candidate object bounding boxes for every
frame. Although we could use the state-of-the-art object detectors (e.g. [15]) to
generate the object proposals, we will be limited to only a handful of object
classes (e.g., 20 object classes in PASCAL datasets) for which reliable detectors
are built. In this paper, we are interested in developing a method which can be
applied to any object class, so we choose not to use object detectors in generating
object proposals.

Instead, we use the Edge Boxes algorithm [16] to generate object bounding
box proposals. This algorithm relies on one simple observation: the number of
contours that are wholly enclosed by a bounding box is indicative of the pres-
ence of the object within the bounding box. The object proposals are detected
using the edge maps. For a given bounding box, the algorithm also defines an
objectness scoring function which measures the likelihood of this bounding box
containing an object. Since this algorithm is not restricted to any particular ob-
ject classes and can be potentially used for any object categories, we choose to
use this algorithm to generate the object proposals.

Given an input video, we apply the Edge Boxes algorithm [16] to generate
10 object proposals (i.e. bounding boxes) for every frame within the video. This
gives us a collection of candidate bounding boxes which are likely to contain
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an object. Figure 2 shows an example of applying the Edge Boxes algorithm on
frames in a video. The next step of our approach is to select a few bounding
boxes which actually correspond to the object of interest in the video. We build
our bounding box selection strategy based on two observations. First, it is ob-
served that the Edge Boxes algorithm tends to give high objectness scores to the
bounding boxes which enclose the object of interest within a video. Second, the
appearance of object of interest remains consistent across all the frames within
a video. In other words, if a “dog” is black in one frame, it will be black in all
frames of the video. Using these two observations, we can build an appearance
model of the object of interest for a specific video.

Fig. 2. Examples of applying the Edge Boxes algorithm on frames of a video.

We use an approach similar to [12] to build the object appearance model.
We sort the candidate object proposals in a video according to their objectness
scores returned by the Edge Boxes algorithm. Then we select T bounding boxes
with the highest objectness scores. Following [12], we set T to be the number
of frames within a video. We then build a color-based appearance model for the
object of interest within the video. We compute the normalized color histogram
of the selected T bounding boxes. The appearance model of the object of interest
within a video is obtained by simply taking the mean of the color histograms of
the selected bounding boxes[12].

3.2 Object Localization

We have a set of object proposals for every frame within a video. In this section,
our goal is to localize the object in the video by selecting one bounding box
for each frame. We model the localization problem using an undirected chain
graph. Each node in the graph represents a frame within a video. The value
assigned to a node indicates which object proposal is chosen for this frame.
Since we have 10 object proposals for each frame, each node can take its value
from {1, 2, ..., 10}. The nodes of two adjacent frames are connected by an edge
indicating the temporal consistency constraint between these two frames. Let
X1, X2, ..., Xk be the frames in a video with k frames, and P1, P2, ..., Pk be the
corresponding object proposals selected for each frame. We use the following
optimization problem to solve the object localization:

max
P1,P2,...,Pk

∑
i

φ(Pi, Xi) +
∑
i,i+1

ψ(Pi, Pi+1) (1)
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This optimization problem in Eq. 1 involves unary potential functions φ(·)
defined on nodes and pairwise potential functions ψ(·) defined on edges in the
graph. In the following, we describe these potential functions in detail.

Unary Potentials: The unary potential φ(·) measures the likelihood that an
object proposal belongs to the object class, i.e. it captures the compatibility
between an object proposal and the appearance model of the object. For each
frame, we define the unary potential as follows:

φ(Pi, Xi) = exp

(
−‖A− fh(Pi, Xi)‖2

)
(2)

where A is the appearance model of the object of interest within the video (see
Sec. 3.1) and fh(Pi, Xi) is the normalized color histogram of the image patch
corresponding to the bounding box Pi in the frame Xi. The unary potential will
encourage each frame to choose a bounding box whose appearance (i.e. color
histogram) is consistent with the appearance model of the object.

Pairwise Potentials: The pairwise potential is a term which encourages the
consistency between the bounding boxes selected in two adjacent frames. It is
very unlikely that objects will undergo drastic changes in their properties such
as size, position and appearance between two consecutive frames of a video.
Following [13], we define the pairwise potential as:

ψv(Pi, Pj) = α exp

(
−‖fc(Pi)− fc(Pj)‖2 − ‖fa(Pi)− fa(Pj)‖2

)
(3)

where fc(Pi) denotes the coordinates of the center of the bounding box Pi, and
fa(Pi) denotes the area of this bounding box. We normalize fc(Pi) by the height
and width of the object proposal, and fa(Pi) by the maximum area between
the two object proposals. The parameter α control the relative influence of the
pairwise potential in the model.

The pairwise potential is intuitive because if two object bounding boxes of
adjacent frames contain the same object, they should not be far apart and their
area should not vary much. It will help us in eliminating object proposals which
are far apart and vary greatly in their area between two consecutive frames.

Decoding: Given the model defined above, the inference problem we need to
solve is to jointly choose the values of P1, P2, ..., Pk to maximize Eq. 1. Figure 3
illustrates this inference problem. Each column in Fig. 3 corresponds to a frame.
In each column, the rows indicate the object proposals in that frame. The infer-
ence problem can be interpreted as finding the optimal path from the start to
end in Fig. 3. It can be efficiently solved by dynamic programming.
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Fig. 3. For the given consecutive frames of a video, the inference problem for object
localization can be represented as finding the optimal path in a graph. Each frame
in the graph represents the node and their object proposals (blue circle) represent
the possible state that node can take. The edges between the object proposals of two
frames indicate the pairwise consistency constraint between the bounding boxes of two
adjacent frames . Our goal is to find the best configuration of object bounding boxes
among the frames of the video. This is equivalent to finding the optimal path in the
graph.

3.3 Object Segmentation

After obtaining one bounding box in each frame, we apply GrabCut [14] to
segment the object of interest from its background. GrabCut is an efficient seg-
mentation algorithm, but it requires the user input in the form of a bounding
box around the object to be segmented. Following [12], we eliminate the need
for user inputs and make the GrabCut algorithm fully automatic. We simply
use the bounding boxes returned from Sec. 3.2 as the input to the GraphCut
algorithm.

4 Experiments

In this section, we describe the dataset and parameter settings used in our exper-
iments. We then present the experimental results of our approach and perform
the comparison with other state-of-the-art methods.

4.1 Dataset and Setup

We use the subset of the dataset described in Tang et al. [10]. The dataset is
built using YouTube-Objects dataset [17] which consists of videos collected for
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Table 1. Summary of the dataset used in our experiments.

aeroplane bird boat car cat cow dog horse bike train total

# of shots 9 6 17 7 13 20 27 17 10 18 144

# of frames 1423 1206 2779 577 3870 2978 3803 3990 827 3270 24723

10 different object classes. We use this dataset because all the frames of a video
have object of interest segmented [10]. Therefore, these videos can be used as
ground-truth for evaluation. We use 144 video shots with a total of 24,723 frames
in our experiments. Table 1 summarizes the number of shots and frames for each
object classes in the dataset.

We randomly choose one video from every object class for setting the param-
eter α (see section 3.1). We empirically found α = 1.5 to be a good choice and
use this value throughout our experiments.

4.2 Results

Following [13, 12], we define our evaluation metric in terms of the percentage of
frames for which we correctly localize the object of interest. We use the PASCAL-
criterion [18] to evaluate the performance of our approach for every frame within
a video shot. For a given frame, let Pb be the set of foreground pixels returned
by the algorithm and Pgt be the set of ground-truth foreground pixels in this
frame. We define a ratio r as r = |Pb ∩ Pgt| / |Pb ∪ Pgt|. We consider the object
to be correctly localized in this frame if the ratio r is greater than 0.5.

Table 2. Comparison of our approach with previous work [12, 13]. For each object
class, we show the percentage of the frames where the object is correctly localized.

method aeroplane bird boat car cat cow dog horse bike train average

[12] 54.79 37.91 27.15 49.73 16.06 42.23 34.79 21.64 9.27 12.28 30.59

[13] 25.12 31.18 27.78 38.46 41.18 28.38 33.91 35.62 23.08 25.00 30.97

Ours 57.53 39.8 29.4 52.04 17.32 45.19 38.36 22.93 10.54 14.63 32.77

We compare the performance of our approach with previous work in [13, 12].
The comparisions are shown in Table 2. We can see that our proposed approach
outperforms [12] in every object class. This demonstrates the benefit of incorpo-
rating pairwise consistency between adjacent frames. We also outperforms the
state-of-the-art method in [13] in 6 out of 10 object classes. Sample results of
our method on these 10 object categories are shown in Fig. 6.

Figure 4 shows two examples demonstrating the benefit of having the pairwise
potential in the model. Without the pairwise potential (1st row in Fig. 4), the
selected bounding boxes can vary dramatically in terms of size and position. The
pairwise potential can alleviate this problem and enforce the selected bounding
boxes to be consistent (2nd row in Fig. 4).
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Fig. 4. Examples illustrating the benefit of enforcing consistency between adjacent
frames. (Top row) Without the pairwise potential, the selected bounding boxes can be
dramatically different. (Bottom row) With the pairwise potential, the bounding boxes
are more consistent across all frames.

In Fig. 5, we show some representative failure cases of our approach. The
failures are often caused by occlusion, multiple instances of the object of interest,
object of interest being too small in the scene, etc.

(a) (b) (c)

Fig. 5. Some typical failure cases of our approach: (a) occlusion; (b) multiple instances
of the object of interest; (c) object of interest is too small in the scene.

5 Conclusions

In this paper, we have proposed a novel approach to segment the object effi-
ciently based on video-level tags. We have introduced a formulation based on
chain structured graphical models. Using dynamic programming, we can effi-
ciently localize the objects in all frames in a video. Our experimental evaluation
demonstrates the effectiveness of our approach compared with other methods.
In the future, we would extend our work to handle videos with multiple object
tags.
Acknowledgement: This work was supported by NSERC and the University
of Manitoba Research Grants Program (URGP).
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Fig. 6. For each video, we show the original input frames (1st row) and the segmented
tagged object produced by our method (2nd row).


