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Abstract. We consider the problem of learning deep neural networks (DNNs)
for object category segmentation, where the goal is to label each pixel
in an image as being part of a given object (foreground) or not (back-
ground). Deep neural networks are usually trained with simple loss func-
tions (e.g., softmax loss). These loss functions are appropriate for stan-
dard classification problems where the performance is measured by the
overall classification accuracy. For object category segmentation, the two
classes (foreground and background) are very imbalanced. The intersection-
over-union (IoU) is usually used to measure the performance of any ob-
ject category segmentation method. In this paper, we propose an ap-
proach for directly optimizing this IoU measure in deep neural networks.
Our experimental results on two object category segmentation datasets
demonstrate that our approach outperforms DNNs trained with standard
softmax loss.

1 Introduction

We consider the problem of object category segmentation using deep neural
networks. The goal of object category segmentation is to label the pixels of a
given image as being part of a given object (foreground) or not (background). In
such a problem setting, the two classes (foreground and background) are often
very imbalanced, as the majority of the pixels in an image usually belong to
the background. Learning algorithms that are designed to optimize for overall
accuracy may not be suitable in this problem setting, as they might end up
predicting every pixel to be background in the worst case. For example, if 90%
of the pixels belong to the background, a naive algorithm can achieve 90% overall
classification accuracy simply by labeling every pixel as the background.

The standard performance measure that is commonly used for the object
category segmentation problem is called intersection-over-union (IoU). Given an
image, the IoU measure gives the similarity between the predicted region and
the ground-truth region for an object present in the image, and is defined as
the size of the intersection divided by the union of the two regions. The IoU
measure can take into account of the class imbalance issue usually present in
such a problem setting. For example, if a naive algorithm predicts every pixel of
an image to be background, the IoU measure can effectively penalize for that, as
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the intersection between the predicted and ground-truth regions would be zero,
thereby producing an IoU count of zero.

Most deep learning based methods address the image segmentation problem
using simple loss functions, such as, softmax loss which actually optimizes for
overall accuracy. Therefore, they are subject to the problem mentioned above.
We argue that directly optimizing the IoU loss is superior to the methods opti-
mizing for simple loss functions. In this paper, we address the object category
segmentation problem by directly optimizing the IoU measure in a deep learning
framework. To this end, we incorporate the IoU loss in the learning objective of
the deep network.

2 Related Work

Our proposed approach for object category segmentation overlaps with two di-
rections of research – one involves direct optimization of application specific
performance measures (in this case, IoU measure), and the other line of research
focuses on image semantic segmentation using DNNs. Below we briefly present
some of the works most related to our proposed approach.

Direct loss optimization: Application specific performance measure opti-
mization has been studied so far mainly for learning linear models. For example,
Joachims [1] proposed a multi-variate SVM formulation for optimizing a range of
nonlinear performance measures including F1-Score and ROC-area. Other SVM-
based methods include [2] and [3] that proposed approaches to directly optimize
the mean average precision (mAP) measure. Very recently, there have been a few
deep models proposed to directly optimize some application specific measures
(e.g., [4] and [5] for mAP, [6] for ROC-area).

Regarding direct optimization of the IoU measure, the first work to address
this problem was proposed by Blaschko et al. [7] with an application to object
detection and localization. Based on a structured output regression model, they
used joint-kernel map and proposed a constraint generation technique to effi-
ciently solve the optimization problem of structural SVM framework. Ranjbar
et al. [8] used structured Markov Random Field (MRF) model in an attempt
to directly optimize the IoU measure. Tarlow and Zemel [9] addressed the prob-
lem using highly efficient special-purpose message passing algorithms. Based on
Bayesian decision theory, Nowozin [10] used a Conditional Random Field (CRF)
model and proposed a greedy heuristic to maximize the value of Expected-
Intersection-over-Expected-Union (EIoEU). Premachandran et al. [11], on the
other hand, optimizes exact Expected-IoU. A recent work by Ahmed et al. [12]
draws the best from both of these approaches. Based on the fact that the EIoEU
is exact for a delta distribution, they take the idea of approximating EIoU from
[11] by taking the average of EIoEU as computed in [10].

Semantic segmentation using DNNs: The semantic segmentation prob-
lem is similar to the object category segmentation problem, but requires labeling
each pixel of an image as being part of one of several semantic object categories
(e.g., cow, bus etc.), instead of just foreground or background. Recently, several
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approaches have been proposed for semantic segmentation that take advantage
of high-level representation of images obtained from DNNs. For example, Har-
iharan et al. [13] used a CNN architecture that can simultaneously perform
object detection and semantic segmentation. Long et al. [14] proposed a novel
DNN architecture that turns a classification CNN (e.g., AlexNet [15]) into fully
convolutional net by replacing the fully connected layers of the CNN with con-
volution layers. Our proposed approach is based on this approach, but optimizes
for application specific performance measure of IoU, instead of overall accu-
racy. Very recently, some deep encoder-decoder based models (e.g., SegNet [16],
TransferNet [17]) have been proposed that mark the state-of-the-art for image
semantic segmentation.

3 Proposed Approach

In this paper, we consider the problem of object category segmentation. Given
an object category, the goal is to label the pixels of an image as being part of
objects belonging to the category (foreground) or not (background). To this end,
we convert a classification CNN into a fully-convolutional net as proposed in [14],
and then train the deep network end-to-end and pixel-to-pixel with an objective
to directly optimize the intersection-over-union (IoU) performance measure. The
architecture of the deep network as well as details of the IoU loss function are
discussed in the following subsections.

3.1 Network Architecture and Workflow

Following the recent novel work for semantic segmentation by Long et al. [14], we
start with a classification CNN called AlexNet [15], and replace the last two fully
connected layers (fc6 and fc7) of AlexNet with 1x1 convolution layers (C6 and
C7, respectively in Fig. 1) to convert the CNN into a fully-convolutional network
(FCN). We then add a scoring layer (C8) which is also a 1x1 convolution layer.
The sub-sampled output out of the scoring layer is then passed to a deconvolution
layer (DC) that performs bilinear interpolation at a stride of 32 and produces an
output equal to the size of the original input to the network. Up to this point,
everything remains the same as the original 32-stride version of the FCN called
“FCN-32s” [14].

Once an output equal to the size of the input is produced, we pass it through
a sigmoid layer to convert the scores into class probabilities representing the
likelihood of the pixels being part of the object. From this point forward, the
proposed approach differs from [14] which computes softmax loss on each pixel
score and trains the whole network based on this loss. We argue that this is not
the right approach for a task like object category segmentation, where the ratio
of object to background pixels is very small. The softmax loss is closely tied to
the overall classification accuracy. If the number of examples in each class are bal-
anced, minimizing the softmax loss will give high overall classification accuracy.
For object category segmentation, the two classes are often very imbalanced, and
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Fig. 1. Architecture of the proposed FCN. The first eight convolution layers (C1 – C8)
and the deconvolution layer (DC) remain the same as the original FCN-32s proposed
in [14]. For each layer, the number right at the bottom represents the depth, while the
other two numbers represent the height and width of the layer output. The yellow boxes
inside layers C1 to C5 represent the filters, while the numbers around them represent
filter dimensions. The IoU loss layer at the end computes IoU loss on the full-resolution
output representing object class probabilities of the pixels

therefore, the overall accuracy is not often a good performance measurement.
For example, if 90% of the pixels belong to the background, a naive algorithm
can achieve 90% overall classification accuracy simply by labeling every pixel as
the background. In object category segmentation, the IoU score is often used
as the standard performance measure, which takes into account of the class im-
balance issue. Following this observation, instead of computing softmax loss, we
pass the pixel probabilities out of the sigmoid layer to a loss layer that computes
the IoU loss from the pixel probabilities and then train the whole FCN based on
this loss. Figure 1 demonstrates the pipeline of the proposed approach.

3.2 Approximation to IoU and IoU Loss

The IoU score is a standard performance measure for the object category seg-
mentation problem. Given a set of images, the IoU measure gives the similarity
between the predicted region and the ground-truth region for an object present
in the set of images and is defined by following equation.

IoU =
TP

FP + TP + FN
. (1)

where, TP , FP , and FN denote the true positive, false positive and false nega-
tive counts, respectively.

From Eq. 1, we see that IoU score is a count based measure, whereas, the
outputs of the proposed FCN are probability values representing likelihood of
the pixels being part of the object. Therefore, we cannot accurately measure the
IoU score directly from the output of the network. We propose to approximate
the IoU score using the probability values. More formally, let V = {1, 2, . . . , N}
be the set of all pixels of all the images in the training set, X be the output of
the network (out of the sigmoid layer) representing pixel probabilities over the
set V , and Y ∈ {0, 1}V be the ground-truth assignment for the set V , where 0
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represents background pixel and 1 represents object pixel. Then, the IoU count
can be defined as:

IoU =
I(X)

U(X)
. (2)

where, I(X) and U(X) can be approximated as follows:

I(X) =
∑
v∈V

Xv ∗ Yv . (3)

U(X) =
∑
v∈V

(Xv + Yv −Xv ∗ Yv) . (4)

Therefore, the IoU loss LIoU can be defined as follows:

LIoU = 1− IoU = 1− I(X)

U(X)
. (5)

We then incorporate the IoU loss LIoU into the objective function of the proposed
FCN, which takes the following form:

arg min
w

LIoU = 1− IoU . (6)

where, w is the set of parameters of the deep network.

In order to obtain the optimal set of parameters w, Eq. 6 is solved using
stochastic gradient descent. The gradient of the objective function with respect
to the output of the network can then be written as follows:

∂LIoU

∂Xv
= − ∂

∂Xv

[
I(X)

U(X)

]
=
−U(X) ∗ ∂I(X)

∂Xv
+ I(X) ∗ ∂U(X)

∂Xv

U(X)2

=
−U(X) ∗ Yv + I(X) ∗ (1− Yv)

U(X)2

(7)

which can be further simplified as follows:

∂LIoU

∂Xv
=

{
− 1

U(X) if Yv = 1
I(X)
U(X)2 otherwise

(8)

Once the gradients of the objective function with respect to the network output
are computed, we can simply backpropagate the gradients using the chain rule
of derivative in order to compute the derivatives of the objective function with
respect to the network parameters w.
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4 Experiments

We conducted training on individual object categories and learned segmenta-
tion models for each object category separately. In other words, when we train
segmentation model for a particular object category, say dog, we assume pixels
of all other categories as part of the background. During inference, we pass all
test images through the learned models, one for each object category, and then
segment the specific objects individually from the test images. In the following
subsections, we describe the datasets and training setups used in the experi-
ments, and also report and compare the experimental results of our approach
and the baseline methods.

4.1 Experimental Setup

Datasets To evaluate the proposed approach, we conducted experiments on
three different datasets – PASCAL VOC 2010 [18] and PASCAL VOC 2011 [19]
segmentation datasets, as well as the Cambridge-driving Labeled Video Database
(CamVid) [20]. The PASCAL VOC is a highly challenging dataset containing
images from 20 different object categories with the objects having severe vari-
ability in size, pose, illumination and occlusion. It also provides pixel-level an-
notations for the images. VOC 2010 includes 964 training and 964 validation
images, while VOC 2011 includes 1,112 training and 1,111 validation images.
We trained using 80% of the images in the training set, while the remaining 20%
images were used for validation. We evaluated the different approaches on the
dataset provided validation set.

CamVid is a road scene understanding dataset including over 10 minutes
of high quality video footage and provides 701 high resolution images from 11
different object categories. It also provides pixel-level semantic segmentations
for the images. Among the 701 images, 367 images were used for training, 233
for testing and the remaining 101 for validation.

Baselines As a primary baseline, we compare our proposed approach to a
method proposed in [14] that uses a fully convolutional net to address the se-
mantic segmentation problem by optimizing for overall accuracy using softmax
loss. We also perform comparison with [8] that tries to directly optimize the IoU
measure based on an MRF model. For the rest of the paper, we refer to the
proposed approach as FCNIoU, the deep model optimizing for overall accuracy
as FCNacc, and the MRF-based model as MRFIoU.

Implementation Details We conducted training of the deep nets using stochas-
tic gradient descent in mini batches. While preparing the mini batches, we made
it sure that each batch contains at least one positive example (i.e., an image
containing the object for which model is being trained). Training was initialized
with pre-trained weights from AlexNet [15]. For PASCAL VOC, we resized the
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Table 1. Intersection-over-union (%) performance comparison for 6 different object
categories on PASCAL VOC 2010 validation set
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MRFIoU <20 <30 <30 <10 <25 <15
FCNacc 71.07 72.85 71.67 60.46 75.42 64.03
FCNIoU 75.27 74.47 72.83 61.18 72.65 67.37

training images to 375x500, while testing was done on the original images with-
out resizing. On the other hand, for CamVid, all images were resized to 360x480.
We used a fixed learning rate of 10−4, momentum of 0.99 and weight decay of
0.0005. We continued training until convergence and chose the model with the
best IoU measure on the validation set. All the deep nets were implemented
using a popular deep learning tool called MatConvNet [21].

4.2 Results on PASCAL VOC

For the PASCAL VOC 2010 dataset [18], Table 1 shows the results of the pro-
posed approach and the baselines for 6 different object categories. Our proposed
approach outperforms MRFIoU by huge margin on all 6 categories. This per-
formance boost is simply due to the use of deep features learned automatically
by the proposed approach FCNIoU, whereas, MRFIoU, being a shallow model,
lacks this ability. Please note that we could not report the exact IoU values for
MRFIoU, since [8] reports the results using a bar chart without using the exact
numbers.

While comparing the proposed approach FCNIoU to the primary baseline
FCNacc, we see that FCNIoU outperforms FCNacc in almost all categories. It is
particularly noteworthy that the performance improvements are more significant

Table 2. Background to object pixel ratio in PASCAL VOC 2010 and VOC 2011
datasets
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VOC 2010 152 319 107 142 150 64 66 40 97 152 82 75 117 91 25 182 111 99 85 104
VOC 2011 153 341 100 158 152 60 68 41 94 160 82 71 127 86 23 176 115 88 76 113



8 Md Atiqur Rahman and Yang Wang

Table 3. Intersection-over-union (%) performance comparison on PASCAL VOC 2011
validation set
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for object categories (e.g., “Aeroplane”, “TV/Monitor” etc.) where the ratio of
the background to object pixels is very large as shown in Table 2.

Table 3 shows IoU comparison of the proposed approach FCNIoU and the
primary baseline FCNacc on the PASCAL VOC 2011 [19] validation set. The
other method does not report any result on this dataset. We see that FCNIoU

performs better than FCNacc in most cases and also on average. Specifically,
the performance improvements are more significant for object categories with a
larger ratio of background to object pixels.

We also show some qualitative results of the proposed approach FCNIoU

and the primary baseline FCNacc in Fig. 2. Since softmax loss is tied to over-
all classification accuracy, the FCNacc model tends to misclassify object pixels
as background (i.e., false negative), as there exist more background pixels. In
contrast, FCNIoU tends to recover some of the false negative errors made by
FCNacc, as it directly optimizes for IoU score. This observation is supported by
the example segmentations as shown in the figure.

4.3 Results on CamVid

For the CamVid dataset [20], among the 11 object categories, we report results
on 5, namely, “Road”, “Building”, “Column-Pole”, “Sign-Symbol”, and “Fence”.
We chose the “Road” and “Building” categories for their relatively lower ratio of
background to object pixels compared to other object categories in the dataset,

Table 4. Intersection-over-union (%) performance comparison for 5 different object
categories on CamVid val (validation) and test set

Method
Road Building Column-Pole Sign-Symbol Fence

val test val test val test val test val test

FCNacc 95.53 90.38 87.03 76.21 50.46 50.91 64.94 56.27 75.97 61.75
FCNIoU 95.58 90.69 88.30 76.72 53.48 52.79 67.78 57.78 80.68 62.23
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Fig. 2. Sample segmentations results on the PASCAL VOC 2011 validation set.
Columns (left to right): original images, ground-truth segmentations, segmentations
produced by FCNIoU, and segmentations produced by FCNacc

while the other 3 categories were chosen for the opposite reason. We do this to
investigate how the proposed approach performs as the ratio of background to
object pixels varies. Table 4 reports IoU scores on the 5 object categories. The
results show that FCNIoU outperforms FCNacc in all 5 categories. More impor-
tantly, performance improvements are more significant for smaller object cate-
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gories (e.g., “Column-Pole”, “Sing-Symbol”, and “Fence”) having higher class
imbalance than those that are relatively balanced (e.g., “Road” and “Building”).

We also show some qualitative results on the CamVid test set in Fig. 3. The
results show that FCNIoU performs better than FCNacc, specially for smaller
object categories (e.g., Column-Pole) where there exists large imbalance in the
number of object and background pixels.

Fig. 3. Sample segmentation results on the CamVid test set. Rows (top to bottom):
segmentations for “Building”, “Road”, “Column-Pole”, “Sign-Symbol”, and “Fence”.
Columns (left to right): original images, ground-truth segmentations, segmentations
produced by FCNIoU, and segmentations produced by FCNacc

5 Conclusion

We have presented a new approach for direct optimization of the IoU measure
in deep neural networks. We have applied our approach to the problem of object
category segmentation. Our experimental results demonstrate that optimizing
the IoU loss leads to better performance compared with traditional softmax loss
commonly used for learning DNNs. In this paper, we have focused on binary
segmentation problems. As for future work, we would like to extend our approach
to directly handle multi-class image segmentation.
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