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Abstract

We consider the problem of localizing and segmenting objects in weakly labeled

video. A video is weakly labeled if it is associated with a tag (e.g. YouTube

videos with tags) describing the main object present in the video. It is weakly

labeled because the tag only indicates the presence/absence of the object, but

does not give the detailed spatial/temporal location of the object in the video.

Given a weakly labeled video, our method can automatically localize the object

in each frame and segment it from the background. Our method is fully auto-

matic and does not require any user-input. In principle, it can be applied to a

video of any object class. We evaluate our proposed method on a dataset with

more than 100 video shots. Our experimental results show that our method

outperforms other baseline approaches.

Keywords: weakly supervised, object localization

1. Introduction

Due to the popularity of online video sharing websites (e.g. YouTube), an

ever-increasing amount of video content is becoming available nowadays. These

online videos prove to be both a valuable resource and a grand challenge for

computer vision. Internet videos are often weakly labeled. For example, many5
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YouTube videos have some tags associated with them. Those tags are generated

by users and provide some information about the contents (e.g. objects) of the

video. However, these tags only provide the presence/absence of objects in the

video, but they do not provide detailed spatial and temporal information about

where the objects are. For instance, if a YouTube video is tagged with “dog”, we10

know there is probably a dog somewhere in the video. But this does not indicate

the location of the dog in the video. In this paper, we consider the problem of

localizing objects and generating pixel-level object segmentation from weakly

labeled videos. This will enable us to accurately localize the object in the video.

Our work is motivated by previous work on learning localized concepts [1,15

2, 3, 4, 5, 6] in videos. In this paper, we propose a simple and effective method

to localize and segment the object corresponding to the tag associated with the

video. Figure 1 illustrates the goal of this work. Given a video with a tag,

say “car”, we would like to localize and segment out the pixels in the video

corresponding to the “car”. In other words, we try to answer the question20

“where is the object” in the video? A reliable solution to this problem will

provide better video retrieval and browsing experience for users. It will also

help us to solve a wide range of tasks in video understanding.

There has been a lot of work on object detection (e.g. [7]) and segmenta-

tion (e.g. [8]) in the computer vision literature. The strategy proposed in these25

prior efforts typically relies on machine learning approaches to train a detec-

tion or segmentation model for each object category. They usually require a

large amount of labeled training data. The final models are often limited to a

handful of object classes that are present in the training data. For example,

the detection and segmentation tasks in the PASCAL challenge [9] only deal30

with 20 fixed object categories. The Microsoft COCO dataset [10] contains 80

object categories. Although this is an improvement to the PASCAL dataset,

the number of object categories is still small. The main difference in our work

is that we do not require labeled training data. In principle, our method can be

applied to videos of any object category.35

In this paper, we introduce a method that combines object appearance mod-
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Figure 1: An illustration of our work. Given an input video with an object tag, e.g. “car”

(1st row), our proposed method can automatically localize (2nd row) and segment (3rd row)

the object of interest in each frame.

eling and temporal consistency among frames in a principled framework. For

a given video with an object tag, at first we construct a video specific object

appearance model, and then we enforce temporal consistency between two con-

secutive frames to make the object localization algorithm more efficient.40

Preliminary versions of this work have appeared in Rochan et. al [11] and

Rochan and Wang [12]. In [11], we proposed an averaging-based method to

learn the video-specific object appearance model in order to localize the object

of interest in weakly labeled videos. In [12], we introduced a temporal consis-

tency constraint between consecutive frames to improve the performance of the45

framework in [11]. In this paper, in addition to applying the averaging-based

appearance model method, we also propose an alternative way (i.e. SVM-based)

to build the appearance model of the object of interest. Moreover, we also con-

duct experiments with state-of-the-art CNN features, whereas in [11] and [12]

we have only used the normalized color histogram features.50

The rest of the paper is organized as follows: Section 2 reviews previous work

in spatio-temporal segmentation of videos. Section 3 provides detailed descrip-
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tion of our proposed approach. We present experimental results in Section 4

and conclude in the last section.

2. Previous Work55

Semantic video segmentation is a well studied problem in computer vision.

It has been tackled with various levels of supervision. For example, some of the

proposed approaches are unsupervised, e.g. region tracking [13], hierarchical

graph models [14, 15], multiple hypothesis tracking [16] and spatio-temporal

based segmentation [17, 18]. Unsupervised methods can perform low-level seg-60

mentation but cannot provide semantic labels for the segments. Supervised

methods have also been studied for semantic video segmentation [19]. The ma-

jor drawback of supervised video segmentation is that it requires lots of labeled

video data for training. To address this issue, semi-supervised video segmen-

tation [20, 21] methods are proposed. These methods address the limitation65

of supervised methods to some extent, but getting sufficient pixel-level labeled

data is still nontrivial. In order to further reduce the need of labeled data,

weakly supervised semantic segmentation techniques are proposed [5, 1]. Our

proposed method is inspired by this line of research. In general, these methods

use the weak label (e.g. semantic tags) associated with the videos and thus do70

not require pixel-level label information. Since it is much easier to tag a video

than labeling each pixel within it, the need for human annotation can be greatly

reduced.

Our work is related to a line of research on fully automatic and semi-

supervised video segmentation. Perazzi et al. [22] perform segmentation in75

videos using multiple object proposals. The problem of video segmentation

is formulated as an energy minimization over a fully connected graph defined

on the object proposals. Note that this method requires some manually anno-

tated foreground proposals. The method proposed by Zhang et al. [23] is also

related to ours. This method extracts the object regions in videos. It then uses80

a Directed Acyclic Graph (DAG) based approach to detect and segment the

4



object of interest in every frame of a video.

Our work is motivated by recent work that uses object annotation for various

tasks in video understanding, including human activity recognition[24], event

detection [25], and object segmentation [1, 26].85

Recent work on video co-localization [3, 27] is very relevant to our work.

They tackle the problem of co-localization in videos by proposing candidate

regions in each frame and then select the correct one from each video. In [3],

the authors leverage temporal information by proposing candidate tubes, but

their learning algorithm still suffers from poor performance. However, Tang et90

al. [27] consider the temporal information directly in their model. Our temporal

consistency formulation is very similar to this method.

One major advantage of our technique is that it can be easily used for object

annotation in videos, which has been of increasing interest among computer

vision researchers. For example, Tang et al. [5] presented an algorithm for95

annotating spatio-temporal segments using video-level tags provided in Internet

videos. Our work is closely related to this line of research, since our goal is also

to build an effective approach for object annotation in Internet videos.

Our proposed method is also inspired by some work on tracking humans [28,

29] or animals [30] by learning video-specific appearance models. For example,100

the human kinematic tracking system in [29] first detects stylized human poses

in a video, then builds an appearance for human limbs specifically tuned to

the person in this particular video. It then applies the appearance model to

all frames in the video. At a high level, our proposed approach operates on a

similar idea.105

Our work is also related to a line of research on weakly supervised learning (in

particular, multiple-instance learning) in computer vision. For example, Maron

et al. [31] applied multiple-instance learning for scene classification. Galleguillos

et. al [32] proposed MIL-based method to recognize and localize objects in im-

ages. Recently, multiple-instance learning has been adopted in many computer110

vision applications, e.g. object detection [7], image annotation [6], etc.
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3. Our Approach

The type of input processed by our method is a video with an object tag,

e.g. “cow”. In our work, we focus on videos that are relatively simple. In

particular, we make the following two assumptions about the videos: 1) the115

tag corresponds to the main object in the video; 2) there is only one instance

of the tagged object in the video. More concretely, if a video is tagged with

“cow”, there should be a cow somewhere in the video. We assume the cow is

the dominant object in the video, i.e. it is not too small. We also assume there

is only one cow in the video. Previous work (e.g. [5]) in this area makes similar120

assumptions.

Based on these assumptions, our proposed approach involves four major

steps:

1) Generating object proposals: Given a video with an object tag, the

first step of our approach is to generate a collection of object proposals (also125

called hypotheses) on each frame in the video. Each object proposal is a bound-

ing box that is likely to contain an object. The method we use for generating

object proposals is generic and is not tuned for any specific object classes.

2) Building object appearance model: Many of the object proposals

obtained from the previous step might not correspond to the object of interest.130

In the second step, we use some simple heuristics to choose a few bounding

boxes from the collection of all object proposals. The hope is that these selected

bounding boxes are likely to correspond to the object of interest. We then build

an appearance model for the object based on the selected bounding boxes. Note

that the appearance model is built for a specific video. If the video contains a135

“black cow”, our appearance model will try to detect this “black cow”, instead

of other generic cows.

3) Object localization: We localize the object by selecting one bounding

box in each frame of a video. We could use the learned appearance model from

the previous step to re-score the object proposals from the first step. After140

re-scoring, a bounding box will have a high score only if it is likely to contain
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Figure 2: Examples of generating object proposals on frames within a video. Given a frame,

the Edge Boxes algorithm [34] is applied. It returns a collection of bounding boxes in an

image that are likely to be any object. For each bounding box, the algorithm also assigns a

score indicating how likely it is to be an object.

an object instance specific to this video, e.g. a “black cow”. However, this

strategy alone may not be efficient enough to localize the object correctly. In

this paper, we assume that the object of interest in a video does not undergo

drastic change in their properties such as size, position and appearance between145

two consecutive frames. Previous work (e.g. [23, 27]) has also made similar

assumptions. Therefore, we enforce these constraints by incorporating a tem-

poral consistency model between adjacent video frames. We model the object

localization problem as performing the maximum a posteriori (MAP) inference

in an undirected chain graphical model. Each node in the graphical model cor-150

responds to a frame and object proposals within a frame are the possible states

of the node. An edge in the model enforces temporal consistency between two

consecutive frames. The object in the video is localized by finding the optimal

labeling of nodes in the graphical model.

4) Segmenting objects: After localizing an object in each frame, the155

GrabCut [33] algorithm is applied on the selected bounding box to segment the

object from the background.

We describe the details of each step in the following.

3.1. Generating Object Proposals

Given an input video, the first step of our approach is to generate a set of160

candidate object bounding boxes on each frame. For certain object categories

(e.g. people, car, etc.), one might be able to use state-of-the-art object de-
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tectors, e.g. [7]. But the limitation of this approach is that there are only a

handful of object categories (e.g. 20 object categories in the PASCAL object

detection challenge) for which we have reasonably reliable detectors. Since we165

are interested in segmenting objects in a video regardless of the object class, we

choose not to use object detectors.

Instead, we use the Edge Boxes algorithm [34] to generate object bounding

box proposals. This algorithm relies on one simple observation: the number of

contours that are wholly enclosed by a bounding box is indicative of the pres-170

ence of the object within the bounding box. The object proposals are detected

using the edge maps. For a given bounding box, the algorithm also defines an

objectness scoring function which measures the likelihood of this bounding box

containing an object. Since this algorithm is not restricted to any particular

object classes and therefore can be potentially used for any object categories.175

We choose to use this algorithm to generate the object proposals.

Given an input video, we apply the Edge Boxes algorithm [34] to generate 10

object proposals (i.e. bounding boxes) for every frame within the video. This

gives us a collection of candidate bounding boxes which are likely to contain an

object. Figure 2 shows some examples of applying the Edge Boxes algorithm180

on frames within a video.

3.2. Building Object Appearance Model

Given a video, the Edge Boxes algorithm approach (see Section 3.1) gives us a

collection bounding boxes. Those bounding boxes correspond to image windows

that are likely to contain any object. However, since this algorithm is a generic185

for any object class, it is not specifically tuned for any specific object categories.

Figure 3 shows some examples of bounding boxes with high objectness scores,

but that do not correspond to the object of interest (aeroplane) in the video.

The next step of our approach is to select a few bounding boxes from all the

generated object proposals. Ideally, the bounding boxes being selected will190

correspond to the object of interest in the video.
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Figure 3: Example of high scoring bounding boxes on an image that do not correspond to the

object of interest (aeroplane).

Our bounding box selection strategy is based on the following two observa-

tions. First, if a video is tagged with an object, say “cow”, the image windows

corresponding to the “cow” in the video tend to have high objectness scores.

The reason is that people are less likely to tag an object if it is not salient (e.g.195

too small) in the video. Second, we assume there is only one instance of the ob-

ject of interest in the video. I.e. if a video is tagged as “cow”, we only consider

segmenting one “cow” in the video. In this case, the object of interest tends

not to change appearance across different frames in the video. For example, if

we know a “cow” is black in one frame, we know that it must be black in other200

frames as well. If we can somehow build an appearance model for this specific

“black cow”, we can use this appearance model to find “cow” bounding boxes

in other frames.

Note that since our goal is to build an appearance model for the object

of interest, our bounding box selection strategy does not necessarily have to205

retrieve all the true positive examples. As long as most of the bounding boxes

being selected are positive examples of this object, we will be able to build

a good appearance model for this object. In other words, we would like our
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bounding box selection to have a precision, but can tolerate a low recall.

In our work, we use a simple yet effective strategy. We observe that if a video210

is tagged as “cow”, most of the bounding boxes with the highest objectness

scores tend to correspond to this object. This suggests that we can simply sort

the bounding boxes in a video according to their objectness scores. Then we

select K bounding boxes with the highest objectness scores. We empirically

find the number of frames within a video to be a good choice for K and use this215

value in all of our experiments.

Based on the selected K bounding boxes, we build a video-specific appear-

ance model for the object. We first extract the visual feature from each bounding

box. In our experiments, we have used both the normalized color histogram and

the CNN-based features implemented in Caffe [35]. We define two methods for220

building the appearance model. (1) Averaging : in this method, we simply take

the average of the feature vectors extracted from all selected bounding boxes.

Let A be the appearance model obtained by this method and x be the feature

vector of an object proposal. We can use (−||A − x||2) as a measure of how

likely it is that x is the object in this video. (2) SVM-based : in the second225

method, we learn a model of the object of interest from the object proposals

extracted from the video frames. We consider the selected K bounding boxes

as positive examples of the object present within the video. We then choose

a set of negative examples by randomly selecting object proposals from videos

that do not correspond to the object of interest. Given this set of positive and230

negative examples, we train a linear SVM (with either color histogram or CNN

features) to learn the video specific object appearance model. Let x be the

feature vector (normalized color histogram or CNN features) of an object pro-

posal in a video v, the video specific object appearance model is represented by

parameter vector wv. The dot product w>v x indicates the likelihood of x being235

the specific object in the video v.
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3.3. Object Localization

We have a set of bounding boxes for every frame within a video. In this

section, our goal is to localize the object in the video by selecting one bounding

box for each frame. We could use the learned appearance model from Section 3.2240

to localize the object of interest within a given video. I.e., we can use the learned

appearance model to re-score the bounding boxes with the frames of that video.

A bounding box will have a high score only if it is likely to contain an object

instance specific to this video, e.g. a “black cow”. However, this strategy alone

may not be sufficient to localize the object correctly. We know that within245

a video it is very unlikely that objects will undergo drastic change in their

properties such as size, position and appearance between two consecutive frames

of a video. This prior is often used in tracking [27, 36, 37, 38, 39, 40, 41, 42]

objects in videos. Therefore, we enforce a temporal consistency model between

consecutive video frames.250

We model the object localization problem within a video using an undirected

chain graph. Each node in the graph represents a frame within a video. The

value assigned to a node indicates which object proposal is chosen for this frame.

Since we have 10 object proposals for each frame, each node can take its value

from {1, 2, ..., 10}. The nodes of two adjacent frames are connected by an edge255

indicating the temporal consistency constraint between these two frames. Let

X1, X2, ..., Xk be the frames in a video with k frames, and P1, P2, ..., Pk be the

corresponding object proposals selected for each frame. We use the following

optimization problem to solve the object localization:

max
P1,P2,...,Pk

∑
i

φ(Pi, Xi) +
∑
i,i+1

ψ(Pi, Pi+1) (1)

This optimization problem in Eq. 1 involves unary potential functions φ(·)260

defined on nodes and pairwise potential functions ψ(·) defined on edges in the

graph. In the following, we describe these potential functions in detail.
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3.3.1. Unary Potentials

The unary potential φ(·) measures the likelihood that an object proposal

belongs to the object class, i.e. it captures the compatibility between an object265

proposal and the appearance model of the object. We use two different ways to

define the unary potential. Firstly, we define the unary potential for each frame

as follows:

φ(Pi, Xi) = exp

(
−‖A− fh(Pi, Xi)‖2

)
(2)

where A is the appearance model (obtained by averaging) of the object of in-

terest within the video (see Sec. 3.2) and fh(Pi, Xi) is the feature vector (color270

histogram or CNN feature) of the image patch corresponding to the bounding

box Pi in the frame Xi.

Secondly, we also use the video specific object appearance model learned

using SVM to define the unary potential for each frame. In this case, the unary

potential is computed as follows:275

φ(Pi, Xi) =

(
w>v · fh(Pi, Xi)

)
(3)

where wv is the learned video object specific appearance model and fh(Pi, Xi)

is the feature vector from the image patch corresponding to the bounding box

Pi in the frame Xi.

The unary potential in Eq. 2 and Eq. 3 will encourage each frame to choose

a bounding box whose appearance (i.e. color histogram or CNN feature vector)280

is consistent with the video specific appearance model of the object. We con-

duct experiments with both the definitions of unary potential with both color

histograms and CNN features.

3.3.2. Pairwise Potentials

The pairwise potential is a term which encourages the temporal consistency285

between the bounding boxes selected in two adjacent frames. It ensures that

the bounding boxes selected between adjacent frames do not undergo drastic

changes in their properties such as size and position.
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Following [27], we define the temporal consistency Ctemporal(Pi, Pj) between

two bounding boxes Pi and Pj) of adjacent video frames as follows:290

Ctemporal(Pi, Pj) = α

(
‖fc(Pi)− fc(Pj)‖22 + ‖fa(Pi)− fa(Pj)‖22

)
(4)

where fc(Pi) denotes the coordinates of the center of the bounding box Pi,

and fa(Pi) denotes the area of this bounding box. We normalize fc(Pi) by the

height and width of the frame, and fa(Pi) by the maximum area between the

two object proposals.

Using the above temporal consistency definition, we compute the pairwise295

potential between two bounding boxes of adjacent video frames as follows:

ψv(Pi, Pj) = exp

(
−
(
Ctemporal(Pi, Pj)

)2)
(5)

The parameter α in Eq. 4 control the relative influence of the pairwise potential

in the model.

The pairwise potential is very intuitive because if two object bounding boxes

of adjacent frames contain the same object then they should not be far apart and300

their area should not vary either. In summary, the pairwise potential encourages

the algorithm to select bounding boxes that are consistent in terms of positions

and sizes between adjacent video frames.

3.3.3. Decoding

Given the model defined above, the inference problem we need to solve is to305

jointly choose the values of P1, P2, ..., Pk to maximize Eq. 1. Figure 4 illustrates

this inference problem. Each column in Fig. 4 corresponds to a frame. In each

column, the rows indicate the object proposals in that frame. The inference

problem can be interpreted as finding the optimal path from the start to end in

Fig. 4. It can be efficiently solved by dynamic programming.310

3.4. Segmenting Object of Interest

Finally, we apply GrabCut [33] to segment out the object in each frame.

GrabCut is an efficient algorithm for foreground segmentation in images. The
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Figure 4: For the given consecutive frames of a video, the inference problem for object local-

ization can be represented as finding the optimal path in a graph. Each frame in the graph

represents the node and their object proposals (blue circle) represent the possible state that

node can take. The edges between the object proposals of two frames indicate the pairwise

consistency constraint between the bounding boxes of two adjacent frames . Our goal is to

find the best configuration of object bounding boxes among the frames of the video. This is

equivalent to finding the optimal path in the graph.

standard GrabCut is not fully automatic. It requires the user input in the

form of marking a rectangle around the foreground object. In contrast, our ap-315

proach does not require user interaction. We simply consider the one bounding

box selected by our localization algorithm within each frame as the user input.

Figure 5 illustrates the pipeline of our approach.

4. Experiments

In this section, we first describe the dataset and evaluation metrics (Sec. 4.1).320

We then present our experimental results in Sec. 4.2.
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(a) (b) (c)

Figure 5: An illustration of our approach. (a) A frame in the video with selected bounding

boxes (see Sec. 3.2). An appearance model is built based on the selected bounding boxes from

all frames of this video. (b) After applying the appearance model on this frame, we obtain a

single bounding box that is most likely to contain the object of interest (bird) in this frame.

(c) The GrabCut algorithm is applied to segment the object in this frame. The standard

GrabCut algorithm requires users to draw a rectangle around the foreground object as the

part of the input. In our case, we use the bounding box obtained from (b) as the user input.

So our method is fully automatic and does not require any user interactions.

4.1. Dataset and Setup

We evaluate our proposed approach using a subset of the dataset in Tang

et al. [5]. This dataset consists of video shots collected for 10 different object

classes, including aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike,325

and train. Each frame of the video shot is annotated with the segmentation of

the object of interest in the video. Table 1 shows the summary of this dataset.

We use 144 video shots with a total of 24,723 frames in our experiments.

We define a quantitative measurement in order to evaluate our approach.

Our quantitative measurement is inspired by the measurement used in the PAS-330

CAL challenge [9]. Given a video frame, let Pb be the foreground pixels returned

by our method and Pgt be the ground-truth foreground pixels provided by the

annotation in the dataset. We measure the quality of Pb by the ratio of |Pb∩Pgt|

and |Pb ∪ Pgt|:

r = |Pb ∩ Pgt| / |Pb ∪ Pgt| (6)
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Class Number of Shots Number of Frames

Aeroplane 9 1423

Bird 6 1206

Boat 17 2779

Car 8 601

Cat 13 3870

Cow 20 2978

Dog 27 3803

Horse 17 3990

Motorbike 10 827

Train 18 3270

Total 144 24723

Table 1: Summary of the dataset used in the experiments.

If this ratio r is greater than 50%, we consider the segmentation on this frame335

to be correct. We evaluate the performance of our algorithm by computing the

percentage of frames that are correctly segmented.

We extract 10 object proposals (or bounding boxes) from each frame of

a video shot. We use normalized color-histograms and state-of-the-art 4096

dimensional fine-tuned CNN features [35] as our feature representations for an340

object proposal. We randomly choose one video shot from every object class for

setting the free parameter α (see Section 3.3) in our experiments.

4.2. Results

In order to measure the performance of our proposed approach, we perform

several experiments.345

We first consider using the averaging-based appearance model based on color

histogram (see Sec. 3.2). We compare our method with several baseline ap-

proaches. The first baseline simply chooses the bounding box with the highest

objectness score (from Edge Boxes algorithm [34]) for each frame within a video.
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method aero bird car cow mbike boat cat dog horse train avg.

top proposal only 52.5 46.3 42.5 33.3 5.0 24.8 17.4 34.1 21.0 10.9 28.8

appearance only 54.6 37.8 49.7 42.3 9.3 25.5 16.1 34.8 21.6 12.3 30.4

ours 57.5 38.1 50.3 44.4 10.5 27.1 17.4 36.0 22.9 12.4 31.7

Table 2: Quantitative results using the averaging-based appearance model on color histogram

features. For each object class, we compare segmentation accuracy across the sequence of

video frames. A frame is considered to be correctly segmented if the ratio of intersection over

union defined in Eq. 6 is greater than 50%. We compare four different methods: (1st row)

bounding box with highest objectness score selected on each frame; (2nd row) video specific

appearance model generated 3.2 using normalized color-histogram feature from top-scored

bounding boxes 3.2; (3rd row) incorporating temporal consistency between two consecutive

frames with the color histogram based video specific object appearance model.

method aero bird car cow mbike boat cat dog horse train avg.

top proposal only 52.5 46.3 42.5 33.3 5.0 24.8 17.4 34.1 21.0 10.9 28.8

appearance only 58.1 41.6 42.7 34.9 7.5 26.5 11.7 34.2 22.9 11.5 29.2

ours 58.9 42.4 46.7 37.1 7.7 27.1 12.5 35.9 23.0 11.3 30.3

Table 3: Quantitative results using the averaging-based appearance model on CNN features.

We call this baseline “top proposal only”. The second baseline applies the video350

specific object appearance model (averaging based on color histogram) to re-

score the object proposals on each frame, then selects the proposal with the

highest score. Note that this baseline does not consider the temporal consis-

tency information between the object proposals selected from adjacent frames

of a video. We call this baseline “appearance only”. Table 2 shows the perfor-355

mance of three methods: 1) using first baseline method, i.e. “top proposal only”;

2) using second baseline method, i.e. “appearance only”; 3) using our method

that combines video specific object appearance with temporal consistency. Our

approach achieves the best performance on most of the object classes.

Table 3 shows the performance of different methods using the averaging-360

based appearance model based on CNN features. Similar to Table 2, we compare

the performance of three methods: 1) using “top proposal only”; 2) using the

averaging-based appearance model based on CNN feature, i.e. “appearance

only”; 3) using our approach that combines video specific object appearance

model (CNN feature based) with temporal consistency information. Our final365
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method aero bird car cow mbike boat cat dog horse train avg.

appearance only 52.9 36.5 41.6 30.0 10.1 15.2 10.2 26.3 21.5 9.8 25.4

ours 60.3 38.6 56.3 36.1 9.9 16.3 14.0 30.3 25.1 11.3 29.8

Table 4: Quantitative results using the SVM-based appearance model based on color his-

togram. We learn a video specific appearance model using a linear SVM without the bias

term. We select the object proposal with highest objectness score on each frame of a given

video as positive example and select a set of negative examples by randomly choosing object

proposals from videos of different object class. We compare performance of two methods: (1st

row) using only the learned video specific appearance model; (2nd row) incorporating temporal

consistency between two consecutive frames with the video specific appearance model.

method aero bird car cow mbike boat cat dog horse train avg.

appearance only 60.8 53.6 56.3 41.1 11.8 34.2 19.5 34.7 30.2 11.7 35.4

ours 60.8 54.6 57.4 42.1 11.7 34.7 19.2 35.8 30.4 11.4 35.8

Table 5: Quantitative results on using SVM-based appearance model based on CNN features.

Similar to Table 4, we compare the performance of two methods: (1st row) using appearance

model only; (2nd row) incorporating temporal consistency to the framework.

method again outperforms the other baseline methods.

We further investigate and evaluate the performance of video specific ob-

ject appearance model learned using SVM 3.2. Table 4 shows the performance

of two methods: 1) using video specific object appearance model learned with

normalized color histogram feature from object proposals , i.e. “appearance370

only”; 2) using temporal information with the SVM-based appearance model.

Similar to Table 4, we also compare the two methods when CNN feature is used

to learn the video specific object appearance model (see Table 5). In both the

cases, our final approach outperform the other baseline method. Note that,

in contrast to Table 2 and Table 3, we obtain better performance with CNN375

feature rather than color histogram for SVM-based methods. The main rea-

son is that SVM learns a better appearance model using the high-dimensional

discriminative CNN feature representation than the low dimensional color his-

togram feature. These results are also in agreement with many CNN feature

representation based visual recognition algorithms where the representation has380

proved to be one of the state-of-the-art.
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method aero bird car cow mbike boat cat dog horse train avg.

color-hist 53.6 35.0 29.6 31.4 7.0 16.6 8.9 19.5 20.4 8.9 23.1

CNN 60.7 52.5 54.7 40.5 12.1 33.4 20.6 37.1 26.3 11.0 34.9

Table 6: Quantitative results on using SVM-based appearance model learned using negative

training examples drawn from all other videos. We use both color histogram (1st row) and

CNN (2nd row) features to learn this variant of SVM-based appearance model.

Tables 2–5 show that our final approach (video specific object appearance

model with temporal consistency) outperforms the baseline methods on most

of the object categories. Firstly, from various results, we observe that building

a video specific object appearance model (averaging-based or SVM-based) is385

an effective strategy to tackle the localization problem in weakly labeled video.

Secondly, we show that incorporating temporal consistency information to the

framework further improves the performance. Qualitative results of our ap-

proach on these 10 object classes are shown in Fig. 8 and Fig. 9.

We also perform an additional experiment (see Table 6) in which we learn390

the SVM-based appearance model using negative training examples drawn from

all other videos. This is essentially an “unsupervised” variant of our SVM-based

“appearance only” method in Tables 4 and 5. Note that the “appearance only”

method in Tables 4 and 5 requires weak supervision because we use the video tag

to select negative examples (i.e. videos that do not correspond to the object of395

interest) for training the SVM. While in this “unsupervised” variant, we consider

all the other videos (including those that might contain the object of interest)

as negative examples. Comparing the results in Table 6 with Tables 4 and 5,

we can see the “unsupervised” variant does not perform as well as the weakly

supervised variant. This is not surprising since the “unsupervised” variant has400

less supervisions.

Figure 6 shows two examples demonstrating the benefit of having the pair-

wise potential in the model. Without the pairwise potential (1st row and 3rd

in Fig. 6), the selected bounding boxes between adjacent frames of a video can

vary dramatically in terms of size and position. The pairwise potential alleviates405

this problem and enforces the consistency across the selected bounding boxes
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Figure 6: Examples illustrating the benefit of enforcing consistency between adjacent frames

of videos. (1st and 3rd row) Without the pairwise potential, the selected bounding boxes can

be dramatically different. (2nd and 4th row) With the pairwise potential, the bounding boxes

are more consistent across all frames.

between consecutive frames of a video (2nd row and 4th row in Fig. 6).

4.3. Failure Cases

In Fig. 7, we show some representative failure cases of our approach. The

failures are often caused by occlusion, multiple instances of the object of interest410

and the object of interest being too small in the scene.

5. Conclusion

We have introduced an efficient approach for localizing and segmenting the

object of interest in weakly labeled videos. Our approach is fully automatic

and does not require any user interaction. Our approach is based on two main415
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(a)

(b)

(c)

Figure 7: Some typical failure cases of our approach: (a) occlusion; (b) multiple instances of

the object of interest; (c) object of interest is too small in the scene.

observations. First, the main object in a video tends to be salient (i.e. object-

like). Second, the object appearance does not change across different frames

in a video. We introduced a chain structured graphical model formulation to

tackle this problem. We then use dynamic programming to select best bounding

box (i.e. object of interest location) within each frame of a given video. We420

demonstrate the effectiveness of our approach by comparing with several other

baseline methods.

There are many possible directions for future work. First of all, we would like

to extend our approach to handle multiple object instances in a video. Secondly,

for some object categories (e.g. people, car), reliable object detectors do exist.425

We would like to incorporate those object detectors in our framework. Thirdly,

we like to use our proposed method as a starting point towards the grand goal

of understanding contents of online videos (e.g. YouTube).
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Figure 8: Example results on videos tagged as (from top to bottom) “aeroplane”, “bird”,

“car”, “cow”, and “motorbike” respectively. For each video, we show the original frames (1st

row) and the segmentation results obtained after localization (2nd row).
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Figure 9: Example results on videos tagged as (from top to bottom) “boat”, “cat”,

“dog”,“horse”, and “train”, respectively. For each video, we show the original frames (1st

row) and the segmentation results obtained after localization (2nd row).
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[38] P. Pérez, C. Hue, J. Vermaak, M. Gangnet, Color-based probabilistic track-

ing, in: European Conference on Computer Vision, Springer, 2002, pp.540

661–675.

[39] Y. Pang, H. Ling, Finding the best from the second bests-inhibiting subjec-

tive bias in evaluation of visual tracking algorithms, in: IEEE International

Conference on Computer Vision, IEEE, 2013, pp. 2784–2791.

[40] S. Hare, A. Saffari, P. H. Torr, Struck: Structured output tracking with545

kernels, in: IEEE International Conference on Computer Vision, IEEE,

2011, pp. 263–270.

[41] B. Babenko, M.-H. Yang, S. Belongie, Robust object tracking with online

multiple instance learning, IEEE Transactions on Pattern Analysis and

Machine Intelligence 33 (8) (2011) 1619–1632.550
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