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Abstract—Existing approaches for semantic segmentation in
videos usually extract each frame as an RGB image, then apply
standard image-based semantic segmentation models on each
frame. This is time-consuming. In this paper, we tackle this
problem by exploring the nature of video compression techniques.
A compressed video contains three types of frames, I-frames,
P-frames, and B-frames. I-frames are represented as regular
images, P-frames are represented as motion vectors and residual
errors, and B-frames are bidirectionally frames that can be
regarded as a special case of a P frame. We propose a method
that directly operates on I-frames (as RGB images) and P-
frames (motion vectors and residual errors) in a video. Our
proposed model uses a ConvLSTM model to capture the temporal
information in the video required for producing the semantic
segmentation on P-frames. Our experimental results show that
our method performs much faster than other alternatives while
achieveing similar performance in terms of accuracies.

I. INTRODUCTION

Semantic segmentation in videos is of crucial importance
for real-time application such as autonomous driving. Existing
approaches usually operate on a frame-by-frame basis. They
first extract each frame as a regular RGB image, then apply
standard semantic segmentation models on this frame. These
methods suffer from very high computational cost or low
speed. Typically, our video is compressed to 15 to 30 frames
per second (fps). However, according to the frame-by-frame
model, it takes 0.17s to provide semantic segmentation on one
frame. For example, if the video is played at 30 fps and the
video length is 2 minutes, the frame-by-frame model will take
10 minutes to provide semantic segmentation for the video.
As a result, they are not applicable to real-time semantic
segmentation scenarios such as self-driving.

Existing frame-by-frame approaches ignore the fact that
videos usually come in compressed format for transmission
and storage. In this paper, we propose a semantic segmentation
method that directly operates on compressed videos. Working
directly with compressed videos provides several advantages.
First of all, since we do not need to extract frames from a
video, our method can be much faster. Secondly, the com-
pressed video directly provides the motion information that
RGB images do not have. As a result, our method can directly
take advantage of this information and consider temporal
information of a video clip.
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Fig. 1. Current solutions of semantic segmentation in videos require extracting
all frames as regular RGB images, then process each image separately to
produce its semantic segmentation. This can lead to heavy computation and
low speed. In this paper, we propose a semantic segmentation method that
directly operates on compressed videos without extracting all frames.

Existing works already explore the usability of compressed
videos in computer vision tasks such as action recognition
[18] and object detection [17]. However, to the best of our
knowledge, this is the first work on using compressed videos in
semantic segmentation. We propose a ConvLSTM model that
propagates the temporal information from I-frame to succeed-
ing P/B-frames for semantic segmentation. Our experimental
results show that the proposed method performs either better or
on-par with standard frame-based methods. But the proposed
method can run at a much faster speed.

II. RELATED WORK
A. Semantic Segmentation

The goal of semantic segmentation is to assign a label to
each pixel in an image (see Fig 1). For semantic segmentation
in images, there have been a lot of models that apply deep
convolutional neural networks [6], [7], [16] for semantic seg-
mentations. For example, methods such as FCN [10], dilated
convolutions [19] and SegNet [1] are widely used. To apply
semantic segmentation on videos, the most popular approach
is to extract each frame in the video as an image, then apply
a standard image-based semantic segmentation algorithm to
process each frame.

For semantic segmentation in videos, there is always a
trade-off between accuracy and efficiency. In order to obtain
higher accuracy, A new method for dealing with the spatial
and temporal features of video semantic segmentation was
proposed in [5]. A pyramid scene parsing network was applied
in [20] to acquire more accurate semantic segmentation. But
these methods requires a lot of computation time. A model
that only focuses on a single annotation object was proposed
in [3]. In order to reduce the computation time, a method based
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Fig. 2. We divide the video by groups. Each group contains 1 RGB image of the I-frame and 11 P-frames represented by the motion vector and the residual
error. The processing of I-frames and P-frames are different: we first obtained a semantic segmentation of the I-frame based on ResNet. Then the information
of the I-frame is taken as the initial state of a ConvLSTM module, which also takes the information of each P-frame to update its hidden state. At each

time-step, the module produce a semantic segmentation prediction.

on clockwork driven by a fixed or adaptive clock signals was
proposed in [9], [15].

B. Computer Vision with Compressed video

Videos usually come in compressed format for transmis-
sion and storage. Several popular compression techniques
are widely applied, including AVI [12], MPEG4 [8], FLV
[13], and so on. Recently, there has been some work on
solving computer vision problems using compressed videos.
For example, [18] uses MPEG4 on action recognition and their
approach shows that operating on motion vectors and residual
errors in compressed videos is more efficient than traditional
methods that operate on RGB frames. [17] combines com-
pressed video technology with LSTM to obtain spatial and
temporal information on object detection problem. However,
as far as we know, there is no existing work on semantic
segmentation in compressed videos.

III. APPROACH
A. Overview

Videos are usually stored and transmitted in some com-
pressed format, such as MPEG-4, H.264, etc. Most of the
video compression techniques use the fact that adjacent frames
in a video are often similar. As a result, we only need to
store a small number of frames (called I-frame) as regular
images, while other frames (called P-frame) can be efficiently
represented by only storing the difference between frames.

Following prior work [18], we divide frames in an entire
video into several groups, while each group contains one I-
frame and several P-frames, represented by the collection {7,
Py, P, ..., Pr}. The I-frame [ is represented as a regular
RGB image, while each P-frame P; only stores the difference
with respect to the previous frame. Our model takes {I, P,
Py, ..., Pr} as the input. The desired output is the semantic
segmentation of each image, regardless of the frame type. The
semantic segmentation network is represented by f(z), where
x can be either a I-frame or a P-frame. Given the ground-truth
semantic segmentation masks, our learning objective function
can be described below:

L= Lee(GTr = f(1) + Y Lee(GTp, — f5(P)) (1)

t=1

where L., is cross-entropy loss function, G77 is the ground-
truth semantic segmentation mask of the I-frame, and GI'p, is
the ground-truth semantic segmentation mask of the P-frame
P;. Our goal is to learn a network that minimizes the loss
function defined in Eq. 1.

B. Semantic Segmentation for I-frame

In order to obtain the semantic segmentation of an I-
frame, we use a standard encoder-decoder architecture for
semantic segmentation (see Fig 2). An I-frame is represented
as a regular RGB image tensor with three channels. Let



I € REXWX3 be the image of the I-frame, where H x W is
the spatial size of the image. We use ResNet as the backbone
network to extract a feature map of the image denoted as
z(I) € R#2X32%¢, where c is the number of channels of the
last convolutional layer of the feature extractor. We set ¢ as
the number of classes in semantic segmentation. The spatial
size of z(I) is smaller than the original image I due to max-
pooling. In order to obtain the pixel-wise prediction at the
original image size, we apply an upsampling layer to enlarge
z(I) to have the same spatial size of the input image. We use
fs(I) € REXWXe (o denote the output of this upsampling
layer. We can interpret the c-dimensional vector at each pixel
location of f,(I) as the score of classifying the pixel to each
of the c classes.

C. Semantic Segmentation for P-frame

Since a P-frame is represened as the difference from the
previous frame, an P-frame by itself does not contain enough
information for semantic segmentation. In order to segment
a P-frame, intuitively we should capture the temporal infor-
mation between this P-frame and the preceding I-frame. In
this work, we apply a ConvLSTM module to accumulate the
information of previous frames (see Fig 3) that are needed for
segmenting a particular P-frame at time t.

Let P, denote the P-frame at time ¢. A P-frame is repre-
sented as the motion vector and the residual error (see Fig. 2).
We can interpret the motion vector and the residual error as
two images. We apply two different CNNs to extract features
from these two images denoted as zj(t) and zo(t) (where
21,29 € R35 % 35 X), respectively. We then concatenate z; and
zo as the input to ConvLSTM at time ¢ (see Fig. 3).

The ConvLSTM module will process information starting
from the I-frame in the group. We set the initial hidden
state h(0) of ConvLSTM as the feature of the corresponding
I-frame, i.e. h(0) = z(I). For the P-frame P(t) at time
t, we simply take the aforementioned concatenated features
cat(z1(t), z2(t)) (where cat represents the concatenation op-
eration) as the input at £ in ConvLSTM.

We consider the hidden state /() as the feature representa-
tion of the information of the P-frame P(t). Since h(t) has ac-
cumulated the information of frames starting from an I-frame
that leads to P(t), h(t) has enough information for semantic
segmentation of P(t). We use h(t) as the input and apply an
upsampling layer to obtain the semantic segmentation.

IV. EXPERIMENTS

In this section, we first describe our experimental setup and
datasets in Section IV-A. We then present the experimental
results in Section IV-B.

A. Experimental Setup

a) Datasets: We evalute the performance of our approach
on the Cambridge-driving labelled video database (CamVid)
dataset [2] and the Semantic Understanding of Urban Street
Scenes dataset (Cityscapes) dataset [4]. CamVid provides
object-class semantic labels that assign each pixel to one of
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Fig. 3. The process of our network on P-frame when the timestep = t

the 32 semantic classes. Most videos are collected by using a
fixed-position CCTV-style camera taken from the observation
of a driver in the car. The driving scenes increase the number
and heterogeneity of the observed object classes. We use three
videos from CamVid: seqO6RO0, seqO1TP, and seq 05VD. The
total number of frames in the 1436 group is 17,239, and each
group contains 12 frames (1 I-frame and 11 P-frames), with 19
semantic classes in the selected image. We divide the frame
into 70% as training data (1005) and 30% (431) test data.
Cityscapes provides an image segmentation dataset in an self-
driving environment. It is used to evaluate the performance
of visual algorithms in the semantic understanding of urban
scenes. Cityscapes contains 50 different scenes, different back-
grounds, different seasons of streetscapes. The total number
of frames in the 960 group is 11,520 with 15fps and 19 class
numbers. We divided the frame into 70% as training data (672)
and 30% (288) test data.

b) Ground-truth labels: The videos in our evaluation
datasets do not contain ground-truth labels for all frames. In
order to get the ground-truth, we first decompress the video
and extract all frames as regular RGB images. We then run
ResNet [14] to obtain semantic segmentation maps for all
frames based on their RGB images and use the predicted
segmentation maps as the ground-truth.

c) Evaluation metrics: We use the mean Intersection
Over Union (MeanloU) and the pixel accuracy to measure the
performance of the semantic segmentation. We also measure
the speed of the proposed approach during inference time.

d) Baselines: We consider the following baseline meth-
ods for comparison. First, we consider standard semantic
segmentation models that operate on regular images, including
FCN-32s, FCN-8s, ResNet [5], [11]. Note that these baselines
cannot directly handle compressed video format. They have
to extract each frame as a regular image in order to predict
the semantic segmentation of this frame. Since there is no
existing work that directly produces semantic segmentation
for compressed videos, we also define our own baseline as
follows. This baseline first produces the semantic segmentation
map on an I-frame. For remaining P-frames in the group, this
baseline simply uses the semantic segmentation map from this
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Fig. 4. Speed and accuracy on CamVid, compared to FCN-32s, FCN-8s, and ResNet.

[ Network [ Pixel Accuracy | MeanloU | CamVid
FCN-32s [5] 91% 46.1% [ Network [ Pixel Accuracy | MeanloU |
FCN-8s [5] 92.6% 49.7% Baseline 39% 359,
ResNet [5] 95% 53% Ours 949 51%
Ours 94% 51%
Cityscapes
TABLE 1
EVALUATING PERFORMANCE BETWEEN FCN, RESNET, AND OURS [ Network [ Pixel Accuracy [ MeanloU ]
APPROACH FOR VIDEO SEMANTIC SEGMENTATION ON CAMVID Baseline 0% 7%
Ours 87 % 34 %
TABLE III

[ Network [ Inference time (ms per frame) |

FCN-32s 42.5
FCN-8s 56
ResNet 168

Ours 17
TABLE II

EVALUATING INFERENCE TIME BETWEEN FCN, RESNET, AND OURS
APPROACH FOR VIDEO SEMANTIC SEGMENTATION ON CAMVID

I-frame as the prediction for each P-frame.

B. Results

We first compare different methods in terms of both their
accuracy and inference speed using the CamVid dataset. The
comparisons are shown in Table I, Table II and Fig 4. Our
method achieves better performance than FCN-32s and FCN-
8s [5] in terms of both accuracy and speed. Our method
performs comparably to ResNet in terms of MeanloU and
pixel accuracy, but our method is much faster.

We also compare the performance between our method and
the baseline we have defined earlier in Table III. Our method
achieves higher pixel accuracy and MeanloU.

V. CONCLUSION

We have proposed a new method for semantic segmentation
in compressed videos. Our method does not require extracting
each frame as an RGB image. Instead, it directly operates
on the compressed video format consisting of I-frames and P-
frames. Our model uses a ConvLSTM model for capturing the

EVALUATING PERFORMANCE BETWEEN BASELINE AND OURS APPROACH
FOR VIDEO SEMANTIC SEGMENTATION ON CAMVID AND CITYSCAPES

temporal inforamtion required segmenting the P-frames. Our
experimental results show that the proposed method performs
on-par with frame-based methods in terms of accuracy. But our
method can perform at a much higher speed during inference
time. We believe our method can potentially be used in real-
time applications where the efficiency is crucial.
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