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Abstract—In this paper, we consider the problem of one-
shot object segmentation in videos. Given an input video where
the object mask of the first frame is provided, our goal is to
segment each remaining frame in the video into foreground and
background. We propose an attention based knowledge transfer
mechanism that transfers the object knowledge from the first
frame to other frames in a video. Our model is a Siamese network
with two streams. The first stream will process the first frame in
a video, and the second stream will produce segmentation mask
of any other frame in a video. Each stream is a convolutional
neural network (CNN) that produces attention maps in certain
layers. Our proposed approach is based on the observation that
the attention maps in CNN contain valuable information that
can boost the performance of CNN architectures. In our work,
we propose a method for transferring the attention maps from
the first stream to the second stream in the Siamese architecture.
This will allow our model to transfer the knowledge from the first
frame (with ground-truth segmentation mask) to other frames in
the video. Our experimental results on two benchmark datasets
demonstrate that our proposed model outperforms other state-
of-the-art approaches.

Index Terms—one-shot learning, object segmentation, attention
transfer

I. INTRODUCTION

We consider the problem of one-shot video object segmenta-
tion (OSVOS). During training, we have access to a collection
of videos that are fully annotated, i.e. the segmentation mask of
the object of interest is provided in every frame of a training
video. During testing, we are given an input test video and
the segmentation mask of the object of interest in the first
frame, our goal is to generate the segmentation masks of
the remaining frames in the test video. Figure 1 shows an
illustration of our problem setting.

One-shot video object segmentation is an important problem
with many real-world applications, such as video search,
video surveillance, etc. This problem is also very challenging.
Standard object detection only tries to find instances of a
particular object class in an image. In contrast, OSVOS has
to be able to handle any object class in a video. As a result,
OSVOS cannot use models trained for a particular object class
and has to be able to handle large variations of objects. Second,
since we only have one annotated frame in a test video, it is
difficult to apply standard deep convolutional neural networks
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(CNNs) to learn a model specific to this test video, since CNNs
require a large amount of labeled training data.

Early approaches [1], [2] for this problem usually rely on
hand-crafted features. These approaches do not leverage CNNs
which have been shown to be powerful in many vision tasks,
e.g. image classification [3], object detection [4], semantic
segmentation [5]. Recently, there have been efforts [6], [7]
on adopting CNNs for OSVOS. One of the best performing
approaches, OSVOS [6], uses the labeled training videos to
learn an initial model (called parent network in [6]). For a
test video, this parent network is fine-tuned based on the
first frame and its ground-truth segmentation mask. Intuitively,
this fine-tuning approach can be considered as a knowledge
transfer mechanism. Through fine-tuning, the knowledge about
the object of interest is implicitly captured by the fine-tuned
model parameters. When these model parameters are used to
segment the object in remaining frames, the knowledge about
the object is implicitly transferred to these frames.

In this paper, we introduce an another strategy of knowledge
transfer for OSVOS. Our approach is inspired by the attention
transfer in [8]. Deep learning models with attention mechanism
have shown great success in various computer vision task, e.g.
object detection [9], image captioning [10]. The observation
in [8] is that the attention maps used in CNNs actually contain
valuable information that can be used to significantly improve
the performance of CNN architectures. Based on this observa-
tion, the method in [8] proposes to transfer the attention maps
from a powerful network (called teacher network) to a smaller
network (called student network). The goal is to improve the
performance of the student network.

In this work, we propose to use attention transfer in OSVOS.
We consider the teacher network to be the CNN model applied
on the first frame in a video, and the student network to be
the CNN model applied on any other frame in the video. By
transferring the attention maps from the teacher network to the
student work, we can improve the performance of the student
network.

The contributions of this work are three fold. First, we pro-
pose a novel Siamese architecture with two parallel streams for
OSVOS. The two streams correspond to the teacher network
and the student network, respectively. Second, instead of using
the attention regularization in [8], we propose a much simpler
attention transfer strategy by directly adding the attention maps



Fig. 1. An illustration of our problem formulation. Given an input video, the object mask of the first frame (red) is provided (1st column). The first frame
is fed to our model and produces an attention map (2nd column). This attention map is transferred to remaining frames in order to produce the segmentation
masks (green) in these remaining frames.

from the teacher network to the student network. Finally, we
combine the attention transfer strategy and the fine-tuning
method in [6] for OSVOS. Our experimental results show that
our proposed approach outperforms all the other state-of-the-
art methods.

II. RELATED WORKS

In this section, we review different lines of previous work
that are closely related to our work: one-shot learning and
video object segmentation.

One-shot Learning: The goal of one-shot learning is to
acquire knowledge based on training examples and generalize
it for new classes with only one or few annotated examples.
Wang and Herbert [11] introduce a learning to learn approach
for predicting classifiers which is very close to the base
classifier. Bertinetto et al. [12] introduce a learning network to
predict the weights of their final predictor. Vinales et al. [13]
develop a matching network that learns a class based on only
one or few examples. Santoro et al. [14] propose an one-shot
learning approach by adding a memory module in CNN.

Video Object Segmentation: In video object segmentation,
we are given only a small number of annotations (e.g. only
the first frame) in a given video. Some work [6], [15] in
this area has exploited using temporal consistency between
successive frames. There is also a line of work [16] on reduc-
ing computational complexity or large number of parameters
in video object segmentation. Caelles et al. [6] propose an
approach for semi-supervised video object segmentation where
they segment the foreground object from the background based
on the annotation masks of only one or few frames. They
adopt a pre-trained CNN from image recognition and tune-
fine their network on a labeled frame in an input video.
Khoreva et al. [17] develop a method called MaskTrack that
takes advantage of the prediction mask from previous frames.
In MaskTrack, the predicted segmentation mask of a frame
is used as an additional input to boost up the performance
for next frame. Cheng et al. [18] introduce an approach to
jointly predict segmentation and optical flow. Jampani et al.
[7] uses bilaterial filter for video object segmentation. Jang et
al. [19] introduce a trident network to incorporate optical flow
propagation in video object segmentation.

III. OUR APPROACH

Our model is in the form of a Siamese network with two
parallel streams (see Fig 2). Each stream of the Siamese net-
work is an attention-based segmentation network (Sec. III-A)

that takes an image as its input and produces the segmentation
mask. The model parameters are shared by the two streams
in the network. During testing, the first stream (which we call
the teacher stream) will be used to process the first frame of
an input video and produce the corresponding segmentation
labels. The second stream (which we call the student stream)
will be used to produce the segmentation mask of any other
frame in the video. Both the teacher and student networks
will also generate attention masks for their corresponding
feature maps. During testing, the teacher stream will be fine-
tuned based on the ground-truth segmentation mask of the first
frame. We then transfer the attention masks from the teacher
network to the student network by adding their attention
masks. This attention transfer mechanism allows us to transfer
the knowledge of the first frame to another frame in the video.

A. Attention-based Segmentation Network

The backbone architecture of the Siamese network is based
on the foreground FCN model in OSVOS [6]. The model
in [6] consists of groups of convolution, max-pooling, and
ReLU activation layers grouped into 5 stages. For a given
input image, the network extracts four feature maps at different
scales X1, X2, X3 and X4. These feature maps are upsampled
and fused together to produce the segmentation label mask
which has the same spatial dimension as the input image.

We modify the model in [6] to add an attention layer after
each of the 4 feature maps. We use a technique similar to
[8] to generate the attention maps. Let X ∈ RC×H×W be a
feature map in a CNN model, where C is number of channels
and H × W are the spatial dimensions of the feature map.
We generate the corresponding attention map using a mapping
function F :

F : RC×H×W → RH×W (1)

The mapping function F takes the feature map X as input
which contains the data vector Xij for the location (i, j) to
produce the attention score Aij for each particular location.
In our work, we implement F as follows. First, we apply a
2D convolution to map the input feature map (with dimension
C × H ×W ) to a 2D map (with dimension H ×W ). This
is followed by applying a sigmoid function to normalize the
entries of this 2D map to be between 0 and 1.

Let A = F(X) (where A ∈ RH×W ) be the attention map
for a given feature map X ∈ RC×H×W . We use the attention
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Fig. 2. Overview of our proposed framework. Our model has a Siamese architecture with two parallel streams that operates on first frame (teacher stream)
and remaining frames (student stream). In the teacher stream, we have the ground-truth object segmentation mask for the first frame of a video. We produce
an object specific attention map in the teacher stream. The attention map from the teacher stream will be transferred to the student stream. The student stream
will take any remaining frame as its input and produce its segmentation mask using the knowledge encoded by the attention map from the teacher stream.

map A to generate an attention-weighted feature map Z ∈
RC×H×W :

Z[c, h, w] = A[h,w]×X[c, h, w],

∀c ∈ {1..C}, h ∈ {1..H}, w ∈ {1..W} (2)

where Z[c, h, w] (A[h,w] and X[c, h, w]) denotes a particular
entry in Z (A and X).

Since our backbone architecture (i.e. the FCN model in
[6]) produces four feature maps at different scales Xi (i =
1, 2, 3, 4), we will have four attention-weighted feature maps
Zi (i = 1, 2, 3, 4). We then upsample Zi (i = 1, 2, 3, 4) to have
the same spatial dimension of the input image. Finally, these
attention-weighed feature maps are concatenated together to
produce the predicted segmentation mask.

For a frame x of a video, we define the loss on this
frame using the pixel wise cross entropy loss in [6] on the
final classification score of the predicted mask for the binary
classification of the frame x:

L(W ) = −
∑
j

yj logP (yj = 1 | x;W )+

(1− yj) log(1− P (yj = 1 | x;W )) (3)

Eq.3 also can be represented as,

L(W ) = −
∑
j∈Y+

logP (yj = 1 | x;W )−

∑
j∈Y−

logP (yj = 0 | x;W ) (4)

In Eq.4, W represents the model parameters. For each frame
x of a randomly picked video, yj represents the pixel wise
label of x where yj ∈ 0, 1. Y+ and Y− represents positive

and negative labeled pixels respectively. The probability P (.)
is obtained by applying a sigmoid function on the final
classification scores at the last layer in the network. To handle
the imbalance dataset, we use the modified cost function
similar to [6] as follows:

L(W ) = −β
∑
j∈Y+

logP (yj = 1 | x;W )

− (1− β)
∑
j∈Y−

logP (yj = 0 | x;W ) (5)

In Eq.5, β represents |Y+|/|Y−|. Finally we learn model pa-
rameters by optimizing Eq.5 using stochastic gradient descent.

B. Attention Transfer

During testing, we are given an input video and the ground-
truth object segmentation mask of the first frame. The first
frame will be used as the input to the teacher stream in our
network. Similar to [6], we then fine-tune the parameters of
the teacher stream on the first frame using its ground-truth
segmentation mask. We use Ai

t (i = 1, 2, 3, 4) to denote the
attention maps generated in the teacher stream by the fine-
tuned network.

The student stream of our network will receive another
frame in the video as its input. Note that since we do
not have the ground-truth segmentation mask for this frame
during testing, we cannot directly fine-tune the student stream.
Instead, we directly replace the parameters in the student
stream by copying the model parameters from the fine-tuned
teacher stream.

We also like to transfer the knowledge encoded by the
attention maps from the teacher stream to the student stream.
In [8], this attention transfer is achieved by introducing a
regularization that encourages the attention maps from two



networks to look similar. In our work, we use a much simpler
(yet effective) attention transfer mechanism. Let Ai

t and Ai
s

(i = 1, 2, 3, 4) be the attention maps of the teacher stream
and the student stream, respectively. Note that these attention
maps are produced using model parameters obtained from fine-
tuning the teacher stream. We directly add the attention maps
Ai

t to Ai
s as:

Ai
new ← Ai

s +Ai
t, i = 1, 2, 3, 4 (6)

Then the updated attention maps Ai
new in Eq. 6 will be used

to generate the attention-weighted feature maps Zi
t and finally

produce the final predicted segmentation mask in the student
stream.

The intuition of our approach is as follows. Since the
teacher stream has access to the ground-truth annotation on
the first frame, it contains useful information about the object
specific to the input. Intuitively we would like to transfer the
knowledge from the teacher stream to the student stream. In
our approach, this knowledge transfer is achieved via two
ways. First, the model parameters are fine-tuned on the teacher
stream and used in the student stream during testing. Second,
the attention maps of the teacher stream are directly added to
the student stream (Eq. 6). In the experiments, we demonstrate
that both knowledge transfer mechanisms help improve the
final performance of our model.

C. Training Details

Similar to [6], we start with an ImageNet pretrained VGG
model [20] as the base network. We initialize teacher stream
and the student stream with the base network. We then perform
offline training on a set of training videos. The object segmen-
tation masks are provided for all frames for any training video.
Following [6], we call the model obtained after the offline
training the parent network. Given a test video where only
the first frame is annotated, we use the parent network as the
initialization and perform an online training to fine-tune the
model to this particular video. The fine-tuned model is called
the test network. We then use the test network to segment all
remaining frames in the input test video.

Offline training: In each iteration of the offline training,
we randomly pick a training video. The first frame of this
video is forwarded to the teacher stream of our model. A
batch of remaining frames of the video are forwarded to the
student stream. The teacher and student streams predict the
segmentation masks for their corresponding input frames. The
attention maps from the teacher stream are transferred to the
student stream as described in Sec. III-B. We use the pixel-
wise cross entropy loss (Eq. 5) from both streams to learn
the model parameters. After the training, we have obtain the
parent network.

Online training: Given an input test video, we perform
online training to fine-tune the parent network on this test
video. Since we only have the ground-truth label of the first
frame, we only use the pixel-wise cross entropy loss from
the teacher frame to fine-tune the network. After the online

Method DAVIS YouTube-Objects

OFL [24] 68.0 77.6
BVS [25] 60.0 68.0
SFL [18] 76.1 –
PLM [26] 70.2 –
VPN [7] 75.0 –

CTN [19] 73.5 –
MaskTrack [17] 80.3 72.6

OSVOS [6] 79.8 78.3
ours 81.1 79.7

TABLE I
COMPARISON BETWEEN OUR APPROACH AND OTHER STATE-OF-THE-ART

METHODS ON DAVIS VALIDATION SET AND YOUTUBE-OBJECTS
DATASETS. NOTE THAT EXPERIMENTAL RESULTS FOR MASKTRACK ON
DAVIS ARE REPORTED BASED ON ALL VIDEO SEQUENCES INCLUDING

THE TRAINING SET, BUT IN OUR EXPERIMENT WE USE ONLY VALIDATION
SET FOR THE EVALUATION. OUR METHOD ACHIEVES BEST PERFORMANCE

COMPARED TO OTHER BASELINES.

training, we have obtained a test network specific tuned on
this test video.

We then apply the test network to segment the remaining
frames in the test video. Given a test frame, we also transfer
the attention maps from the teacher stream (obtained by
passing the first frame) to the student stream to generate the
segmentation mask on this test frame. This process is repeated
until all remaining frames are processed.

In order to further improve the performance, most state-of-
the-art methods also perform some post-processing, such as
conditional random field (CRF) in [17], boundary snapping in
[6]. As a post-processing step, we apply a DenseCRF [21] to
smooth the predicted segmentation mask.

IV. EXPERIMENTS

We evaluate our approach on two benchmark datasets:
DAVIS [22] and Youtube-Objects [23]. We also perform
ablation analysis to study the relative contribution of each
component of our proposed method.

A. Implementation Details

Our network is implemented based on the popular deep
learning framework PyTorch. For training our network, and
evaluating the performance of it, we use Nvidia Titan X with
10 core 2.3GHZ, 64GB RAM, 4TB hard drive and NVidia
GTX980 GPUs with 4GB, 2048 CUDA cores. To initialize
the network, we use some of the parameters from FCN [5].
We use stochastic gradient descent to update the weights of
our two streams siamese network. During testing, our network
receives an input image at its original size and then it produces
object segmentation mask at the original resolution for each
test image.

B. Results

DAVIS dataset: The DAVIS dataset consists of 50 videos
including 30 videos for training and the remaining 20 videos
for testing. Each video has one object of interest. The pixel-
level annotation of the object is provided on each frame of a
video. DAVIS has two versions based on the image resolution,
we use the 854× 480 images for all of our experiments.



Fig. 3. Qualitative results on videos in the DAVIS validation set. The ground-truth forground object mask on the first frame is shown in Red. The predicted
forground object masks in other frames are shown in Green.

Category LTV HBT FST AFS BVS SCF JFS OFL OSVOS Ours

Aeroplane 13.7 73.6 70.9 79.9 86.8 86.3 89.0 89.9 88.2 88.1
Bird 12.2 56.1 70.6 78.4 80.9 81.0 81.6 84.2 85.7 86.2
Boat 10.8 57.8 42.5 60.1 65.1 68.6 74.2 74.0 77.5 79.2
Car 23.7 33.9 65.2 64.4 68.7 69.4 70.9 80.9 79.6 81.4
Cat 18.6 30.5 52.1 50.4 55.9 58.9 67.7 68.3 70.8 73.6
Cow 16.3 41.8 44.5 65.7 69.9 68.6 79.1 79.8 77.8 77.0
Dog 18.0 36.8 65.3 54.2 68.5 61.8 70.3 76.6 81.3 81.2

Horse 11.5 44.3 53.5 50.8 58.9 54.0 67.8 72.6 72.8 76.3
Motorbike 10.6 48.9 44.2 58.3 60.5 60.9 61.5 73.7 73.5 75.4

Train 19.6 39.2 29.6 62.4 65.2 66.3 78.2 76.3 75.7 78.1
Average 15.5 46.3 53.8 62.5 68.0 67.6 74.0 77.6 78.3 79.7

TABLE II
EVALUATION OF PER-CATEGORY PERFORMANCE (MEAN IOU) ON THE

YOUTUBE-OBJECTS DATASET. THE BEST RESULT FOR EACH CATEGORY IS
HIGHLIGHTED IN BOLD FONT. OUR APPROACH ACHIEVES THE BETTER

RESULTS FOR ALMOST ALL CLASSES. WE ALSO ACHIEVE THE BEST
AVERAGE MIOU.

We follow the setup in [6] in our experiments. First, a
modified version of FCN (called Base Network in [6]) is
initialized using pretrained weights on ImageNet. We then use
the 30 training videos in DAVIS to learn our model (called
Parent Network in [6]). During testing, we are given an input
test video and the ground-truth segmentation mask on the first
frame. We fine-tune the parent network on the first frame to get
a model (called Test Network in [6]) tuned to this test video.
We then perform the attention transfer described in Sec. III-B
and use the test network to predict the segmentation mask for
each remaining frame of the test video.

DAVIS Attention Transfer Fine-tuning CRF mIoU

52.5
53.8
77.4
79.6
81.1

TABLE III
EFFECT OF VARIOUS COMPONENTS OF OUR APPROACH ON THE DAVIS
VALIDATION SET. IF WE ONLY USE THE PARENT NETWORK TRAINED ON
THE DAVIS TRAINING DATA (1ST ROW), THE PERFORMANCE IS ONLY
52.5%. BOTH ATTENTION TRANSFER AND FINE-TUNING ON THE FIRST
FRAME OF A TEST VIDEO IMPROVE THE PERFORMANCE. FINALLY, CRF

POSTPROCESSING FURTHER IMPROVES THE PERFORMANCE.

We compare our approach with several state-of-the-art
methods, including OSVOS [6], OFL [24], PLM [26],
CTN [19], BVS [25], VPN [7], SFL [18] and MaskTrack [17].
The results are shown in Table I (2nd column). Figure 3 shows
the qualitative examples of our method on the DAVIS dataset.
Figure 4 shows the visualization of the transferred and non-
transferred attention maps in the student stream.

Youtube-Objects: Following [6], we also evaluate on the
Youtube-Objects [23] dataset. This dataset contains videos of
10 object classes. Compared to DAVIS, this dataset includes
frames with less variations, motion and occlusions between
foreground objects of consecutive frames. We follow the same



Fig. 4. Visualization of attention maps for different frame sequences in a
video from the DAVIS validation set. (1st row) original images; (2nd row)
attention maps with transferring the attention map from the teacher stream;
(3rd row) attention maps obtained after attention transfer.

evaluation protocol of DAVIS for experimenting the method
on YouTube-Objects. We compare with other state-of-the-art
methods on this dataset. The results are shown in Table I (3rd
column). We also show the per-class results on this dataset in
Table II. Our approach significantly outperforms other state-
of-the-art methods.

C. Ablation Analysis

We perform ablation studies on the DAVIS dataset to further
explore the relative contribution of each component in our
approach by leaving out one or more components. Table III
shows the results of this ablation analysis. If we only train
the model on the DAVIS training data (i.e. only using the
parent network), the performance (1st row in Table III) is only
52.5%. If the model trained on DAVIS is fine-tuned on only
the first frame, it can achieve 77.4% [6]. Using fine-tuning
on the first frame and the attention transfer, we are able to
boost the performance to 79.6%. Using all components gives
the best overall performance.

V. CONCLUSION

We have presented a new approach for one-shot video
object segmentation. Our model uses the Siamese network
architecture with two streams. The first stream (teacher stream)
is used to process the first frame in the video and its ground-
truth segmentation mask. The second stream (student stream)
is used to predict the segmentation mask of another frame in
the video. By transferring the attention maps from the teacher
stream to the student stream, our model effectively transfer the
knowledge captured from the teacher stream to help the stu-
dent stream to accurately segment the object. Our experimental
results demonstrate that our approach outperforms other state-
of-the-art methods.
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[21] Philipp Krähenbühl and Vladlen Koltun, “Efficient inference in fully
connected crfs with gaussian edge potentials,” in Advances in Neural
Information Processing Systems, 2011.

[22] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool,
Markus Gross, and Alexander Sorkine-Hornung, “A benchmark dataset
and evaluation methodology for video object segmentation,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[23] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia Schmid,
and Vittorio Ferrari, “Learning object class detectors from weakly
annotated videos,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

[24] Yi-Hsuan Tsai, Ming-Hsuan Yang, and Michael J Black, “Video
segmentation via object flow,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[25] Nicolas Märki, Federico Perazzi, Oliver Wang, and Alexander Sorkine-
Hornung, “Bilateral space video segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[26] Jae Shin Yoon, Francois Rameau, Junsik Kim, Seokju Lee, Seunghak
Shin, and In So Kweon, “Pixel-level matching for video object seg-
mentation using convolutional neural networks,” in IEEE International
Conference on Computer Vision, 2017.


