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Fig. 1. For an object of interest (e.g. “car”), we have a set of positive images
containing this object, and another set of negative without this object. Our
goal is to localize the bounding box location of the target object in each
positive image.

Abstract—We consider the problem of weakly supervised ob-
ject localization. For an object of interest (e.g. “car”), an image is
weakly labeled when its label only indicates the presence/absence
of this object, but not the exact location of the object in the image.
Given a collection of weakly labeled images for an object, our goal
is to localize the object of interest in each image. We propose a
novel architecture called the regularized attention network for this
problem. Our work builds upon the attention network proposed in
[1]. We extend the standard attention network by incorporating
a regularization term that encourages the attention scores of
object proposals to mimic the scoring distribution of a strong
fully supervised object detector. Despite of the simplicity of our
approach, our proposed architecture achieves the state-of-the-art
results on several benchmark datasets.

object localization, weakly supervised learning, attention-
based neural network, attention network, weakly supervised
object localization

I. INTRODUCTION

We address the problem of weakly supervised object lo-
calization. For an object of interest (e.g. “car”), we have
a collection of weakly labeled images for this object. Each
image is annotated with the presence/absence of this object,
but not the exact bounding box location in the image. Given a
set of such weakly labeled images with only image-level label,
our goal is to localize the object of interest in each image. See
Fig. 1 for an illustration.

The traditional pipeline of learning object detectors require
a large amount of training images annotated with object

bounding boxes. It usually requires human annotations in order
to collect training data in order to learn object detectors.
However, human annotation is often expensive and time-
consuming. In contrast, it is very easy to collect classification
labels for images, thanks to the social media sites such like
Flickr. If we can successfully solve the weakly supervised
object localization problem, it can provide an affordable alter-
native for collecting training data for learning object detectors.

Our work is based on the attention network in [1] for
weakly supervised object localization. The attention network
first extracts object proposals in each image. It then assigns
an attention score to each object proposal. The object pro-
posal with the highest attention score is selected as the final
localization result.

A limitation of the original attention network is that the
attention scores of object proposals in an image often have
lots of uncertainty. In [2], it is observed that more than
90% of proposals have very low detection confidence scores
when we apply a strong object detector on them. In other
words, the score distribution of a strong object detector should
have high peak in a small portion of the proposals. In this
paper, we introduce the regularized attention network. Our
proposed model adds an additional regularization term in
attention network, so that the attention scores of the proposals
mimic the distribution of the detection scores of a strong
object detector. Despite of the simplicity of our approach, our
proposed method outperforms other state-of-the-art methods
on benchmark datasets.

II. RELATED WORK

There has been a series of work on weakly supervised object
localization [3], [4], [5], [6], [7], [15]. Many of them use
some form of multiple instance learning to solve the weakly
supervised learning problem. Bilen [3] propose an end-to-end
architecture that combines object classification and detection
in a single network. In [4], Bilen use latent SVM by treating
bounding boxes as latent variables.

Our work is closely related to a line of work on using
attention in deep neural networks in various applications, e.g.
machine translation [8], action recognition [9], image caption
[10], etc. The attention network in [1] is closed to ours.
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Fig. 2. An overview of our approach. We introduce an attention distribution
regularizer to the attention network [1]. We first extract features from each
proposals (note that this is a preprocessing step). The proposal features are
then forwarded to a linear layer followed by a SoftMax layer to generate
the attention scores. After that, the attention scores are multiplied with the
corresponding proposal features to generate a whole image feature. This whole
image feature is then used to generate a classification score. Finally, we
regularize the distribution of attention scores to mimic detection scores of
a strong object detector and classifying the image using the whole image
feature.

III. OUR APPROACH

Our proposed approach is based on the attention network
in [1]. In this section, we first give a brief introduction to
the background on attention networks (Sec III-A). We then
describe how to modify the original attention network by
introducing regularization on the attention scores (Sec. III-B).
See Fig. 2 for the overall architecture of our approach.

A. Background: Attention Networks

Our approach is based on the attention networks for weakly
supervised object localization proposed in [1]. The attention
network consists of three components: object proposals, pro-
posal attention and classification.
Object proposals: For a given object of interest (e.g. “car”),
we have a collection of weakly labeled images where each
image has a binary label indicating the presence/absence of
the object in the image. We first generate K object proposals
in each image by using the edge boxes method [11]. Each
proposal is a bounding box that may contain any object. Next,
we use an existing CNN model implemented in Caffe [12] to
extract a 4096 dimensional feature for each proposal.
Proposal attention: For an image x, we use xi (i =
1, 2, ...,K) to denote the i-th proposal in the image. We then
compute an attention score si to indicate the likelihood of
the proposal to contain the object of interest. We make the
attention scores to form a probability distribution by applying
a softmax function to all the proposal attentions in a each
image. I.e., the attention score si is calculated as:

si =
exp(w>a xi)∑K
j=1 exp(w

>
a xj)

(1)

Classification: We combine the proposal attention scores and
the proposal features to obtain an image level feature. We then

use the image level feature to perform a binary classification
using the logistic loss:

z =

K∑
i=1

sixi, f(x; {wa,wc}) = w>c z (2)

`(x, y; {wa,wc}) = log(1 + exp(−y · f(x; {wa,wc})) (3)

where y ∈ {+1,−1} indicates the ground-truth label of the
image x.

Given a set of N training images and their weak labels
{xn, yn}Nn=1, the model parameters {wa,wc} are learned by
minimizing the logistic losses of the all training images:

min
wa,wc

L(wa,wc) =

N∑
n=1

`(xn, yn; {wa,wc}) (4)

In the end, we consider the proposal xi with the highest
attention score as the localized object in this image x.

B. Regularizing Attention Networks

In Eq. 1, the attention score of one proposal will depend
on other proposals in this image due to the softmax operation.
In the case where proposals are equally likely to contain the
object of interest, it will cause the model to have high degree
of uncertainty. For example, Figure 3 shows an example to
illustrate this. In Fig. 3(left), we show three object proposals
with the highest attention scores produced by the original
attention network [1]. We can see that the top two proposals
(denoted by red and blue colors) almost have the same
attention scores. Since the attention scores are used later to
localize the object, this uncertainty can cause problem in the
end. It is very easy for the model to pick the wrong proposal
as the final localization, when the model is presented with two
equally promising proposals.

To resolve this uncertainty, we need a way for the original
model [1] to be “focused”, i.e. the attention score should
ideally concentrate on one proposal. Our contribution to this
paper is to come out with a way to regularize the proposal
attention distribution to mimic the detection score distribution
of a strong object detector. Our approach is partly motivated
by [2]. A key observation in [2] is that if we apply a strong
object detector on all object proposals, more than 90% of the
object proposals will have very low detection scores. Only a
small portion of the object proposals will have high detection
scores. Base on this observation. we want the attention scores
of our model to mimic the behavior of a strong object detector.
In particular, we would like to encourage the attention scores
to form a “peak” distribution where most of the high attention
scores are concentrated on a small number of object proposals.

We implement this idea by introducing an additional reg-
ularization term on the distribution of attention scores. This
regularization term will encourage the distribution of attention
scores to be far away from the uniform distribution. Equiva-
lently, this will force the distribution of attention scores to be
peaked around a small number of object proposals.



We use the Kullback-Leibler divergence [13] as a way to
measure the difference between the current attention distribu-
tion s and the uniform distribution. For a discrete distribution
with K bins, this regularization is defined as:

R(s) =

K∑
i=1

si log(
si

1/K
) (5)

and our objective is to maximize this regularization term,
because we want the attention distribution to be as different
as possible from the uniform distribution.

Combing Eq. 3 and Eq. 5, we learn the parameters in our
model by minimizing the following regularized loss function:

min
wa,wc

L(wa,wc)− λ ·R(s) (6)

The hyperparameter λ can be used to control the relative
contributions of the two terms in Eq. 6. In our experiments,
we simply set λ = 1. The problem in Eq. 6 can be solved
using standard software frameworks (e.g. Torch).

before after

Fig. 3. A visualization of the top 3 proposals with their attention scores
before and after applying our method. The model (left) has lots of uncertainty
since the top two proposals have similar attention scores. By regularizing the
attention score distribution, we force the model to concentrate the attention
on one of them. This helps resolve the ambiguity and produce the correct
localization results. See Fig 4 for the change in attention distribution.

Figure 4 visualizes the distribution of attention scores on the
object proposals shown in Fig. 3 before and after we regularize
the attention distribution.

IV. EXPERIMENTS

We first present the experiment setup and some implemen-
tation details IV-A. Then we evaluate the proposed approach
on three datasets: PASCAL VOC 2007 dataset (Sec. IV-B),
YouTube-Objects dataset(Sec. IV-C) and YouTube-Objects-
Subset dataset (Sec. IV-D).
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Fig. 4. A comparison of attention score distribution before (left) and
after (right) regularizing the attention distribution. With the regularization,
the distribution becomes more peaked and the attention score concentrates
more on the first proposal.

A. Experiment Details

We train our model as a binary classifier for each class in
the dataset. All images consist of a given class is considered
as positive examples. To maintain class balance, we randomly
select an equal number of negative examples from each of the
remaining classes.

Following [1] and [14], we generate 40 proposals for each
image in Pascal VOC 2007 dataset and 20 proposals for
each image in YouTube-Objects and YouTube-Objects-Subset
dataset. A dropout rate of 0.8 is used to regularize our network.

B. PASCAL VOC 2007

The PASCAL VOC 2007 dataset consists of images of 20
object classes. Similar to previous work [1], [3], [14], we train
our model and evaluate CorLoc by using all of the training
and validation images. Table I shows the result of our CorLoc
performance. We compare our method with several state-of-
the-art methods [1], [3], [14] on weakly supervised object
localization. Our method outperforms all of them.

Fig. 5. A visualization on how our method affects the attention scores of
the proposals (1st column: attention network [1]; 2nd column: ours). The
brightness indicates the attention scores of each proposals. We use a Gaussian
mask with sigma proportional to attentions scores, width and height of each
proposals.

Figure 5 shows the visualization of the attention scores of
our method compared with [1]. We can see that the attention
scores produced by our model tend to be peaked. We show
some examples of the final localization in Fig. ??.

C. YouTube-Objects

The YouTube-Objects dataset [5] contains videos of 10
different object classes. We train and evaluate our model by
using all video frames with bounding box annotation. Table II
shows the result of our CorLoc performance. Our method
outperforms the state-of-art methods in this dataset.

D. YouTube-Objects-Subset

The YouTube-Objects-Subset dataset [18] is a subset of
YouTube-Objects dataset [5]. This dataset is unique because
it provides segmentation mask as ground truth rather than



TABLE I
CORLOC RESULTS ON positive TRAINVAL SUBSET OF THE PASCAL VOC 2007 DATASET. WE ALSO COMPARE OUR APPROACH WITH SEVERAL

STATE-OF-THE-ART APPROACHES [15], [14], [3], [1].

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv avg
[15] 80.10 63.90 51.50 14.90 21.00 55.70 74.20 43.50 26.20 53.40 16.30 56.70 58.30 69.50 14.10 38.30 58.80 47.20 49.10 60.90 48.50
[3] 68.90 68.70 65.20 42.50 40.60 72.60 75.20 53.70 29.70 68.10 33.50 45.60 65.90 86.10 27.50 44.90 76.0 62.40 66.30 66.80 58.00

[14] 78.57 63.37 66.36 56.35 19.67 82.26 74.75 69.13 22.47 72.34 31 62.95 74.91 78.37 48.61 29.39 64.58 36.24 75.86 69.53 58.84
[1] 84.03 64.61 70.00 62.43 25.82 80.65 73.91 71.51 35.73 81.56 46.50 71.26 79.09 78.78 56.72 34.29 69.79 56.72 77.01 72.66 64.59

ours 84.87 66.26 71.82 65.75 25.41 83.87 74.89 74.48 34.38 85.11 55.00 73.63 79.09 79.59 62.05 34.69 77.08 58.08 77.39 75.39 66.94

TABLE II
CORLOC RESULTS ON THE YOUTUBE-OBJECTS DATASET [5].

method aero bird boat car cat cow dog horse bike train avg

[16] (video) 25.12 31.18 27.78 38.46 41.18 28.38 33.91 35.62 23.08 25 30.97

[17] 65.4 67.30 38.9 65.2 46.3 40.2 65.3 48.4 39 25 50.1

[14] proposal only 51.69 54.84 32.54 85.71 14.53 75.68 55.65 53.42 51.69 39.29 51.50

[14] proposal + transfer 56.04 30.11 39.68 85.71 24.79 87.83 55.65 60.27 61.8 51.79 55.37

[1] 55.07 62.37 43.65 84.62 28.21 66.22 58.26 53.42 62.92 39.29 55.40

ours 57.00 60.22 45.24 84.62 28.21 67.57 62.61 57.53 62.92 41.07 56.70

bounding boxes. We train and evaluate our model on all the
frames in this dataset.

During evaluation, our model will first produce bounding
box. We then use grab-cut algorithm [19] on the bounding box
to generate segmentation mask. CorLoc is measured based on
pixel level IoU region. Table III shows the result of our CorLoc
performance. Again, our method outperforms the state-of-art
methods in this dataset.

TABLE III
CORLOC RESULTS ON THE YOUTUBE-OBJECTS-SUBSET DATASET.

method aero bird boat car cat cow dog horse bike train avg

[14] proposal only 42.23 51.24 29.54 67.76 14.75 50.20 47.02 22.18 16.44 18.84 36.02

[14] proposal + transfer 45.74 55.47 39.51 58.75 26.51 55.00 43.51 33.71 32.76 25.63 41.66

[1] 49.19 45.52 43.94 69.32 26.43 60.24 56.03 40.39 40.39 19.91 45.10

ours 51.72 69.24 46.92 70.54 29.41 61.48 62.53 43.08 36.40 14.46 48.58

Fig. 6. Qualitative examples of our approach on the PASCAL VOC 2007
trainval dataset. Green boxes show the ground-truth localization. Red boxes
show the localization produced by our model.

V. CONCLUSION

We have proposed a new method to regularize the attention
distribution for an attention network [1]. Our experiments
demonstrate that adding this regularizer does improve the

performance of the existing model and at the same time out-
perform other state-of-the-art methods on weakly supervised
object localization.
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